Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Objective

The objective of this study was to investigate the diagnostic power of apparent diffusion coefficient/coefficient of variance (ADCcV) as well as ADC parameters formed based on magnetic resonance images (MRI) in the distinction of molecular breast cancer subtypes.

Methods

The study involved 205 patients who had breast cancer at stages 1-3. Estrogen receptor (EsR), progesterone receptor (PrR), human epidermal growth factor receptor 2 (Her2), and proliferation index (Ki-67) were histologically analyzed in the tumor. The correlations between the immunohistochemistry and intrinsic subtypes were analyzed using ADC and ADCcV.

Results

The maximum whole tumor (WTu) ADC (p=0.004), minimum WTu ADC (p<0.001), and mean WTu ADC (p<0.001) values were significantly smaller in the EsR-positive tumors than those in the EsR-negative tumors. Compared to the PrR-negative tumors, the PrR-positive tumors showed significantly smaller maximum, minimum, and mean WTu ADC values (p=0.005, p=0.001, and p<0.001, respectively). In the comparisons of the molecular subtypes in terms of ADCcV, the p-values indicated statistically significant differences between the luminal A (lumA) group and the triple negative (TN) group, between the luminal B (lumB) group and the TN group, and between the Her2-enriched and TN groups (p<0.001, p=0.011, and p=0.004, respectively). Considering the luminal and non-luminal groups, while a significant difference was observed between the groups considering their minimum, maximum, and mean WTu ADC values, their ADCcV values were similar (p<0.001, p=0.004, and p<0.001, respectively).

Conclusion

Using ADCcV in addition to ADC parameters increased the diagnostic power of diffusion weighted-MRI (DW-MRI) in the distinction of molecular subtypes of breast cancer.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230906092253
2024-01-01
2024-11-26
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e060923220760.html?itemId=/content/journals/cmir/10.2174/1573405620666230906092253&mimeType=html&fmt=ahah

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  2. BickelH. PinkerK. PolanecS. MagometschniggH. WengertG. SpickC. BognerW. Bago-HorvathZ. HelbichT.H. BaltzerP. Diffusion-weighted imaging of breast lesions: Region-of-interest placement and different ADC parameters influence apparent diffusion coefficient values.Eur. Radiol.20172751883189210.1007/s00330‑016‑4564‑327578047
    [Google Scholar]
  3. BabaS. IsodaT. MaruokaY. KitamuraY. SasakiM. YoshidaT. HondaH. Diagnostic and prognostic value of pretreatment SUV in 18F-FDG/PET in breast cancer: comparison with apparent diffusion coefficient from diffusion-weighted MR imaging.J. Nucl. Med.201455573674210.2967/jnumed.113.12939524665089
    [Google Scholar]
  4. MarusykA. AlmendroV. PolyakK. Intra-tumour heterogeneity: A looking glass for cancer?Nat. Rev. Cancer201212532333410.1038/nrc326122513401
    [Google Scholar]
  5. KorkayaH. KimG. DavisA. MalikF. HenryN.L. IthimakinS. QuraishiA.A. TawakkolN. D’AngeloR. PaulsonA.K. ChungS. LutherT. PaholakH.J. LiuS. HassanK.A. ZenQ. ClouthierS.G. WichaM.S. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population.Mol. Cell201247457058410.1016/j.molcel.2012.06.01422819326
    [Google Scholar]
  6. MannR.M. ChoN. MoyL. Breast MRI: State of the art.Radiology2019292352053610.1148/radiol.201918294731361209
    [Google Scholar]
  7. PartridgeS.C. StoneK.M. StrigelR.M. DeMartiniW.B. PeacockS. LehmanC.D. Breast DCE-MRI.Acad. Radiol.20142191195120310.1016/j.acra.2014.04.01324998690
    [Google Scholar]
  8. PinkerK. HelbichT.H. MorrisE.A. The potential of multiparametric MRI of the breast.Br. J. Radiol.20179010692016071510.1259/bjr.2016071527805423
    [Google Scholar]
  9. CheeneyS. RahbarH. DontchosB.N. JavidS.H. RendiM.H. PartridgeS.C. Apparent diffusion coefficient values may help predict which MRI-detected high-risk breast lesions will upgrade at surgical excision.J. Magn. Reson. Imaging20174641028103610.1002/jmri.2565628181343
    [Google Scholar]
  10. Robertson-TessiM. GilliesR.J. GatenbyR.A. AndersonA.R.A. Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes.Cancer Res.20157581567157910.1158/0008‑5472.CAN‑14‑142825878146
    [Google Scholar]
  11. DongX. WuP. SunX. LiW. WanH. YuJ. XingL. Intra-tumour 18 F-FDG uptake heterogeneity decreases the reliability on target volume definition with positron emission tomography/computed tomography imaging.J. Med. Imaging Radiat. Oncol.201559333834510.1111/1754‑9485.1228925708154
    [Google Scholar]
  12. BundschuhR.A. DingesJ. NeumannL. SeyfriedM. ZsótérN. PappL. RosenbergR. BeckerK. AstnerS.T. HenningerM. HerrmannK. ZieglerS.I. SchwaigerM. EsslerM. Textural parameters of tumor heterogeneity in 18F-FDG PET/CT for therapy response assessment and prognosis in patients with locally advanced rectal cancer.J. Nucl. Med.201455689189710.2967/jnumed.113.12734024752672
    [Google Scholar]
  13. ElstonC.W. EllisI.O. pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up.Histopathology199119540341010.1111/j.1365‑2559.1991.tb00229.x1757079
    [Google Scholar]
  14. GoldhirschA. WoodW.C. CoatesA.S. GelberR.D. ThürlimannB. SennH.J. Panel members Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011.Ann. Oncol.20112281736174710.1093/annonc/mdr30421709140
    [Google Scholar]
  15. WolffA.C. HammondM.E.H. HicksD.G. DowsettM. McShaneL.M. AllisonK.H. AllredD.C. BartlettJ.M.S. BilousM. FitzgibbonsP. HannaW. JenkinsR.B. ManguP.B. PaikS. PerezE.A. PressM.F. SpearsP.A. VanceG.H. VialeG. HayesD.F. American Society of Clinical Oncology College of American Pathologists Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update.J. Clin. Oncol.201331313997401310.1200/JCO.2013.50.998424101045
    [Google Scholar]
  16. PartridgeS.C. MullinsC.D. KurlandB.F. AllainM.D. DeMartiniW.B. EbyP.R. LehmanC.D. Apparent diffusion coefficient values for discriminating benign and malignant breast MRI lesions: effects of lesion type and size.AJR Am. J. Roentgenol.201019461664167310.2214/AJR.09.353420489111
    [Google Scholar]
  17. SardanelliF. BoetesC. BorischB. DeckerT. FedericoM. GilbertF.J. HelbichT. Heywang-KöbrunnerS.H. KaiserW.A. KerinM.J. ManselR.E. MarottiL. MartincichL. MauriacL. Meijers-HeijboerH. OrecchiaR. PanizzaP. PontiA. PurushothamA.D. RegitnigP. Del TurcoM.R. ThibaultF. WilsonR. Magnetic resonance imaging of the breast: Recommendations from the EUSOMA working group.Eur. J. Cancer20104681296131610.1016/j.ejca.2010.02.01520304629
    [Google Scholar]
  18. PinkerK. GrabnerG. BognerW. GruberS. SzomolanyiP. TrattnigS. Heinz-PeerG. WeberM. FitzalF. PluschnigU. RudasM. HelbichT. A combined high temporal and high spatial resolution 3 Tesla MR imaging protocol for the assessment of breast lesions: initial results.Invest. Radiol.200944955355810.1097/RLI.0b013e3181b4c12719652611
    [Google Scholar]
  19. TanS.L.L. RahmatK. RozalliF.I. Mohd-ShahM.N. AzizY.F.A. YipC.H. VijayananthanA. NgK.H. Differentiation between benign and malignant breast lesions using quantitative diffusion-weighted sequence on 3 T MRI.Clin. Radiol.2014691637110.1016/j.crad.2013.08.00724156797
    [Google Scholar]
  20. MartincichL. DeantoniV. BertottoI. RedanaS. KubatzkiF. SarottoI. RossiV. LiottiM. PonzoneR. AgliettaM. ReggeD. MontemurroF. Correlations between diffusion-weighted imaging and breast cancer biomarkers.Eur. Radiol.20122271519152810.1007/s00330‑012‑2403‑822411304
    [Google Scholar]
  21. ChoiS.Y. ChangY-W. ParkH.J. KimH.J. HongS.S. SeoD.Y. Correlation of the apparent diffusion coefficiency values on diffusion-weighted imaging with prognostic factors for breast cancer.Br. J. Radiol.2012851016e474e47910.1259/bjr/7938146422128125
    [Google Scholar]
  22. KimS.H. ChaE.S. KimH.S. KangB.J. ChoiJ.J. JungJ.H. ParkY.G. SuhY.J. Diffusion-weighted imaging of breast cancer: Correlation of the apparent diffusion coefficient value with prognostic factors.J. Magn. Reson. Imaging200930361562010.1002/jmri.2188419711411
    [Google Scholar]
  23. PartridgeS.C. DeMartiniW.B. KurlandB.F. EbyP.R. WhiteS.W. LehmanC.D. Quantitative diffusion-weighted imaging as an adjunct to conventional breast MRI for improved positive predictive value.AJR Am. J. Roentgenol.200919361716172210.2214/AJR.08.213919933670
    [Google Scholar]
  24. KaranB. PourbagherA. TorunN. Diffusion-weighted imaging and 18 F-fluorodeoxyglucose positron emission tomography/computed tomography in breast cancer: Correlation of the apparent diffusion coefficient and maximum standardized uptake values with prognostic factors.J. Magn. Reson. Imaging20164361434144410.1002/jmri.2511226663655
    [Google Scholar]
  25. ParkS.H. ChoiH.Y. HahnS.Y. Correlations between apparent diffusion coefficient values of invasive ductal carcinoma and pathologic factors on diffusion-weighted MRI at 3.0 Tesla.J. Magn. Reson. Imaging201541117518210.1002/jmri.2451924353241
    [Google Scholar]
  26. HorvatJ.V. Bernard-DavilaB. HelbichT.H. ZhangM. MorrisE.A. ThakurS.B. Ochoa-AlbizteguiR.E. LeithnerD. MarinoM.A. BaltzerP.A. ClauserP. KapetasP. Bago-HorvathZ. PinkerK. Diffusion‐weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping as a quantitative imaging biomarker for prediction of immunohistochemical receptor status, proliferation rate, and molecular subtypes of breast cancer.J. Magn. Reson. Imaging201950383684610.1002/jmri.2669730811717
    [Google Scholar]
  27. LeeH.S. KimS.H. KangB.J. BaekJ.E. SongB.J. Perfusion parameters in dynamic contrast-enhanced MRI and apparent diffusion coefficient value in diffusion-weighted MRI.Acad. Radiol.201623444645610.1016/j.acra.2015.12.01126852247
    [Google Scholar]
  28. OzkulB. Koyuncu SokmenB. SeverI. OzkulO. GurcanN. The role of simultaneous standardized uptake value and MRI diffusion weighted heterogeneity index from hybrid PET/MR in the evaluation of brain metastases.EJMI20226438739310.14744/ejmi.2022.11286
    [Google Scholar]
  29. SokmenB.K. SokmenD. ComezY.İ. EksiM. Prediction of prostate cancer aggressiveness using a novel multiparametric magnetic resonance imaging parameter: Tumor heterogeneity index.Urol. Int.2022106994695310.1159/00052160635152216
    [Google Scholar]
  30. SteinD GoldbergN DomachevskyL BernstineH NidamM Abadi-KorekI Quantitative biomarkers for liver metastases: comparison of MRI diffusion-weighted imaging heterogeneity index and fluorine-18-fluoro-deoxyglucose standardised uptake value in hybrid PET/MR.Clin Radiol.2018739832.e17e22
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230906092253
Loading
/content/journals/cmir/10.2174/1573405620666230906092253
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ADC; ADCcV; Breast cancer; DW-MRI; Immunohistochemistry; Molecular subtype
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test