Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Aims

This study aimed to develop a method for predicting short-term outcomes of lung cancer patients treated with intensity-modulated radiotherapy (IMRT) using radiomic features detected through computed tomography images.

Methods

A prediction model was developed based on a dataset of radiomic features obtained from 132 patients with lung cancer receiving IMRT. Dimension reduction was performed for the features using the maximum-relevance and minimum-redundancy (mRMR) algorithm, and the least absolute shrinkage and selection operator (LASSO) regression model was utilized to optimize feature selection for the IMRT-sensitivity prediction model. The model was constructed using binary logistic regression analysis and was evaluated using the concordance index (C-index), calibration plots, receiver operating characteristic curve, and decision curve analysis.

Results

Fifty features were selected from 1348 radiomic features using the mRMR method. Of these, three radiomic features were selected by LASSO logistic regression to construct the radiomics nomogram. The C-index of the model was 0.776 (95% confidence interval: 0.689–0.862) and 0.791 (95% confidence interval: 0.607–0.974) in the training and validation cohorts, respectively. Decision curve analysis showed that the radiomics nomogram was clinically useful.

Conclusion

Radiomic features have the potential to be applied to predict the short-term efficacy of IMRT in patients with inoperable lung cancer.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230906092228
2024-01-01
2024-11-23
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e060923220757.html?itemId=/content/journals/cmir/10.2174/1573405620666230906092228&mimeType=html&fmt=ahah

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. HuangY. FengL. BaoY. ZhangY. LiangJ. MaoQ. LiJ. JiangC. Expressing MLH1 in HCT116 cells increases cellular resistance to radiation by activating the PRKAC.Exp. Biol. Med. (Maywood)2022247542643210.1177/1535370221105982934787019
    [Google Scholar]
  3. HerbstR.S. MorgenszternD. BoshoffC. The biology and management of non-small cell lung cancer.Nature2018553768944645410.1038/nature2518329364287
    [Google Scholar]
  4. LafataK.J. HongJ.C. GengR. AckersonB.G. LiuJ.G. ZhouZ. TorokJ. KelseyC.R. YinF.F. Association of pre-treatment radiomic features with lung cancer recurrence following stereotactic body radiation therapy.Phys. Med. Biol.201964202500710.1088/1361‑6560/aaf5a530524018
    [Google Scholar]
  5. AvanzoM. StancanelloJ. PirroneG. SartorG. Radiomics and deep learning in lung cancer.Strahlenther. Onkol.20201961087988710.1007/s00066‑020‑01625‑932367456
    [Google Scholar]
  6. LambinP. Rios-VelazquezE. LeijenaarR. CarvalhoS. van StiphoutR.G.P.M. GrantonP. ZegersC.M.L. GilliesR. BoellardR. DekkerA. AertsH.J.W.L. Radiomics: Extracting more information from medical images using advanced feature analysis.Eur. J. Cancer201248444144610.1016/j.ejca.2011.11.03622257792
    [Google Scholar]
  7. NardoneV. BoldriniL. GrassiR. FranceschiniD. MorelliI. BecheriniC. LoiM. GretoD. DesideriI. Radiomics in the setting of neoadjuvant radiotherapy: A new approach for tailored treatment.Cancers (Basel)20211314359010.3390/cancers1314359034298803
    [Google Scholar]
  8. AertsH.J.W.L. VelazquezE.R. LeijenaarR.T.H. ParmarC. GrossmannP. CarvalhoS. BussinkJ. MonshouwerR. Haibe-KainsB. RietveldD. HoebersF. RietbergenM.M. LeemansC.R. DekkerA. QuackenbushJ. GilliesR.J. LambinP. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach.Nat. Commun.201451400610.1038/ncomms500624892406
    [Google Scholar]
  9. HassaniC. VargheseB.A. NievaJ. DuddalwarV. Radiomics in pulmonary lesion imaging.AJR Am. J. Roentgenol.2019212349750410.2214/AJR.18.2062330620678
    [Google Scholar]
  10. SongJ. ShiJ. DongD. FangM. ZhongW. WangK. WuN. HuangY. LiuZ. ChengY. GanY. ZhouY. ZhouP. ChenB. LiangC. LiuZ. LiW. TianJ. A new approach to predict progression-free survival in stage IV EGFR-mutant NSCLC patients with EGFR-TKI therapy.Clin. Cancer Res.201824153583359210.1158/1078‑0432.CCR‑17‑250729563137
    [Google Scholar]
  11. ChetanM.R. GleesonF.V. Radiomics in predicting treatment response in non-small-cell lung cancer: Current status, challenges and future perspectives.Eur. Radiol.20213121049105810.1007/s00330‑020‑07141‑932809167
    [Google Scholar]
  12. ZhuX. DongD. ChenZ. FangM. ZhangL. SongJ. YuD. ZangY. LiuZ. ShiJ. TianJ. Radiomic signature as a diagnostic factor for histologic subtype classification of non-small cell lung cancer.Eur. Radiol.20182872772277810.1007/s00330‑017‑5221‑129450713
    [Google Scholar]
  13. Fornacon-WoodI. Faivre-FinnC. O’ConnorJ.P.B. PriceG.J. Radiomics as a personalized medicine tool in lung cancer: Separating the hope from the hype.Lung Cancer202014619720810.1016/j.lungcan.2020.05.02832563015
    [Google Scholar]
  14. FrixA.N. CousinF. RefaeeT. BottariF. VaidyanathanA. DesirC. VosW. WalshS. OcchipintiM. LovinfosseP. LeijenaarR. HustinxR. MeunierP. LouisR. LambinP. GuiotJ. Radiomics in lung diseases imaging: State-of-the-art for clinicians.J. Pers. Med.202111760210.3390/jpm1107060234202096
    [Google Scholar]
  15. Ferreira-JuniorJ.R. Koenigkam-SantosM. Magalhães TenórioA.P. FaleirosM.C. Garcia CiprianoF.E. FabroA.T. NäppiJ. YoshidaH. de Azevedo-MarquesP.M. CT-based radiomics for prediction of histologic subtype and metastatic disease in primary malignant lung neoplasms.Int. J. CARS202015116317210.1007/s11548‑019‑02093‑y31722085
    [Google Scholar]
  16. KothariG. KorteJ. LehrerE.J. ZaorskyN.G. LazarakisS. KronT. HardcastleN. SivaS. A systematic review and meta-analysis of the prognostic value of radiomics based models in non-small cell lung cancer treated with curative radiotherapy.Radiother. Oncol.202115518820310.1016/j.radonc.2020.10.02333096167
    [Google Scholar]
  17. CongM. FengH. RenJ.L. XuQ. CongL. HouZ. WangY. ShiG. Development of a predictive radiomics model for lymph node metastases in pre-surgical CT-based stage IA non-small cell lung cancer.Lung Cancer2020139737910.1016/j.lungcan.2019.11.00331743889
    [Google Scholar]
  18. YanM. WangW. Radiomic analysis of CT predicts tumor response in human lung cancer with radiotherapy.J. Digit. Imaging20203361401140310.1007/s10278‑020‑00385‑333025167
    [Google Scholar]
  19. ShenC. LiuZ. GuanM. SongJ. LianY. WangS. TangZ. DongD. KongL. WangM. ShiD. TianJ. 2D and 3D CT radiomics features prognostic performance comparison in non-small cell lung cancer.Transl. Oncol.201710688689410.1016/j.tranon.2017.08.00728930698
    [Google Scholar]
  20. YangL. YangJ. ZhouX. HuangL. ZhaoW. WangT. ZhuangJ. TianJ. Development of a radiomics nomogram based on the 2D and 3D CT features to predict the survival of non-small cell lung cancer patients.Eur. Radiol.20192952196220610.1007/s00330‑018‑5770‑y30523451
    [Google Scholar]
  21. EisenhauerE.A. TherasseP. BogaertsJ. SchwartzL.H. SargentD. FordR. DanceyJ. ArbuckS. GwytherS. MooneyM. RubinsteinL. ShankarL. DoddL. KaplanR. LacombeD. VerweijJ. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1).Eur. J. Cancer200945222824710.1016/j.ejca.2008.10.02619097774
    [Google Scholar]
  22. SauerbreiW. RoystonP. BinderH. Selection of important variables and determination of functional form for continuous predictors in multivariable model building.Stat. Med.200726305512552810.1002/sim.314818058845
    [Google Scholar]
  23. BousabarahK. BlanckO. TemmingS. WilhelmM.L. HoevelsM. BausW.W. RuessD. Visser-VandewalleV. RugeM.I. TreuerH. KocherM. Radiomics for prediction of radiation-induced lung injury and oncologic outcome after robotic stereotactic body radiotherapy of lung cancer: Results from two independent institutions.Radiat. Oncol.20211617410.1186/s13014‑021‑01805‑633863358
    [Google Scholar]
  24. StarkovP. AguileraT.A. GoldenD.I. ShultzD.B. TrakulN. MaximP.G. LeQ.T. LooB.W. DiehnM. DepeursingeA. RubinD.L. The use of texture-based radiomics CT analysis to predict outcomes in early-stage non-small cell lung cancer treated with stereotactic ablative radiotherapy.Br. J. Radiol.20199210942018022810.1259/bjr.2018022830457885
    [Google Scholar]
  25. XuY. HosnyA. ZeleznikR. ParmarC. CorollerT. FrancoI. MakR.H. AertsH.J.W.L. Deep learning predicts lung cancer treatment response from serial medical imaging.Clin. Cancer Res.201925113266327510.1158/1078‑0432.CCR‑18‑249531010833
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230906092228
Loading
/content/journals/cmir/10.2174/1573405620666230906092228
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): CT; Intensity-modulated radiotherapy; Lung cancer; Predict; Radiomic features; Response
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test