Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

Among all cancer forms, gastrointestinal (GI) cancer is the most serious condition that spreads quickly and requires early detection. GI disorders claim the lives of up to nearly two million people worldwide. To lower the mortality rate from GI cancer, early detection is essential.

Methods

For the identification of GI illnesses, such as polyps, stomach ulcers, and bleeding, endoscopy is the gold standard in the medical imaging industry. The numerous images produced by endoscopy require an enormous amount of time for the specialist to diagnose the disease. It makes manual diagnosis difficult and has sparked research on automatic computer-based approaches to diagnose all the generated images quickly and accurately. AI-based algorithms have already been used in endoscopy images with promising outcomes and have enhanced disease identification and classification with precision. However, there are still a lot of issues to be solved, including figuring out potential biases in algorithms and improving interpretability and generalizability.

Results

The proposed GastroNet model creates a system for classifying digestive problems for the Kvasir Version 1 dataset. The framework consists of different CNN layers with multiple filters, and average max-pooling is used to extract image features. The optimization of network parameters is done using the Stochastic Gradient Descent (SGD) algorithm.

Conclusion

Finally, the robustness of the proposed model is compared with other state-of-the-art models like VGG 19, ResNet 50, Inception, and Xception in terms of evaluation metrics.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230906092310
2024-01-01
2025-02-17
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e060923220762.html?itemId=/content/journals/cmir/10.2174/1573405620666230906092310&mimeType=html&fmt=ahah

References

  1. HamashimaC. GroupS.R. GuidelinesG.D.S. Update version of the Japanese guidelines for gastric cancer screening.Jpn J Clin Oncol.201848767368310.1093/jjco/hyy077
    [Google Scholar]
  2. World Health Organization - International Agency for Research on CancerGLOBOCAN 2012: Estimated cancer incidence, mortality and prevalence Worldwide in 2012.2012Available from:https://publications.iarc.fr/Databases/Iarc-Cancerbases/GLOBOCAN-2012-Estimated-Cancer-Incidence-Mortality-And-Prevalence-Worldwide-In-2012-V1.0-2012
  3. van DoornS.C. HazewinkelY. EastJ.E. van LeerdamM.E. RastogiA. PelliséM. Sanduleanu-DascalescuS. BastiaansenB.A.J. FockensP. DekkerE. Polyp morphology: An interobserver evaluation for the Paris classification among international experts.Am. J. Gastroenterol.2015110118018710.1038/ajg.2014.32625331346
    [Google Scholar]
  4. WangP. BerzinT.M. GlissenJ.R. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: A prospective randomised controlled study.Gut2019681018131819
    [Google Scholar]
  5. LiuJ.B. PanX.F. A unified approach to the asymptotic topological indices of various lattices.Appl. Math. Comput.2015270627310.1016/j.amc.2015.08.008
    [Google Scholar]
  6. Le BerreC. SandbornW.J. AridhiS. DevignesM.D. FournierL. Smaïl-TabboneM. DaneseS. Peyrin-BirouletL. Application of artificial intelligence to gastroenterology and hepatology.Gastroenterology202015817694.e210.1053/j.gastro.2019.08.05831593701
    [Google Scholar]
  7. KellyC.J. KarthikesalingamA. SuleymanM. CorradoG. KingD. Key challenges for delivering clinical impact with artificial intelligence.BMC Med.201917119510.1186/s12916‑019‑1426‑231665002
    [Google Scholar]
  8. Attique KhanM. Mashood NasirI. SharifM. AlhaisoniM. KadryS. Ahmad Chan BukhariS. NamY. A blockchain based framework for stomach abnormalities recognition.Comput. Mater. Continua202167114115810.32604/cmc.2021.013217
    [Google Scholar]
  9. MinM. SuS. HeW. BiY. MaZ. LiuY. Computer-aided diagnosis of colorectal polyps using linked color imaging colonoscopy to predict histology.Sci. Rep.2019912881288810.1038/s41598‑019‑39416‑730814661
    [Google Scholar]
  10. WanQ.S. WangT. ZhangK.H. Biomedical optical spectroscopy for the early diagnosis of gastrointestinal neoplasms.Tumour Biol.2017397101042831771798410.1177/101042831771798428671054
    [Google Scholar]
  11. RibeiroA.U. HäfnerM. Colonic polyp classification with convolutional neural networks.Proceedings of the 2016 IEEE 29 International Symposium on Computer-Based Medical Systems (CBMS).Belfast and Dublin, Ireland20-24 June201625325810.1109/CBMS.2016.39
    [Google Scholar]
  12. WoretaS.A. YassinM.O. TeklieS.Y. GetahunG.M. AbubekerZ.A. Upper gastrointestinal endoscopy findings at Gondar university international journal of pharmaceuticals and health care research.Int J Pharmaceut Health Care Res2015326065
    [Google Scholar]
  13. ZhangX. ChenF. YuT. AnJ. HuangZ. LiuJ. HuW. WangL. DuanH. SiJ. Real-time gastric polyp detection using convolutional neural networks.PLoS One2019143e021413310.1371/journal.pone.021413330908513
    [Google Scholar]
  14. OzawaT. IshiharaS. FujishiroM. KumagaiY. ShichijoS. TadaT. Automated endoscopic detection and classification of colorectal polyps using convolutional neural networks.Therap. Adv. Gastroenterol.202013175628482091065910.1177/175628482091065932231710
    [Google Scholar]
  15. SongE.M. ParkB. HaC.A. HwangS.W. ParkS.H. YangD.H. YeB.D. MyungS.J. YangS.K. KimN. ByeonJ.S. Endoscopic diagnosis and treatment planning for colorectal polyps using a deep-learning model.Sci. Rep.2020101301010.1038/s41598‑019‑56697‑031913337
    [Google Scholar]
  16. Sharif M.; Khan M.A.; Rashid M., et al. Deep CNN and geometric features-based gastrointestinal tract diseases detection and classification from wireless capsule endoscopy images.J. Exper. Theoretical Artificial Intell.20213345779910.1080/0952813X.2019.1572657
    [Google Scholar]
  17. NazJ. AlhaisoniM. SongO-Y. TariqU. KadryS. Segmentation and classification of stomach abnormalities using deep learning. CMC-Comput.Mater. Contin.202169607625
    [Google Scholar]
  18. WuJ. Introduction to convolutional neural networks.2017Available from:https://developer.ibm.com/articles/introduction-to-convolutional-neural-networks/
  19. MajidA. KhanM.A. YasminM. RehmanA. YousafzaiA. TariqU. Classification of stomach infections: A paradigm of convolutional neural network along with classical features fusion and selection.Microsc. Res. Tech.202083556257610.1002/jemt.2344731984630
    [Google Scholar]
  20. KarkanisS.A. IakovidisD.K. MaroulisD.E. KarrasD.A. TzivrasM. Computer-aided tumor detection in endoscopic video using color wavelet features.IEEE Trans. Inf. Technol. Biomed.20037314115210.1109/TITB.2003.81379414518727
    [Google Scholar]
  21. KhanM.A. SarfrazM.S. AlhaisoniM. AlbesherA.A. WangS. AshrafI. StomachNet: Optimal deep learning features fusion for stomach abnormalities classification.IEEE Access2020819796919798110.1109/ACCESS.2020.3034217
    [Google Scholar]
  22. BernalJ. TajkbakshN. SanchezF.J. MatuszewskiB.J. ChenH. YuL. AngermannQ. RomainO. RustadB. BalasinghamI. PogorelovK. ChoiS. DebardQ. Maier-HeinL. SpeidelS. StoyanovD. BrandaoP. CordovaH. Sanchez-MontesC. GuruduS.R. Fernandez-EsparrachG. DrayX. LiangJ. HistaceA. Comparative validation of polyp detection methods in video colonoscopy: Results from the MICCAI 2015 endoscopic vision challenge.IEEE Trans. Med. Imaging20173661231124910.1109/TMI.2017.266404228182555
    [Google Scholar]
  23. Attique KhanM. MajidA. HussainN. AlhaisoniM. ZhangY.D. KadryS. NamY. Multiclass stomach diseases classification using deep learning features optimization.Comput. Mater. Continua20216733381339910.32604/cmc.2021.014983
    [Google Scholar]
  24. GodkhindiM. GowdaR.M. Automated detection of polyps in CT colonography images using deep learning algorithms in colon cancer diagnosis.Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS).Chennai, India01-02 Aug1722172810.1109/ICECDS.2017.8389744
    [Google Scholar]
  25. Mosleh HmoudA-A. Ebrahim MohammedS. Fawaz WaselallahA. Deep learning algorithms for detection and classification of gastrointestinal diseases.Complexity202120211210.1155/2021/6170416
    [Google Scholar]
  26. PozdeevA. ObukhovaN.A. MotykoA.A. Automatic analysis of endoscopic images for polyps detection and segmentation.Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus).Saint Petersburg and Moscow, Russia28-31 Jan20191216122010.1109/EIConRus.2019.8657018
    [Google Scholar]
  27. AhmedW.S. KarimA. 2020The impact of filter size and number of filters on classification accuracy in CNN.2020 International Conference on Computer Science and Software Engineering.Duhok, Iraq16-18 April202010.1109/CSASE48920.2020.9142089
    [Google Scholar]
  28. OmarR.R. HanT. Al-SumaidaeeS.A.M. ChenT. Deep finger texture learning for verifying people.IET Biom.201981404810.1049/iet‑bmt.2018.5066
    [Google Scholar]
  29. KhandayO.M. DadvandipourS. Convolutional neural networks and impact of filter sizes on image classification.Multidiszciplináris Tudományok2020101556010.35925/j.multi.2020.1.7
    [Google Scholar]
  30. HossinM. SulaimanM. N. A review of evaluation metrics for data classification evaluations.Int. J. Data Mining Knowledge Manag. Proc.201552011110.5121/ijdkp.2015.5201
    [Google Scholar]
  31. FonolláC. Castillo-OleaB. Garcia-Zapirain Automatic colon polyp classification using convolutional neural network: A case study at Basque country.Proceedings of the 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT).Ajman, United Arab Emirates10-12 Dec201915
    [Google Scholar]
  32. FonolláR. Van Der SommenF. SchreuderR.M. SchoonE.J. De WithP.H. Multi-modal classification of polyp malignancy using CNN features with balanced class augmentation.Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019).Venice, Italy2019747810.1109/ISBI.2019.8759320
    [Google Scholar]
  33. YueG. WeiP. LiuY. LuoY. DuJ. WangT. Automated endoscopic image classification via deep neural network with class imbalance Loss.IEEE Trans. Inst. Measure.20237211110.1109/TIM.2023.3264047
    [Google Scholar]
  34. WangWei YangXin LiXin TangJinhui Convolutional-capsule network for gastrointestinal endoscopy image classification.Int. J. Intell. Sys.20223795796581510.1002/int.22815
    [Google Scholar]
  35. YueG. HanW. JiangB. ZhouT. CongR. WangT. Boundary constraint network with cross layer feature integration for polyp segmentation.IEEE J. Biomed. Health Inform.20222684090409910.1109/JBHI.2022.317394835536816
    [Google Scholar]
  36. Anitha MaryX. Peniel Winifred RajA. Suganthi EvangelineC. Mary NeebhaT. Vinoth Babu KumaraveluP. Multi-class classification of gastrointestinal diseases using deep learning techniques.Open Biomed J202317
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230906092310
Loading
/content/journals/cmir/10.2174/1573405620666230906092310
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test