Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

The testis is a richly vascularized organ supplied by low-flow thin caliber vessels that are only partially detected by traditional Doppler systems, such as color and power Doppler.

However, in the vascular representation, these techniques determine, albeit to different extents, a cut of the weak vessels due to the necessary application of wall filters that cut the disturbing frequencies responsible for artifacts generated by pulsations of the vascular walls and surrounding tissues.

These filters cut a specific range of disturbing frequencies, regardless of whether they may be generated by low-flow vessels.

Recently, a new technology, called Ultrasound Microvascular Imaging (MicroV) has been developed, which is particularly sensitive to slow flows. This new mode is based on new algorithms capable of better selecting the low frequencies according to the source of origin and cutting only the disturbing ones, saving the frequencies originating from really weak flows.

When Ultrasound microvascular imaging is used, the vascular map is more detailed and composed of macro and microvasculature, with more subdivision branches, facilitating the interpretation of the normal and, consequently, the pathological.

This review aims to describe the vascular architecture of the testis with Ultrasound Microvascular Imaging (MicroV) in healthy testis, compared to traditional color/power Doppler, related to normal anatomy.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230906092245
2024-01-01
2024-11-26
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e060923220759.html?itemId=/content/journals/cmir/10.2174/1573405620666230906092245&mimeType=html&fmt=ahah

References

  1. HorstmanW.G. MiddletonW.D. MelsonG.L. SiegelB.A. Color Doppler US of the scrotum.Radiographics.199111694195710.1148/radiographics.11.6.17498581749858
    [Google Scholar]
  2. AtkinsonG.O.Jr PatrickL.E. BallT.I.Jr StephensonC.A. BroeckerB.H. WoodardJ.R. The normal and abnormal scrotum in children: Evaluation with color Doppler sonography.AJR Am. J. Roentgenol.1992158361361710.2214/ajr.158.3.17390051739005
    [Google Scholar]
  3. BarthR.A. ShortliffeL.D. Normal pediatric testis: Comparison of power doppler and color doppler us in the detection of blood flow.Radiology.1997204238939310.1148/radiology.204.2.92405259240525
    [Google Scholar]
  4. KühnA.L. ScortegagnaE. NowitzkiK.M. KimY.H. Ultrasonography of the scrotum in adults.Ultrasonography.201635318019710.14366/usg.1507526983766
    [Google Scholar]
  5. AsoC. EnríquezG. FitéM. ToránN. PiróC. PiquerasJ. LucayaJ. Gray-scale and color Doppler sonography of scrotal disorders in children: An update.Radiographics.20052551197121410.1148/rg.25504510916160106
    [Google Scholar]
  6. MalferrariG. PulitoG. PizziniA.M. CarraroN. MeneghettiG. SanzaroE. PratiP. SiniscalchiA. MonacoD. MicroV technology to improve transcranial color coded doppler examinations.J. Neuroimaging.201828435035810.1111/jon.1251729727515
    [Google Scholar]
  7. VisalliC. MorminaE. TessitoreA. ImpellizzeriP. ArenaS. GenitoriF. SalamoneI. Acute scrotal pain in pediatric patients: Diagnosis with an innovative Doppler technique (MicroV).Emerg. Radiol.202128120921410.1007/s10140‑020‑01812‑232591921
    [Google Scholar]
  8. VisalliC. VinciS.L. MondelloS. KobeissyF. SalamoneI. CoglitoreA. TrimarchiR. TessitoreA. ImpellizzeriP. MorminaE. Microvascular imaging ultrasound (MicroV) and power Doppler vascularization analysis in a pediatric population with early scrotal pain onset.Jpn. J. Radiol.202240219220110.1007/s11604‑021‑01194‑634515926
    [Google Scholar]
  9. ArtulS. NseirW. ArmalyZ. SoudackM. Superb microvascular imaging: added value and novel applications.J. Clin. Imaging Sci.201774510.4103/jcis.JCIS_79_1729404197
    [Google Scholar]
  10. KremkauF.W. Doppler color imaging. Principles and instrumentation.Clin. Diagn. Ultrasound1992277601497942
    [Google Scholar]
  11. BabcockD.S. PatriquinH. LaFortuneM. DauzatM. Power Doppler sonography: Basic principles and clinical applications in children.Pediatr. Radiol.199626210911510.1007/BF013720878587808
    [Google Scholar]
  12. MartinoliC. DerchiL.E. RizzattoG. SolbiatiL. Power Doppler sonography: General principles, clinical applications, and future prospects.Eur. Radiol.1998871224123510.1007/s0033000505409724444
    [Google Scholar]
  13. Hudson-DixonC.M. LongB.W. CoxL.A. Power Doppler imaging: Principles and applications.Radiol. Technol.199970323524310451714
    [Google Scholar]
  14. PozniakM.A. ZagzebskiJ.A. ScanlanK.A. Spectral and color Doppler artifacts.Radiographics.1992121354410.1148/radiographics.12.1.17344801734480
    [Google Scholar]
  15. TerslevL. DiamantopoulosA.P. DøhnU.M. SchmidtW.A. Torp-PedersenS. Settings and artefacts relevant for Doppler ultrasound in large vessel vasculitis.Arthritis Res. Ther.201719116710.1186/s13075‑017‑1374‑128728567
    [Google Scholar]
  16. MachadoP. SegalS. LyshchikA. ForsbergF. A novel microvascular flow technique: Initial results in thyroids.Ultrasound Q.2016321677410.1097/RUQ.000000000000015625900162
    [Google Scholar]
  17. NayakR. FatemiM. AlizadA. Adaptive background noise bias suppression in contrast-free ultrasound microvascular imaging.Phys. Med. Biol.2019642424501510.1088/1361‑6560/ab587931855574
    [Google Scholar]
  18. NayakR. MacNeillJ. FloresC. WebbJ. FatemiM. AlizadA. Quantitative assessment of ensemble coherency in contrast-free ultrasound microvasculature imaging.Med. Phys.20214873540355810.1002/mp.1491833942320
    [Google Scholar]
  19. AdabiS. GhavamiS. FatemiM. AlizadA. Non-Local Based Denoising Framework for in vivo contrast-free ultrasound microvessel Imaging.Sensors.201919224510.3390/s1902024530634614
    [Google Scholar]
  20. YooY.M. ManaguliR. KimY. Adaptive clutter filtering for ultrasound color flow imaging.Ultrasound Med. Biol.20032991311132010.1016/S0301‑5629(03)01014‑714553809
    [Google Scholar]
  21. FuZ. ZhangJ. LuY. WangS. MoX. HeY. WangC. ChenH. Clinical applications of superb microvascular imaging in the superficial tissues and organs: A systematic review.Acad. Radiol.202128569470310.1016/j.acra.2020.03.03232418782
    [Google Scholar]
  22. ParkA.Y. SeoB.K. Up-to-date Doppler techniques for breast tumor vascularity: Superb microvascular imaging and contrast-enhanced ultrasound.Ultrasonography.20183729810610.14366/usg.1704329025210
    [Google Scholar]
  23. MartinoliC. PastorinoC. BertolottoM. RosenbergI. CittadiniG. GarlaschiG. DerchiL.E. Ecografia del testicolo con color-Doppler. Tecnica di studio e anatomia vascolare.Radiol. Med.19928467857911494684
    [Google Scholar]
  24. RevzinM.V. ImanzadehA. MeniasC. PourjabbarS. MustafaA. NezamiN. SpektorM. PelleritoJ.S. Optimizing image quality when evaluating blood flow at doppler US: A tutorial.Radiographics.20193951501152310.1148/rg.201918005531398088
    [Google Scholar]
  25. GuptaA. DograV. Role of color flow doppler ultrasound in the evaluation of acute scrotal pain.Andrology.2021951290129710.1111/andr.1305834051064
    [Google Scholar]
  26. OsemlakP. JędrzejewskiG. WoźniakM. NachulewiczP. Ultrasound evaluation of long-term outcome in boys operated on due to testicular torsion.Medicine.202110021e2605710.1097/MD.000000000002605734032733
    [Google Scholar]
  27. YalçinB. KomesliG.H. ÖzgökY. OzanH. Vascular anatomy of normal and undescended testes: Surgical assessment of anastomotic channels between testicular and deferential arteries.Urology.200566485485710.1016/j.urology.2005.04.03816230152
    [Google Scholar]
  28. HarrisonR.G. The distribution of the vasal and cremasteric arteries to the testis and their functional importance.J. Anat.19498326728217105087
    [Google Scholar]
  29. MostafaT. LabibI. El-KhayatY. El-Rahman El-ShahatA. GadallahA. Human testicular arterial supply: Gross anatomy, corrosion cast, and radiologic study.Fertil. Steril.20089062226223010.1016/j.fertnstert.2007.10.01318555239
    [Google Scholar]
  30. LottiF. MaggiM. Ultrasound of the male genital tract in relation to male reproductive health.Hum. Reprod. Update2015211568310.1093/humupd/dmu04225038770
    [Google Scholar]
  31. DengC-H. TuX-A. LyuK-L. ZhuangJ-T. LiP.S. GaoY. ZhaoL. ZhangY-D. ZhouM-K. YuJ-W. FengX. SunX-Z. A novel experience of deferential vessel-sparing microsurgical vasoepididymostomy.Asian J. Androl.201820657658010.4103/aja.aja_46_1829974884
    [Google Scholar]
  32. JarowJ.P. Intratesticular arterial anatomy.J. Androl.19901132552592384345
    [Google Scholar]
  33. LeeL.M. JohnsonH.W. McLoughlinM.G. Microdissection and radiographic studies of the arterial vasculature of the human testes.J. Pediatr. Surg.198419329730110.1016/S0022‑3468(84)80191‑86747794
    [Google Scholar]
  34. CountourisN. HolsteinA.F. Wieviel Lobuli testis enthält ein menschlicher Hoden? Nachuntersuchung eines alten problems.Andrologia.198517652553110.1111/j.1439‑0272.1985.tb01707.x4083540
    [Google Scholar]
  35. ErgünS. StinglJ. HolsteinA.F. Segmental angioarchitecture of the testicular lobule in man.Andrologia.199426314315010.1111/j.1439‑0272.1994.tb00778.x8085666
    [Google Scholar]
  36. MiddletonW.D. ThorneD.A. MelsonG.L. Color doppler ultrasound of the normal testis.AJR Am. J. Roentgenol.1989152229329710.2214/ajr.152.2.2932643264
    [Google Scholar]
  37. MigaledduV. VirgilioG. Del PratoA. BertolottoM. Sonographic scrotal anatomy.Scrotal pathology. Medical radiology. Diagnostic imaging. BertolottoM. TrombettaC. BerlinSpringer-Verlag20124154
    [Google Scholar]
  38. PaisD. FontouraP. Esperança-PinaJ.A. The transmediastinal arteries of the human testis: An anatomical study.Surg. Radiol. Anat.200426537938310.1007/s00276‑004‑0237‑z15205918
    [Google Scholar]
  39. AsalaS. ChaudharyS.C. Masumbuko-KahambaN. BidmosM. Anatomical variations in the human testicular blood vessels.Ann. Anat.2001183654554910.1016/S0940‑9602(01)80064‑911766526
    [Google Scholar]
  40. MirilasP. MentessidouA. Microsurgical subinguinal varicocelectomy in children, adolescents, and adults: Surgical anatomy and anatomically justified technique.J. Androl.201233333834910.2164/jandrol.111.01305221835913
    [Google Scholar]
  41. LukerG.D. SiegelM.J. Scrotal US in pediatric patients: Comparison of power and standard color doppler US.Radiology.1996198238138510.1148/radiology.198.2.85968368596836
    [Google Scholar]
  42. TarhanS. UcerO. SahinM.O. GumusB. Long-term effect of microsurgical inguinal varicocelectomy on testicular blood flow.J. Androl.2011321333910.2164/jandrol.109.00997720671143
    [Google Scholar]
  43. BaderT.R. KammerhuberF. HernethA.M. Testicular blood flow in boys as assessed at color Doppler and power doppler sonography.Radiology.1997202255956410.1148/radiology.202.2.90150909015090
    [Google Scholar]
  44. AlbrechtT. LotzofK. HussainH.K. SheddenD. CosgroveD.O. de BruynR. Power Doppler US of the normal prepubertal testis: Does it live up to its promises?Radiology.1997203122723110.1148/radiology.203.1.91223989122398
    [Google Scholar]
  45. DudeaS.M. CiureaA. ChioreanA. Botar-JidC. Doppler applications in testicular and scrotal disease.Med. Ultrason.2010121435121165453
    [Google Scholar]
  46. PinterS.Z. LacefieldJ.C. Detectability of small blood vessels with high-frequency power Doppler and selection of wall filter cut-off velocity for microvascular imaging.Ultrasound Med. Biol.20093571217122810.1016/j.ultrasmedbio.2009.01.01019394752
    [Google Scholar]
  47. KaracaL. OralA. KantarciM. SadeR. OgulH. BayraktutanU. OkurA. YüceI. Comparison of the superb microvascular imaging technique and the color Doppler techniques for evaluating children’s testicular blood flow.Eur. Rev. Med. Pharmacol. Sci.201620101947195327249591
    [Google Scholar]
  48. DurmazMS SivriM Comparison of superb micro-vascular imaging (SMI) and conventional Doppler imaging techniques for evaluating testicular blood flow.J. Med. Ultrason.201845344345210.1007/s10396‑017‑0847‑929248966
    [Google Scholar]
  49. AyazE. AyazM. ÖnalC. YıkılmazA. Seeing the unseen: Evaluating testicular vascularity in neonates by using the superb microvascular imaging ultrasound technique.J. Ultrasound Med.20193871847185410.1002/jum.1488230548880
    [Google Scholar]
  50. KeçeliM. KeskinZ. KeskinS. Comparison of superb microvascular imaging with other doppler methods in assessment of testicular vascularity in cryptorchidism.Ultrasound Q.202036436337010.1097/RUQ.000000000000053332956243
    [Google Scholar]
  51. AtesF. DurmazM.S. SaraH.I. KaraT. Comparison of testicular vascularity via superb microvascular imaging in varicocele patients with contralateral normal testis and healthy volunteers.J. Ultrasound.2022251596510.1007/s40477‑020‑00553‑933409864
    [Google Scholar]
  52. ChaeE.Y. YoonG.Y. ChaJ.H. ShinH.J. ChoiW.J. KimH.H. Added value of the vascular index on superb microvascular imaging for the evaluation of breast masses.J. Ultrasound Med.202140471572310.1002/jum.1544132815564
    [Google Scholar]
  53. ParkA.Y. SeoB.K. HanM.R. Breast ultrasound microvascular imaging and radiogenomics.Korean J. Radiol.202122567768710.3348/kjr.2020.116633569931
    [Google Scholar]
  54. BianJ. ZhangJ. HouX. Diagnostic accuracy of ultrasound shear wave elastography combined with superb microvascular imaging for breast tumors.Medicine.202110025e2626210.1097/MD.000000000002626234160389
    [Google Scholar]
  55. TangK. LiuM. ZhuY. ZhangM. NiuC. The clinical application of ultrasonography with superb microvascular imaging-a review.J. Clin. Ultrasound202250572173210.1002/jcu.2321035358353
    [Google Scholar]
  56. LuR. MengY. ZhangY. ZhaoW. WangX. JinM. GuoR. Superb microvascular imaging (SMI) compared with conventional ultrasound for evaluating thyroid nodules.BMC Med. Imaging.20171716510.1186/s12880‑017‑0241‑529281991
    [Google Scholar]
  57. TianC. WangZ. HouX. WangC. The diagnostic accuracy of superb microvascular imaging in distinguishing thyroid nodules.Med.20209940e2235010.1097/MD.000000000002235033019411
    [Google Scholar]
  58. LeeS. LeeJ.Y. YoonR.G. KimJ. HongH.S. The value of microvascular imaging for triaging indeterminate cervical lymph nodes in patients with papillary thyroid carcinoma.Cancers.20201210283910.3390/cancers1210283933019664
    [Google Scholar]
  59. ZhangJ. WuJ. HouX. Diagnostic accuracy of ultrasound superb microvascular imaging for parotid tumors.Med.20211004e2363510.1097/MD.000000000002363533530166
    [Google Scholar]
  60. ChibaT. FujiwaraS. OuraK. OikawaK. ChidaK. KobayashiM. YoshidaK. KuboY. MaedaT. ItabashiR. OgasawaraK. Superb microvascular imaging ultrasound for cervical carotid artery stenosis for prediction of the development of microembolic signals on transcranial doppler during carotid exposure in endarterectomy.Cerebrovasc. Dis. Extra2021112616810.1159/00051642634034253
    [Google Scholar]
  61. SatoW. SutoY. YamanakaT. WatanabeH. An advanced ultrasound application used to assess peripheral vascular diseases: Superb microvascular imaging.J. Echocardiogr.202119315015710.1007/s12574‑021‑00527‑833856650
    [Google Scholar]
  62. AlisD. ErolB.C. AkbasS. BarutK. KasapcopurO. AdaletliI. Superb microvascular imaging compared with power doppler ultrasound in assessing synovitis of the knee in juvenile idiopathic arthritis: A preliminary study.J. Ultrasound Med.20203919910610.1002/jum.1507931222785
    [Google Scholar]
  63. SeskuteG. MontvydaiteM. ButrimieneI. Power doppler artifacts in evaluating inflammatory arthritis of small joints: Comparison with a superb microvascular imaging technique.J. Ultrasound202225376577110.1007/s40477‑021‑00643‑235029838
    [Google Scholar]
  64. KandemirliS.G. CicekF. Erdemli GurselB. BilginC. KilicS.S. YaziciZ. Superb microvascular imaging in assessment of synovitis and tenosynovitis in juvenile idiopathic arthritis.Ultrasound Q.2021371566210.1097/RUQ.000000000000051633661799
    [Google Scholar]
  65. ZhangJ. ZhuW. LinM. JiangC. Superb microvascular imaging for detecting carpal tunnel syndrome compared with power doppler ultrasonography.Med.20211009e2457510.1097/MD.000000000002457533655923
    [Google Scholar]
  66. SuiP. WangX. SunL. WangH. Diagnostic accuracy of ultrasound superb microvascular imaging for focal liver lesions.Med.20211003e2441110.1097/MD.000000000002441133546085
    [Google Scholar]
  67. KinT. NagaiK. HayashiT. TakahashiK. KatanumaA. Efficacy of superb microvascular imaging of ultrasound for diagnosis of gallbladder lesion.J. Hepatobiliary Pancreat. Sci.2020271297798310.1002/jhbp.84133073532
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230906092245
Loading
/content/journals/cmir/10.2174/1573405620666230906092245
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test