Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Few studies have focused on the changes in human brain function activities caused by reading Chinese characters with different intelligibility and whether it can reflect the understanding and cognitive ability of the human brain.

Objective

Task-fMRI based on Chinese character reading tasks with different intelligibility was used to explore activated brain regions and their cognitive changes.

Methods

Volunteers were randomly recruited using advertisements. Forty volunteers were recruited based on strict inclusion and exclusion criteria, and 40 volunteers were recruited. Brain function data of 40 healthy right-handed volunteers in fuzzy/clear Chinese reading tasks were collected using a Siemens Skyra 3.0T magnetic resonance scanner. Data were preprocessed and statistically analyzed using the statistical software SPM12.0 to observe the activation of the cortex and analyze its characteristics and possible changes in cognitive function.

Results

Task-fMRI analysis: (1) The main brain regions activated in fuzzy/clear reading tasks were located in the occipital visual cortex (P < 0.001); (2) a paired sample t-test suggested that there was a significant difference in BOLD signals in the brain regions activated by fuzzy/clear reading tasks (P < 0.001, equiv Z = 4.25). Compared with the fuzzy reading task, the brain regions more strongly activated in the clear reading task were mainly located in the right superior frontal gyrus and the bilateral temporal lobe. Compared with the clear reading task, the brain region that was more strongly activated in the fuzzy reading task was mainly located in the right fusiform gyrus.

Conclusion

Clear Chinese character information mainly activates the dorsal stream of the visual-spatial network. This reflects the information transmission of the brain after understanding the text content and is responsible for guiding and controlling attention. Fuzzy words that cannot provide clear text content activate the fusiform gyrus of the ventral stream of the visual-spatial network, strengthening the function of orthographic processing.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230906092301
2024-01-01
2024-11-26
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e060923220761.html?itemId=/content/journals/cmir/10.2174/1573405620666230906092301&mimeType=html&fmt=ahah

References

  1. KimY.S. KwakS.M. MyungS.K. Caffeine intake from coffee or tea and cognitive disorders: a meta-analysis of observational studies.Neuroepidemiology2015441516310.1159/00037171025721193
    [Google Scholar]
  2. RossoA. MosseyJ. LippaC.F. Caffeine: neuroprotective functions in cognition and Alzheimer’s disease.Am. J. Alzheimers Dis. Other Demen.200823541742210.1177/153331750832008319230121
    [Google Scholar]
  3. WeinerM.W. VeitchD.P. AisenP.S. BeckettL.A. CairnsN.J. GreenR.C. HarveyD. JackC.R.Jr JagustW. MorrisJ.C. PetersenR.C. SalazarJ. SaykinA.J. ShawL.M. TogaA.W. TrojanowskiJ.Q. Alzheimer’s Disease Neuroimaging Initiative The Alzheimer’s Disease Neuroimaging Initiative 3: Continued innovation for clinical trial improvement.Alzheimers Dement.201713556157110.1016/j.jalz.2016.10.00627931796
    [Google Scholar]
  4. SperlingR.A. AisenP.S. BeckettL.A. BennettD.A. CraftS. FaganA.M. IwatsuboT. JackC.R.Jr KayeJ. MontineT.J. ParkD.C. ReimanE.M. RoweC.C. SiemersE. SternY. YaffeK. CarrilloM.C. ThiesB. Morrison-BogoradM. WagsterM.V. PhelpsC.H. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging‐Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease.Alzheimers Dement.20117328029210.1016/j.jalz.2011.03.00321514248
    [Google Scholar]
  5. ParkM. MoonW.J. StructuralM.R. Structural MR imaging in the diagnosis of alzheimer’s disease and other neurodegenerative dementia: Current imaging approach and future perspectives.Korean J. Radiol.201617682784510.3348/kjr.2016.17.6.82727833399
    [Google Scholar]
  6. ZhangD. RaichleM.E. Disease and the brain’s dark energy.Nat. Rev. Neurol.201061152810.1038/nrneurol.2009.19820057496
    [Google Scholar]
  7. BinnewijzendM.A.A. SchoonheimM.M. Sanz-ArigitaE. WinkA.M. van der FlierW.M. TolboomN. AdriaanseS.M. DamoiseauxJ.S. ScheltensP. van BerckelB.N.M. BarkhofF. Resting-state fMRI changes in Alzheimer’s disease and mild cognitive impairment.Neurobiol. Aging20123392018202810.1016/j.neurobiolaging.2011.07.00321862179
    [Google Scholar]
  8. BennettM.R. FarnellL. GibsonW.G. Quantitative relations between BOLD responses, cortical energetics, and impulse firing.J. Neurophysiol.2018119397998910.1152/jn.00352.201729187550
    [Google Scholar]
  9. BelliveauJ.W. KennedyD.N.Jr McKinstryR.C. BuchbinderB.R. WeisskoffR.M. CohenM.S. VeveaJ.M. BradyT.J. RosenB.R. Functional mapping of the human visual cortex by magnetic resonance imaging.Science1991254503271671910.1126/science.19480511948051
    [Google Scholar]
  10. BuchbinderB.R. Functional magnetic resonance imaging.Handb. Clin. Neurol.2016135619210.1016/B978‑0‑444‑53485‑9.00004‑027432660
    [Google Scholar]
  11. WangK.S. SmithD.V. DelgadoM.R. Using fMRI to study reward processing in humans: Past, present, and future.J. Neurophysiol.201611531664167810.1152/jn.00333.201526740530
    [Google Scholar]
  12. BookheimerS. Functional MRI of language: New approaches to understanding the cortical organization of semantic processing.Annu. Rev. Neurosci.200225115118810.1146/annurev.neuro.25.112701.14294612052907
    [Google Scholar]
  13. FiezJ.A. PetersenS.E. Neuroimaging studies of word reading.Proc. Natl. Acad. Sci. USA199895391492110.1073/pnas.95.3.9149448259
    [Google Scholar]
  14. GernsbacherM.A. KaschakM.P. Neuroimaging studies of language production and comprehension.Annu. Rev. Psychol.20035419111410.1146/annurev.psych.54.101601.14512812359916
    [Google Scholar]
  15. McCandlissB.D. CohenL. DehaeneS. The visual word form area: Expertise for reading in the fusiform gyrus.Trends Cogn. Sci.20037729329910.1016/S1364‑6613(03)00134‑712860187
    [Google Scholar]
  16. VigneauM. BeaucousinV. HervéP.Y. DuffauH. CrivelloF. HoudéO. MazoyerB. Tzourio-MazoyerN. Meta-analyzing left hemisphere language areas: Phonology, semantics, and sentence processing.Neuroimage20063041414143210.1016/j.neuroimage.2005.11.00216413796
    [Google Scholar]
  17. YarkoniT. SpeerN.K. BalotaD.A. McAvoyM.P. ZacksJ.M. Pictures of a thousand words: Investigating the neural mechanisms of reading with extremely rapid event-related fMRI.Neuroimage200842297398710.1016/j.neuroimage.2008.04.25818554928
    [Google Scholar]
  18. JobardG. CrivelloF. Tzourio-MazoyerN. Evaluation of the dual route theory of reading: a metanalysis of 35 neuroimaging studies.Neuroimage200320269371210.1016/S1053‑8119(03)00343‑414568445
    [Google Scholar]
  19. PriceC.J. The functional anatomy of word comprehension and production.Trends Cogn. Sci.19982828128810.1016/S1364‑6613(98)01201‑721227210
    [Google Scholar]
  20. TurkeltaubP.E. EdenG.F. JonesK.M. ZeffiroT.A. Meta-analysis of the functional neuroanatomy of single-word reading: method and validation.Neuroimage200216376578010.1006/nimg.2002.113112169260
    [Google Scholar]
  21. BartschA.J. HomolaG. ThesenS. SahmerP. KeimR. BeckmannC.F. BillerA. KnausC. BendszusM. Scanning for the scanner: FMRI of audition by read-out omissions from echo-planar imaging.Neuroimage200735123424310.1016/j.neuroimage.2006.11.02617188900
    [Google Scholar]
  22. BarbierE.L. MarrettS. DanekA. VortmeyerA. van GelderenP. DuynJ. BandettiniP. GrafmanJ. KoretskyA.P. Imaging cortical anatomy by high-resolution MR at 3.0T: Detection of the stripe of Gennari in visual area 17.Magn. Reson. Med.200248473573810.1002/mrm.1025512353293
    [Google Scholar]
  23. MalikovicA. VuceticB. MilisavljevicM. TosevskiJ. SazdanovicP. MilojevicB. MalobabicS. Occipital sulci of the human brain: Variability and morphometry.Anat. Sci. Int.2012872617010.1007/s12565‑011‑0118‑621993979
    [Google Scholar]
  24. WohlschlägerA.M. SpechtK. LieC. MohlbergH. WohlschlägerA. BenteK. PietrzykU. StöckerT. ZillesK. AmuntsK. FinkG.R. Linking retinotopic fMRI mapping and anatomical probability maps of human occipital areas V1 and V2.Neuroimage2005261738210.1016/j.neuroimage.2005.01.02115862207
    [Google Scholar]
  25. GoodaleMA How (and why) the visual control of action differs from visual perception.Proc Biol Sci.2014281178520140337
    [Google Scholar]
  26. MilnerA.D. How do the two visual streams interact with each other?Exp. Brain Res.201723551297130810.1007/s00221‑017‑4917‑428255843
    [Google Scholar]
  27. DittingerE. ValizadehS.A. JänckeL. BessonM. ElmerS. Increased functional connectivity in the ventral and dorsal streams during retrieval of novel words in professional musicians.Hum. Brain Mapp.201839272273410.1002/hbm.2387729105247
    [Google Scholar]
  28. BuchsbaumB.R. D’EspositoM. The search for the phonological store: From loop to convolution.J. Cogn. Neurosci.200820576277810.1162/jocn.2008.2050118201133
    [Google Scholar]
  29. SalmiJ. RinneT. KoistinenS. SalonenO. AlhoK. Brain networks of bottom-up triggered and top-down controlled shifting of auditory attention.Brain Res.2009128615516410.1016/j.brainres.2009.06.08319577551
    [Google Scholar]
  30. SchulzeK. Vargha-KhademF. MishkinM. Test of a motor theory of long-term auditory memory.Proc. Natl. Acad. Sci. USA2012109187121712510.1073/pnas.120471710922511719
    [Google Scholar]
  31. López-BarrosoD. RipollésP. Marco-PallarésJ. MohammadiB. MünteT.F. Bachoud-LéviA.C. Rodriguez-FornellsA. de Diego-BalaguerR. Multiple brain networks underpinning word learning from fluent speech revealed by independent component analysis.Neuroimage201511018219310.1016/j.neuroimage.2014.12.08525620492
    [Google Scholar]
  32. ZhaoL. ChenC. ShaoL. WangY. XiaoX. ChenC. YangJ. ZevinJ. XueG. Orthographic and phonological representations in the fusiform cortex.Cereb. Cortex201727115197521027664959
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230906092301
Loading
/content/journals/cmir/10.2174/1573405620666230906092301
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test