Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Background

Hydroxyl-Terminated Polybutadiene (HTPB)-based energetic compositions have been developed for enhanced blast energetic composite, composite rocket propellant formulations, metal cutting, demolition, welding and explosive reactive armour in civil and military applications. The types and choice of curing agents are crucial in enhancing the mechanical and structural integrity of the binder. To understand the stability and safety of energetic composites for potential applications, it is necessary to understand the thermal decomposition kinetics and thermodynamic parameters clearly.

Objective

The main objective is to study the decomposition kinetic and thermodynamic parameters of energetic composites cured by different curing agents.

Methods

A series of energetic composites based on HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane) and HTPB-based binder system cured with various curing agents were prepared by the cast cured method. The curatives, namely MDI (4,4’-methylene diphenyl diisocyanate), IPDI (isophorone diisocyanate), TDI (toluene dissocyanate) and TMDI (2,2,4-trimethylhexamethylene diisocyanate) were used. The thermal analysis method was employed to investigate the thermal decomposition characteristics, which are closely associated with the thermal stability and safety considerations during handling, processing, and storage. The kinetic parameters for thermal decomposition reactions were studied by employing the Flynn-Wall-Ozawa method. The thermodynamic parameters of the activation enthalpy, activation Gibbs energy free and activation entropy of all energetic composites were also determined by the theory of activated complex.

Results

The thermogravimetric results show that the thermal stability is almost similar for all composites cured with the different types of curing agents. The average activation energy of the energetic composites cured with IPDI, MDI, TMDI and TDI was 207.5, 237.3, 243.3 and 187.6 kJ/mol, respectively. The thermodynamic parameters for the thermal decomposition process show that they are generally thermodynamically stable and non-spontaneous. Scanning Electron Microscope (SEM) micrographs of all the samples clearly indicate that HMX crystals are well embedded in the polymer matrices.

Conclusion

The thermal stability of all energetic composites is almost constant. The activation energy of the prepared energetic composites is significantly varied with varying the type of curing agents in the HTPB-based binder system. The thermodynamic parameters indicate that composites possess superior stability and thermal safety. The SEM micrographs indicate that HMX crystals of prepared composites are embedded in the polymer matrix.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454284941240312071428
2024-03-20
2025-05-04
Loading full text...

Full text loading...

References

  1. YouzeraH. AliA. MeftahS.A. TounsiA. HussainM. Nonlinear damping and forced vibration analysis of laminated composite plates with composite viscoelastic core layer.Steel Compos. Struct.2022449110410.12989/scs.2022.44.1.091
    [Google Scholar]
  2. HuangY. KaramiB. ShahsavariD. TounsiA. Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels.Arch. Civ. Mech. Eng.202121413910.1007/s43452‑021‑00291‑7
    [Google Scholar]
  3. AlsubaieA.M. AlfaqihI. Al-OstaM.A. Porosity-dependent vibration investigation of functionally graded carbon nanotube-reinforced composite beam.Comput. Concr.2023321758510.12989/cac.2023.32.1.075
    [Google Scholar]
  4. BounouaraF. SadounM. MohamedM. Effect of visco-Pasternak foundation on thermo-mechanical bending response of anisotropic thick laminated composite plates.Steel Compos. Struct.202347669370710.12989/scs.2023.47.6.693
    [Google Scholar]
  5. BelbachirN. BouradaF. BousahlaA.A. TounsiA. MohamedA. A refined quasi-3D theory for stability and dynamic investigation of cross-ply laminated composite plates on Winkler-Pasternak foundation.Struct. Eng. Mech.202385443344310.12989/sem.2023.85.4.433
    [Google Scholar]
  6. AbualnourM. ChikhA. HebaliH. Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory.Comput. Concr.201924648949810.12989/cac.2019.24.6.489
    [Google Scholar]
  7. ChenJ. PengQ. QianW. WangL.Y. ZuoY.F. ChiY. Thermal safety and compatibilities with silicone rubber cushion and polyurethane adhesive of PBX specimen based on HMX.Chin J Energ Mater20111966166310.3969/j.issn.1006‑9941.2011.06.014
    [Google Scholar]
  8. SinghA. KumarM. SoniP. SinghM. SrivastavaA. Mechanical and explosive properties of plastic bonded explosives based on mixture of HMX and TATB.Def. Sci. J.201363662262910.14429/dsj.63.5764
    [Google Scholar]
  9. SinghA. SoniP.K. SinghM. SrivastavaA. Thermal degradation, kinetic and correlation models of poly(vinylidene fluoride–chlorotrifluoroetheylene) copolymers.Thermochim. Acta2012548889210.1016/j.tca.2012.08.031
    [Google Scholar]
  10. SinghA. SoniP.K. ShekharamT. SrivastavaA. A study on thermal behavior of a poly (VDF‐CTFE) copolymers binder for high energy materials.J. Appl. Polym. Sci.201312731751175710.1002/app.37780
    [Google Scholar]
  11. SinghA. SinghS. SharmaT.C. KishoreP. Physicochemical properties and kinetic analysis for some fluoropolymers by differential scanning calorimetry.Polym. Bull.20187562315233810.1007/s00289‑017‑2153‑5
    [Google Scholar]
  12. SinghA. SharmaT.C. KishoreP. Thermal degradation kinetics and reaction models of 1,3,5-triamino-2,4,6-trinitrobenzene-based plastic-bonded explosives containing fluoropolymer matrices.J. Therm. Anal. Calorim.201712931403141410.1007/s10973‑017‑6335‑z
    [Google Scholar]
  13. LemosM.F. BohnM.A. DMA of polyester-based polyurethane elastomers for composite rocket propellants containing different energetic plasticizers.J. Therm. Anal. Calorim.2018131159560010.1007/s10973‑016‑5945‑1
    [Google Scholar]
  14. ManjariR. JosephV.C. PandurengL.P. SriramT. Structure‐property relationship of HTPB‐based propellants. I. Effect of hydroxyl value of HTPB resin.J. Appl. Polym. Sci.199348227127810.1002/app.1993.070480211
    [Google Scholar]
  15. ChaturvediS. DaveP.N. Solid propellants: AP/HTPB composite propellants.Arab. J. Chem.20191282061206810.1016/j.arabjc.2014.12.033
    [Google Scholar]
  16. Mehilal, Labade MS, Singh SN, Agrawal JP. Evaluation of some thermal, mechanical and explosive properties of plastic bonded explosives based on epoxy resin.J. Energ. Mater.200119225527210.1080/07370650108216129
    [Google Scholar]
  17. KumarA.S. RaoV.B. SinhaR.K. RaoA.S. Evaluation of plastic bonded explosive (PBX) formulations based on RDX, aluminium, and HTPB for underwater applications.Propellants Explos. Pyrotech.201035435936410.1002/prep.200800048
    [Google Scholar]
  18. AngH.G. PisharathS. Polymers as binders and plasticizers–historical perspective.In: Energetic polymers: binders and plastisizers for enhancing performance.WeinheimV CH2012117
    [Google Scholar]
  19. SinghA. KumarR. SoniP.K. SinghV. Investigation of the effect of diisocyanate on the thermal degradation behavior and degradation kinetics of polyether-based polyurethanes.J. Macromol. Sci. Part B Phys.2020591277579510.1080/00222348.2020.1802850
    [Google Scholar]
  20. ElbeihA. PachmanJ. ZemanS. VávraP. TrzcińskiW.A. Akštein. Detonation characteristics of plastic explosives based on attractive nitramines with polyisobutylene and poly (methyl methacrylate) binders.J. Energ. Mater.201230435837110.1080/07370652.2011.585216
    [Google Scholar]
  21. XiaoJ. HuangH. LiJ. ZhangH. ZhuW. XiaoH. A molecular dynamics study of interface interactions and mechanical properties of HMX-based PBXs with PEG and HTPB.J. Mol. Struct. Theochem20088511-324224810.1016/j.theochem.2007.11.021
    [Google Scholar]
  22. JiaX. CaoQ. GuoW. Synthesis, thermolysis, and solid spherical of RDX/PMMA energetic composite materials.J. Mater. Sci. Mater. Electron.20193022201662017310.1007/s10854‑019‑02399‑2
    [Google Scholar]
  23. DattaJ. RohnM. Thermal properties of polyurethanes synthesized using waste polyurethane foam glycolysates.J. Therm. Anal. Calorim.200788243744010.1007/s10973‑006‑8041‑0
    [Google Scholar]
  24. ZalewskiK. ChyłekZ. TrzcińskiW. Studies on the properties of a putty-like explosive with a silicone binder.Cent. Eur. J. Energ. Mater.202118111212310.22211/cejem/135053
    [Google Scholar]
  25. KimH.J. KwonY. KimC.K. Thermal and mechanical properties of hydroxyl-terminated polybutadiene-based polyurethane/polyhedral oligomeric silsesquioxane nanocomposites plasticized with DOA.J. Nanosci. Nanotechnol.201313157758110.1166/jnn.2013.6944 23646777
    [Google Scholar]
  26. ChenJ.K. BrillT.B. Chemistry and kinetics of hydroxyl-terminated polybutadiene (HTPB) and diisocyanate-HTPB polymers during slow decomposition and combustion-like conditions.Combust. Flame1991873-421723210.1016/0010‑2180(91)90109‑O
    [Google Scholar]
  27. HaponiukJ.T. BalasA. KawkaT. Application of the DSC analysis of thermoplastic polyurethane elastomers to a comparative study of their technological properties.J. Therm. Anal.19903662249225210.1007/BF01914162
    [Google Scholar]
  28. ElbeihA. ElghanyA.M. ElshenawyT. Application of vacuum stability test to determine thermal decomposition kinetics of nitramines bonded by polyurethane matrix.Acta Astronaut.201713212413010.1016/j.actaastro.2016.12.024
    [Google Scholar]
  29. RosuD. TudorachiN. RosuL. Investigations on the thermal stability of a MDI based polyurethane elastomer.J. Anal. Appl. Pyrolysis201089215215810.1016/j.jaap.2010.07.004
    [Google Scholar]
  30. ElghanyA.M. ElbeihA. HassaneinS. Thermal behavior and decomposition kinetics of RDX and RDX/HTPB composition using various techniques and methods.Cent. Eur. J. Energ. Mater.201613371473510.22211/cejem/64954
    [Google Scholar]
  31. SikderA.K. FelixS. PandeyD. AgrawalJ. SikderA. Studies on energetic compounds.J. Therm. Anal. Calorim.200579363163510.1007/s10973‑005‑0588‑7
    [Google Scholar]
  32. JangidS.K. SinghM.K. SolankiV.J. 1,3,5‐Trinitroperhydro‐1,3,5‐triazine (RDX)‐based sheet explosive formulation with a hybrid binder system.Propellants Explos. Pyrotech.201641237738210.1002/prep.201500193
    [Google Scholar]
  33. ElbeihA. WafyT. ElshenawyT. Performance and detonation characteristics of polyurethane matrix bonded attractive nitramines.Cent. Eur. J. Energ. Mater.2016141778910.22211/cejem/64899
    [Google Scholar]
  34. ElbeihA. ElghanyA.M. KlapötkeT.M. Kinetic parameters of PBX based on Cis‐1,3,4,6‐tetranitroocta‐hydroimidazo‐[4, 5‐d] imidazole obtained by isoconversional methods using different thermal analysis techniques.Propellants Explos. Pyrotech.201742546847610.1002/prep.201700032
    [Google Scholar]
  35. WangJ. AnC. LiG. LiangL. XuW. WenK. Preparation and performances of castable HTPB/CL‐20 booster explosives.Propellants Explos. Pyrotech.2011361344110.1002/prep.200900110
    [Google Scholar]
  36. SinghA. KumarR. SoniP.K. SinghV. Compatibility and thermokinetics studies of octahydro- 1,3,5,7-tetranitro-1,3,5,7-tetrazocine with polyether-based polyurethane containing different curatives.J. Energ. Mater.201937214115310.1080/07370652.2018.1552337
    [Google Scholar]
  37. SinghA. KumarR. SoniP.K. SinghV. Compatibility and thermal decomposition kinetics between HMX and some polyester-based polyurethanes.J. Therm. Anal. Calorim.202114363969398110.1007/s10973‑020‑09377‑5
    [Google Scholar]
  38. SinghA. SoniP.K. SarkarC. MukherjeeN. Thermal reactivity of aluminized polymer-bonded explosives based on non-isothermal thermogravimetry and calorimetry measurements.J. Therm. Anal. Calorim.201913631021103510.1007/s10973‑018‑7730‑9
    [Google Scholar]
  39. FlynnJH WallLA General treatment of the thermogravimetry of polymers.J Res Natl Bur Std A Phys Chem1966704874823
    [Google Scholar]
  40. SinghA. KishoreP. KumarR. SoniP.K. ThakurP. ThakurA. Effect of the curative on the thermal decomposition behavior and kinetics of polyester-based polyurethanes.J. Macromol. Sci. Part B Phys.20236212410.1080/00222348.2023.2205298
    [Google Scholar]
  41. KumarR. SinghA. KumarM. SoniP.K. SinghV. Investigations of effect of hydroxyl-terminated polybutadiene-based polyurethane binders containing various curatives on thermal decomposition behaviour and kinetics of energetic composites.J. Therm. Anal. Calorim.202114552417243010.1007/s10973‑020‑09773‑x
    [Google Scholar]
  42. ChakrabortyD. MullerR.P. DasguptaS. GoddardW.A. Mechanism for unimolecular decomposition of HMX (1,3,] 5,7-tetranitro-1,3,5,7-tetrazocine), an ab initio study.J. Phys. Chem. A200110581302131410.1021/jp0026181
    [Google Scholar]
  43. ManaaM.R. FriedL.E. The Reactivity of Energetic Materials Under High Pressure and Temperature LLNL-JRNL-643808.United StatesLawrence Livermore National Laboratory Energetic Materials Center CA2013
    [Google Scholar]
  44. ZhangL. ZybinS.V. van DuinA.C.T. DasguptaS. GoddardW.A.III KoberE.M. Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations.J. Phys. Chem. A200911340106191064010.1021/jp901353a 19791809
    [Google Scholar]
  45. ChakrabortyD. MullerR.P. DasguptaS. GoddardW.A.III A detailed model for the decomposition of nitramines: RDX and HMX.J. Comput. Aided Mater. Des.200182/320321210.1023/A:1020074113000
    [Google Scholar]
  46. MerdunH. LaougéZ.B. Kinetic and thermodynamic analyses during co-pyrolysis of greenhouse wastes and coal by TGA.Renew. Energy202116345346410.1016/j.renene.2020.08.120
    [Google Scholar]
  47. WangM. LiX. LiS. Reinforcing effect of trifluoromethyl/amino-modified neutral polymeric bonding agents on interfacial bonding of fluoropolymer/nitramine energetic composites-based high-energy polymer bonded explosives.Iran. Polym. J.202332672973710.1007/s13726‑023‑01162‑z
    [Google Scholar]
  48. RabczukT. BelytschkoT. Cracking particles: A simplified meshfree method for arbitrary evolving cracks.Int. J. Numer. Methods Eng.200461132316234310.1002/nme.1151
    [Google Scholar]
  49. RabczukT. BelytschkoT. A three-dimensional large] deformation meshfree method for arbitrary evolving cracks.Comput. Methods Appl. Mech. Eng.200719629-302777279910.1016/j.cma.2006.06.020
    [Google Scholar]
  50. RotariuT. MoldovanA.E. ToaderG. “Green” PBX formulations based on high explosives (RDX and HMX) and water-soluble pH-sensitive polymeric binders.Polymers2023157179010.3390/polym15071790 37050405
    [Google Scholar]
/content/journals/cms/10.2174/0126661454284941240312071428
Loading
/content/journals/cms/10.2174/0126661454284941240312071428
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test