Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background

It is difficult to accurately determine whether emergent patients with small-bowel obstruction (SBO) have small-bowel ischemia and necrosis (SBIN). Therefore, in this study, we aimed to assess the ability of abdominal CT scans to predict SBIN and establish a new predictive model.

Methods

From March 2018 to May 2023, a rigorous posthoc analysis was conducted on whether 177 emergent patients with SBO had SBIN. Four clinical indexes and 19 CT signs were analyzed, and a multivariate scoring model for predicting SBIN was established using logistic regression analysis. A receiver operating characteristic (ROC) curve was used to assess the accuracy of this model.

Results

Multivariate analysis showed that mesenteric edema and effusion (OR=23.450), significant thickening and the target sign on the small-bowel wall on plain scans (OR=23.652), significant thinning of the small-bowel wall (OR=30.439), significant decrease in small-bowel wall density (OR=12.885), and significant increase in small-bowel wall density (OR=19.550) were significantly correlated with SBIN (P<0.05). According to their multivariate ORs, an appropriate “predictive score” was assigned to each sign, and the rates of SBIN among those with a total score of 0-4, 5-6, and 7-8 were 2.2%, 86.4%, and 96.9%, respectively. The AUC of this predictive scoring model for SBIN exceeded 0.980.

Conclusion

We have developed a predictive scoring model for SBIN, for which the incidence of SBIN increases with increasing predictive scores. This model can be useful for clinical treatment.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230801105613
2024-01-01
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e010823219331.html?itemId=/content/journals/cmir/10.2174/1573405620666230801105613&mimeType=html&fmt=ahah

References

  1. MaungA.A. JohnsonD.C. PiperG.L. BarbosaR.R. RowellS.E. BokhariF. CollinsJ.N. GordonJ.R. RaJ.H. KerwinA.J. Evaluation and management of small-bowel obstruction.J. Trauma Acute Care Surg.2012735S362S36910.1097/TA.0b013e31827019de23114494
    [Google Scholar]
  2. SantillanC.S. Computed tomography of small bowel obstruction.Radiol. Clin. North Am.2013511172710.1016/j.rcl.2012.09.00223182505
    [Google Scholar]
  3. ChangW.C. KoK.H. LinC.S. HsuH.H. TsaiS.H. FanH.L. TungH.J. HuangG.S. ChenR.C. Features on MDCT that predict surgery in patients with adhesive-related small bowel obstruction.PLoS One201492e8980410.1371/journal.pone.008980424587047
    [Google Scholar]
  4. RamiR.S.R. CappellM.S. A systematic review of the clinical presentation, diagnosis, and treatment of small bowel obstruction.Curr. Gastroenterol. Rep.20171962810.1007/s11894‑017‑0566‑928439845
    [Google Scholar]
  5. PaulsonE.K. ThompsonW.M. Review of small-bowel obstruction: The diagnosis and when to worry.Radiology2015275233234210.1148/radiol.1513151925906301
    [Google Scholar]
  6. ZamaryK. SpainD.A. Small bowel obstruction: The sun also rises?J. Gastrointest. Surg.20202481922192810.1007/s11605‑019‑04351‑532542559
    [Google Scholar]
  7. PoddaM. KhanM. Di SaverioS. Adhesive small bowel obstruction and the six w’s: Who, how, why, when, what, and where to diagnose and operate?Scand. J. Surg.2021110215916910.1177/145749692098276333511902
    [Google Scholar]
  8. TyagunovA.E. TyagunovA.A. NechayT.V. VinogradovV.N. KurashinovaL.S. SazhinA.V. Timing of surgery, intestinal ischemia and other real factors of mortality in acute adhesive small bowel obstruction: A multiple-center study.Khirurgiia.20213263510.17116/hirurgia20210312633710823
    [Google Scholar]
  9. KimJ.H. HaH.K. KimJ.K. EunH.W. ParkK.B. KimB.S. KimT.K. KimJ.C. AuhY.H. Usefulness of known computed tomography and clinical criteria for diagnosing strangulation in small-bowel obstruction: Analysis of true and false interpretation groups in computed tomography.World J. Surg.2004281636810.1007/s00268‑003‑6899‑614648046
    [Google Scholar]
  10. O’LearyM.P. NevilleA.L. KeeleyJ.A. KimD.Y. De VirgilioC. PluradD.S. Predictors of ischemic bowel in patients with small bowel obstruction.Am. Surg.2016821099299410.1177/00031348160820103027779991
    [Google Scholar]
  11. MorrisR.S. MurphyP. BoyleK. SombergL. WebbT. MiliaD. TignanelliC.J. de MoyaM. TrevinoC. Bowel ischemia score predicts early operation in patients with adhesive small bowel obstruction.Am. Surg.202288220521110.1177/000313482098882033502222
    [Google Scholar]
  12. KimH.R. LeeY. KimJ. BaekT.W. KimH. SonJ.H. ParkE.J. KimS.H. Closed loop obstruction of small bowel: CT signs predicting successful non-surgical treatment.Eur. J. Radiol.202316111071610.1016/j.ejrad.2023.11071636758277
    [Google Scholar]
  13. ScaglioneM. GalluzzoM. SantucciD. TrinciM. MessinaL. LaccettiE. FaiellaE. Beomonte ZobelB. Small bowel obstruction and intestinal ischemia: Emphasizing the role of MDCT in the management decision process.Abdom. Radiol.20224751541155510.1007/s00261‑020‑02800‑333057806
    [Google Scholar]
  14. LiZ. ShiL. ZhangJ. SunQ. MingW. WangZ. SunH. Imaging signs for determining surgery timing of acute intestinal obstruction.Contrast Media Mol. Imaging202220221710.1155/2022/198037135935303
    [Google Scholar]
  15. OzawaM. IshibeA. SuwaY. NakagawaK. MomiyamaM. WatanabeJ. YamagishiS. KubotaK. EndoI. A novel discriminant formula for the prompt diagnosis of strangulated bowel obstruction.Surg. Today20215181261126710.1007/s00595‑020‑02213‑133420825
    [Google Scholar]
  16. CalameP. MalakhiaA. TurcoC. GrilletF. PitonG. DelabrousseE. Transmural bowel necrosis from acute mesenteric ischemia and strangulated small-bowel obstruction: Distinctive CT features.AJR Am. J. Roentgenol.20202141909510.2214/AJR.19.2169331553659
    [Google Scholar]
  17. DiamondM. LeeJ. LeBedisC.A. Small bowel obstruction and ischemia.Radiol. Clin. North Am.201957468970310.1016/j.rcl.2019.02.00231076026
    [Google Scholar]
  18. IdelevichE. KashtanH. MavorE. BrennerB. Small bowel obstruction caused by secondary tumors.Surg. Oncol.2006151293210.1016/j.suronc.2006.05.00416905310
    [Google Scholar]
  19. ZielinskiM.D. EikenP.W. BannonM.P. HellerS.F. LohseC.M. HuebnerM. SarrM.G. Small bowel obstruction-who needs an operation? A multivariate prediction model.World J. Surg.201034591091910.1007/s00268‑010‑0479‑320217412
    [Google Scholar]
  20. BalthazarE.J. BirnbaumB.A. MegibowA.J. GordonR.B. WhelanC.A. HulnickD.H. Closed-loop and strangulating intestinal obstruction: CT signs.Radiology.1992185376977510.1148/radiology.185.3.14387611438761
    [Google Scholar]
  21. HinesJ. RosenblatJ. DuncanD.R. FriedmanB. KatzD.S. Perforation of the mesenteric small bowel: Etiologies and CT findings.Emerg. Radiol.201320215516110.1007/s10140‑012‑1095‑323212537
    [Google Scholar]
  22. OlsonM.C. NavinP.J. WelleC.L. GoenkaA.H. Small bowel radiology.Curr. Opin. Gastroenterol.202137326727410.1097/MOG.000000000000071933591028
    [Google Scholar]
  23. BoudiafM. SoyerP. TeremC. PelageJ.P. MaissiatE. RymerR. Ct evaluation of small bowel obstruction.Radiographics200121361362410.1148/radiographics.21.3.g01ma0361311353110
    [Google Scholar]
  24. KrukM. WardziakŁ. DemkowM. PlebanW. PręgowskiJ. DzielińskaZ. WitulskiM. WitkowskiA. RużyłłoW. KępkaC. Workstation-based calculation of CTA-Based FFR for intermediate stenosis.JACC Cardiovasc. Imaging20169669069910.1016/j.jcmg.2015.09.01926897667
    [Google Scholar]
  25. KimS. McClaveS.A. MartindaleR.G. MillerK.R. HurtR.T. Hypoalbuminemia and clinical outcomes: What is the mechanism behind the relationship?Am. Surg.201783111220122710.1177/00031348170830112329183523
    [Google Scholar]
  26. BarberiC. ColaizziC. GuerriniJ. KuriharaH. Whirl sign: A common misinterpreted radiological entity.Intern. Emerg. Med.20211661703170510.1007/s11739‑020‑02571‑133386605
    [Google Scholar]
  27. CoxV.L. TahvildariA.M. JohnsonB. WeiW. JeffreyR.B. Bowel obstruction complicated by ischemia: Analysis of CT findings.Abdom. Radiol.201843123227323210.1007/s00261‑018‑1651‑829858936
    [Google Scholar]
  28. HuangX. FangG. LinJ. XuK. ShiH. ZhuangL. A prediction model for recognizing strangulated small bowel obstruction.Gastroenterol. Res. Pract.201820181710.1155/2018/716464829780412
    [Google Scholar]
  29. ZielinskiM.D. EikenP.W. HellerS.F. LohseC.M. HuebnerM. SarrM.G. BannonM.P. Prospective, observational validation of a multivariate small-bowel obstruction model to predict the need for operative intervention.J. Am. Coll. Surg.201121261068107610.1016/j.jamcollsurg.2011.02.02321458305
    [Google Scholar]
  30. SchwenterF. DominguezS. MeierR. Oulhaci-deS.W. PlatonA. GervazP. MorelP. [Acute small bowel obstruction: Conservative or surgical treatment?].Rev. Med. Suisse2011730013411344, 1346-134721815533
    [Google Scholar]
  31. XuW. ZhongQ. CaiY. ZhanC. ChenS. WangH. LinL. GengY. HouP. ChenX. ZhangJ. Prediction and management of strangulated bowel obstruction: A multi-dimensional model analysis.BMC Gastroenterol.202222130410.1186/s12876‑022‑02363‑135733109
    [Google Scholar]
  32. KobayashiT. ChibaN. KoganezawaI. NakagawaM. YokozukaK. OchiaiS. GunjiT. SanoT. TomitaK. TabuchiS. HidakaE. KawachiS. Prediction model for irreversible intestinal ischemia in strangulated bowel obstruction.BMC Surg.202222132110.1186/s12893‑022‑01769‑835996141
    [Google Scholar]
  33. GoceriN. GoceriE. A neural network based kidney segmentation from MR images.2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)09-11 December 2015Miami, FL, USA201510.1109/ICMLA.2015.229
    [Google Scholar]
  34. Göçeri̇E. ÜnlüM.Z. Di̇cleO. A comparative performance evaluation of various approaches for liver segmentation from SPIR images.Turk. J. Electr. Eng. Comput. Sci.20152374176810.3906/elk‑1304‑36
    [Google Scholar]
  35. GoceriE. UnluM. GuzelisC. An automatic level set based liver segmentation from MRI data sets.3rd International Conference on Image Processing Theory, Tools and Applications, IPTA15 October 2012Istanbul; Turkey201210.1109/IPTA.2012.6469551
    [Google Scholar]
  36. DuraE. DomingoJ. GöçeriE. Martí-BonmatíL. A method for liver segmentation in perfusion MR images using probabilistic atlases and viscous reconstruction.Pattern Anal. Appl.20182141083109510.1007/s10044‑017‑0666‑z
    [Google Scholar]
  37. GoceriE. Automatic Kidney Segmentation Using Gaussian Mixture Model on MRI Sequences.Berlin, HeidelbergSpringer Berlin Heidelberg201110.1007/978‑3‑642‑21747‑0_4
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230801105613
Loading
/content/journals/cmir/10.2174/1573405620666230801105613
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): CT; Ischemia and Necrosis; Multivariate prediction; ROC; Small-bowel obstruction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test