Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

In this paper, a semiautomatic image segmentation method for the serialized body slices of the Visible Human Project (VHP) is proposed.

Methods

In our method, we first verified the effectiveness of the shared matting method for the VHP slices and utilized it to segment a single image. Then, to meet the need for the automatic segmentation of serialized slice images, a method based on the parallel refinement method and flood-fill method was designed. The ROI (region of interest) image of the next slice can be extracted by using the skeleton image of the ROI in the current slice.

Results

Utilizing this strategy, the color slice images of the Visible Human body can be continuously and serially segmented. This method is not complex but is rapid and automatic with less manual participation.

Conclusion

The experimental results show that the primary organs of the Visible Human body can be accurately extracted.

© 2024 The Author(s). Published by Bentham Open. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230515090618
2024-01-01
2024-11-22
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e150523216895.html?itemId=/content/journals/cmir/10.2174/1573405620666230515090618&mimeType=html&fmt=ahah

References

  1. AckermanM.J. The visible human project: A resource for anatomical visualization.Stud. Health Technol. Inform.199852Pt 21030103210384616
    [Google Scholar]
  2. ZhongS. HuaL. LinZ. LuoS. QinD. Digitized virtual human: Background and meaning.Chin Basic Science200261216
    [Google Scholar]
  3. ZhangS.X. HengP.A. LiuZ.J. Chinese visible human project.Clin. Anat.200619320421510.1002/ca.2027316506203
    [Google Scholar]
  4. ParkJ.S. ChungM.S. HwangS.B. ShinB.S. ParkH.S. Visible korean human: Its techniques and applications.Clin. Anat.200619321622410.1002/ca.2027516506204
    [Google Scholar]
  5. SpitzerV.M. AckermanM.J. The visible human at the university of colorado 15 years later.Virtual Real.200812419120010.1007/s10055‑008‑0102‑1
    [Google Scholar]
  6. PommertA. HöhneK.H. PflesserB. RichterE. RiemerM. SchiemannT. SchubertR. SchumacherU. TiedeU. Creating a high-resolution spatial/symbolic model of the inner organs based on the Visible Human.Med. Image Anal.20015322122810.1016/S1361‑8415(01)00044‑511524228
    [Google Scholar]
  7. HungC.C. LiY.T. ChouY.C. ChenJ.E. WuC.C. ShenH.C. YehT.T. Conventional plate fixation method versus pre-operative virtual simulation and three-dimensional printing-assisted contoured plate fixation method in the treatment of anterior pelvic ring fracture.Int. Orthop.201943242543110.1007/s00264‑018‑3963‑229725736
    [Google Scholar]
  8. van EijnattenM. van DijkR. DobbeJ. StreekstraG. KoivistoJ. WolffJ. CT image segmentation methods for bone used in medical additive manufacturing.Med. Eng. Phys.20185161610.1016/j.medengphy.2017.10.00829096986
    [Google Scholar]
  9. XiuF RongG ZhangT. Construction of a computer-aided analysis system for orthopedic diseases based on high-frequency ultrasound images.Comput Math Methods Med20222022875469310.1155/2022/875469335035525
    [Google Scholar]
  10. TanD. YaoJ. HuaX. LiJ. XuZ. WuY. WuW. Application of 3D modeling and printing technology in accurate resection of complicated thoracic tumors.Ann. Transl. Med.2020821134210.21037/atm‑20‑179133313087
    [Google Scholar]
  11. AlemayehuD G ZhangZ TahirE Preoperative planning using 3D printing technology in orthopedic surgery.Biomed Res Int20212021794024210.1155/2021/794024234676264
    [Google Scholar]
  12. MontanhesiP.K. CoelhoG. CurcioS.A.F. PoffoR. Three-dimensional printing in minimally invasive cardiac surgery: Optimizing surgical planning and education with life-like models.Rev. Bras. Cir. Cardiovasc.202237111011710.21470/1678‑9741‑2020‑040935274522
    [Google Scholar]
  13. KaderkaR. GillespieE.F. MundtR.C. BryantA.K. Sanudo-ThomasC.B. HarrisonA.L. WoutersE.L. MoiseenkoV. MooreK.L. AtwoodT.F. MurphyJ.D. Geometric and dosimetric evaluation of atlas based auto-segmentation of cardiac structures in breast cancer patients.Radiother. Oncol.201913121522010.1016/j.radonc.2018.07.01330107948
    [Google Scholar]
  14. CiardoD. GerardiM.A. VigoritoS. MorraA. Dell’acquaV. DiazF.J. CattaniF. ZaffinoP. RicottiR. SpadeaM.F. RiboldiM. OrecchiaR. BaroniG. LeonardiM.C. Jereczek-FossaB.A. Atlas-based segmentation in breast cancer radiotherapy: Evaluation of specific and generic-purpose atlases.Breast201732445210.1016/j.breast.2016.12.01028033509
    [Google Scholar]
  15. MasonS.A. WhiteI.M. LalondrelleS. BamberJ.C. HarrisE.J. The stacked-ellipse algorithm: An ultrasound-based 3-D uterine segmentation tool for enabling adaptive radiotherapy for uterine cervix cancer.Ultrasound Med. Biol.20204641040105210.1016/j.ultrasmedbio.2019.09.00131926750
    [Google Scholar]
  16. PrieseL. SturmP. Introduction to the color structure code and its implementation.Universität Koblenz-Landau, Fachbereich Informatik2003
    [Google Scholar]
  17. UdupaJ.K. SahaP.K. Fuzzy connectedness and image segmentation.Proc. IEEE2003911016491669[J].10.1109/JPROC.2003.817883
    [Google Scholar]
  18. NaqiS.M. SharifM. YasminM. Multistage segmentation model and SVM-ensemble for precise lung nodule detection.Int. J. CARS20181371083109510.1007/s11548‑018‑1715‑929492880
    [Google Scholar]
  19. ChuangK S TzengH L ChenS Fuzzy c-means clustering with spatial information for image segmentation.Comput Med Imaging Graph200630191510.1016/j.compmedimag.2005.10.00116361080
    [Google Scholar]
  20. LiuB. NiuX. ZhangX. ZhangS. ZhangJ. QiW. YangL. 3D shared matting method for directly extracting standard organ models from human body color volume image.Curr. Med. Imaging Rev.20201691170118110.2174/157340561666620010310003033135612
    [Google Scholar]
  21. WangL. YeX. ZhangD. HeW. JuL. LuoY. LuoH. WangX. FengW. SongK. ZhaoX. GeZ. 3D matting: A benchmark study on soft segmentation method for pulmonary nodules applied in computed tomography.Comput. Biol. Med.202215010615310.1016/j.compbiomed.2022.10615336228464
    [Google Scholar]
  22. LiuB. LiuS. ShangG. ChenY. WangQ. NiuX. YangL. ZhangJ. Direct 3D model extraction method for color volume images.Technol. Health Care202129S113314010.3233/THC‑21801433682753
    [Google Scholar]
  23. ChuangY Y CurlessB SalesinD H A bayesian approach to digital matting.Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 20012001264271
    [Google Scholar]
  24. LevinA. LischinskiD. WeissY. A closed-form solution to natural image matting.IEEE Trans. Pattern Anal. Mach. Intell.200830222824210.1109/TPAMI.2007.117718084055
    [Google Scholar]
  25. GastalE.S.L. OliveiraM.M. Shared sampling for real-time alpha matting. Computer Graphics ForumOxford, UKBlackwell Publishing Ltd201029575584
    [Google Scholar]
  26. ChenQ. LiD. TangC.K. KNN Matting.IEEE Trans. Pattern Anal. Mach. Intell.20133592175218810.1109/TPAMI.2013.1823868778
    [Google Scholar]
  27. XuN. PriceB. CohenS. Deep image matting. Proceedings of the IEEE conference on computer vision and pattern recognition201729702979
    [Google Scholar]
  28. LevoyM. Area flooding algorithms.Two-Dimensional Computer Animation, Course Notes 9 for SIGGRAPH198182
    [Google Scholar]
  29. OngS.H. YeoN.C. LeeK.H. VenkateshY.V. CaoD.M. Segmentation of color images using a two-stage self-organizing network.Image Vis. Comput.200220427928910.1016/S0262‑8856(02)00021‑5
    [Google Scholar]
  30. ZhangT.Y. SuenC.Y. A fast parallel algorithm for thinning digital patterns.Commun. ACM198427323623910.1145/357994.358023
    [Google Scholar]
  31. DrebinR.A. CarpenterL. HanrahanP. Volume rendering.Comput. Graph.1988224657410.1145/378456.378484
    [Google Scholar]
  32. SunD. LuG. ZhouH. YanY. LiuS. Quantitative assessment of flame stability through image processing and spectral analysis.IEEE Trans. Instrum. Meas.201564123323333310.1109/TIM.2015.2444262
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230515090618
Loading
/content/journals/cmir/10.2174/1573405620666230515090618
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Data; Image matting; Organ extraction; ROI; Serialized segmentation; Visible human
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test