Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Objective

The main goal of the current research was to investigate the influence of a wall-bounded medium on the settling behaviour of flexible planktonic particles. The particles are permeable and immersed in a Newtonian, incompressible, and viscous fluid.

Methods

This study employed the Immersed Boundary Method to analyze the interaction between the fluid and the flexible planktonic particles.

Results

The research findings revealed a notable correlation between the terminal (fall) velocity of the particles and distance amongst the confining walls, referred to as the “wall gap.” Specifically, as the wall gap increased, the terminal velocity of the particle also increased. Additionally, the study demonstrated that the degree of distortion experienced by the flexible planktonic particles increased with the expansion of the wall gap.

Conclusion

In conclusion, the distance between the confining walls plays a significant role in determining the terminal velocity of the flexible planktonic particles during settling. This study highlights the importance of considering the wall gap as a crucial factor when examining the behaviour of these particles in a wall-bounded medium.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454267045231226053357
2024-01-30
2025-06-22
Loading full text...

Full text loading...

References

  1. ProvatasN. AlavaM.J. Ala-NissilaT. Density correlations in paper.Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics1996541R36R3810.1103/PhysRevE.54.R36 9965169
    [Google Scholar]
  2. KamaliM. KhodaparastZ. Review on recent developments on pulp and paper mill wastewater treatment.Ecotoxicol. Environ. Saf.201511432634210.1016/j.ecoenv.2014.05.005 24953005
    [Google Scholar]
  3. CooperD.W. Particulate contamination and microelectronics manufacturing: An introduction.Aerosol Sci. Technol.19865328729910.1080/02786828608959094
    [Google Scholar]
  4. GoodayA.J. TurleyC.M. Responses by benthic organisms to inputs of organic material to the ocean floor: A review.Philos. Trans. R. Soc. Lond. A1990331161611913810.1098/rsta.1990.0060
    [Google Scholar]
  5. YadavP. GhoshS. Numerical Studies of settling of an impermeable and permeable planktonic particle using Immersed boundary method (IBM).Eur. Phys. J. Plus2022137674010.1140/epjp/s13360‑022‑02947‑6
    [Google Scholar]
  6. GhoshS. StockieJ.M. Numerical simulations of particle sedimentation using the immersed boundary method.Commun. Comput. Phys.201518238041610.4208/cicp.061113.050115a
    [Google Scholar]
  7. YadavP. GhoshS. SharmaA. PanghalR. Effect of confining walls on settling permeable rigid isolated semi-torus particle applying Immersed Boundary Method (IBM). In soft computing: Theories and applications.Proceedings of SoCTA20232022473480[Singapore: Springer Nature Singapore.].
    [Google Scholar]
  8. ArthursK.M. MooreL.C. PeskinC.S. PitmanE.B. LaytonH.E. Modeling arteriolar flow and mass transport using the immersed boundary method.J. Comput. Phys.1998147240244010.1006/jcph.1998.6097
    [Google Scholar]
  9. FogelsonA.L. A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting.J. Comput. Phys.198456111113410.1016/0021‑9991(84)90086‑X
    [Google Scholar]
  10. FauciL.J. PeskinC.S. A computational model of aquatic animal locomotion.J. Comput. Phys.19887718510810.1016/0021‑9991(88)90158‑1
    [Google Scholar]
  11. BottinoD.C. FauciL.J. A computational model of ameboid deformation and locomotion.Eur. Biophys. J.199827553253910.1007/s002490050163 9760734
    [Google Scholar]
  12. SudarsanR. GhoshS. StockieJ.M. EberlH.J. Simulating biofilm deformation and detachment with the immersed boundary method.Commun. Comput. Phys.201619368273210.4208/cicp.161214.021015a
    [Google Scholar]
  13. GhoshS. Immersed boundary simulations of fluid shear-induced deformation of a cantilever beam.Math. Comput. Simul.202118538440210.1016/j.matcom.2021.01.001
    [Google Scholar]
  14. DillonR.H. FauciL.J. An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating.J. Theor. Biol.2000207341543010.1006/jtbi.2000.2182 11082310
    [Google Scholar]
  15. BreugemW.P. A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows.J. Comput. Phys.2012231134469449810.1016/j.jcp.2012.02.026
    [Google Scholar]
  16. DupuisA. ChatelainP. KoumoutsakosP. An immersed boundary–lattice-Boltzmann method for the simulation of the flow past an impulsively started cylinder.J. Comput. Phys.200822794486449810.1016/j.jcp.2008.01.009
    [Google Scholar]
  17. UhlmannM. An immersed boundary method with direct forcing for the simulation of particulate flows.J. Comput. Phys.2005209244847610.1016/j.jcp.2005.03.017
    [Google Scholar]
  18. WangL. GuoZ.L. MiJ.C. Drafting, kissing and tumbling process of two particles with different sizes.Comput. Fluids201496203410.1016/j.compfluid.2014.03.005
    [Google Scholar]
  19. GhoshS. Immersed boundary method for a permeable sedimenting circular particle between two parallel rigid walls.Progress in Computational Fluid Dynamics, an International Journal20202012028
    [Google Scholar]
  20. GhoshS. PanghalR. Study of gravitational settling of a flexible circular structure using immersed boundary method.Comput. Appl. Math.202241833910.1007/s40314‑022‑02052‑5
    [Google Scholar]
  21. KimY. PeskinC.S. 2–D parachute simulation by the immersed boundary method.SIAM J. Sci. Comput.20062862294231210.1137/S1064827501389060
    [Google Scholar]
  22. LaytonA.T. Modeling water transport across elastic boundaries using an explicit jump method.SIAM J. Sci. Comput.20062862189220710.1137/050642198
    [Google Scholar]
  23. StockieJ.M. Modelling and simulation of porous immersed boundaries.Comput. Struc.20098711-1270170910.1016/j.compstruc.2008.11.001
    [Google Scholar]
  24. ChhabraR.P. AgarwalS. ChaudharyK. A note on wall effect on the terminal falling velocity of a sphere in quiescent Newtonian media in cylindrical tubes.Powder Technol.20031291-3535810.1016/S0032‑5910(02)00164‑X
    [Google Scholar]
  25. TakaisiY. The drag on a circular cylinder moving with low speeds in a viscous liquid between two parallel walls.J. Phys. Soc. Jpn.195510868569310.1143/JPSJ.10.685
    [Google Scholar]
  26. PianetG. ArquisE. Simulation of particles in fluid: A two-dimensional benchmark for a cylinder settling in a wall-bounded box.Eur. J. Mech. BFluids200827330932110.1016/j.euromechflu.2007.07.001
    [Google Scholar]
  27. PanghalR. GhoshS. Study of gravitational sedimentation of flexible, permeable circular and planktonic particle applying the immersed boundary method.Int. J. Sediment Res.202338564365210.1016/j.ijsrc.2023.05.004
    [Google Scholar]
  28. PanghalR. GhoshS. BhardwajR. To study the effect of confining walls on flexible circular particle using immersed boundary method.In Recent Advances in Sustainable Environment: Select Proceedings of RAiSE.Springer Nature Singapore.20223949
    [Google Scholar]
  29. RomaA.M. PeskinC.S. BergerM.J. An adaptive version of the immersed boundary method.J. Comput. Phys.1999153250953410.1006/jcph.1999.6293
    [Google Scholar]
/content/journals/cms/10.2174/0126661454267045231226053357
Loading
/content/journals/cms/10.2174/0126661454267045231226053357
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test