Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background

Strain echocardiography (SE) is a procedure for analyzing myocardial dysfunction that is known to be less dependent on preload and afterload of heart function. Unlike dimension-based parameters, like ejection fraction (EF) and fractional shortening (FS), SE measures cardiac function by tracking cardiac tissue deformation and anomalies throughout the cardiac cycle. Although SE is proven to locate myocardial ailments in various heart diseases, few studies exist regarding using SE relevant to sepsis pathophysiology.

Objective

The study aimed to calculate the myocardial strain and strain rates, like longitudianl strain (LS), global radial strain (GRS), and global longitudinal strain (GLS), and to show these to be reduced earlier in cecal ligation and puncture (CLP) and lipopolysaccharide (LPS)-induced sepsis in coordination with an elevation of pro-inflammatory cytokines.

Methodology

Wild-type mice C57BL/6J (WT) were taken in this study and classified as CLP, LPS, and control groups. CLP surgery and LPS injection were given to induce sepsis. Endotoxemic septic shock was induced by intraperitoneal (IP) injection of LPS .

Echocardiography short axis views (SAX), longitudinal strain (LS), global circumferential strain (GCS), and global radial strain (GRS) were measured from the anterior and posterior positions of the septal and lateral walls of the heart. Real-time polymerase chain reaction (RT-PCR) was performed to evaluate post-CLP and LPS to analyze cardiac pro-inflammatory cytokines expressions. Inter- and intra-observer variables were tested by Bland-Altman analyses (BA). All data analysis was performed by GraphPad Prism 6 software. <0.05 was taken as statistically significant.

Results

After 48 hours following CLP and LPS-induced sepsis, a significant declination in both longitudinal strain and strain rate (LS and LSR) was identified in the CLP and LPS groups compared to the control group. Strain depression in sepsis was linked with the up-regulation of pro-inflammatory cytokines in RT-PCR analysis.

Conclusion

In the present study, we found myocardial strain and strain rate parameters, like LS, GRS, and GLS, to be reduced after CLP and LPS-induced sepsis in coordination with the elevation of pro-inflammatory cytokines.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230428123541
2024-01-01
2025-06-24
The full text of this item is not currently available.

References

  1. SingerM. DeutschmanC.S. SeymourC.W. Shankar-HariM. AnnaneD. BauerM. BellomoR. BernardG.R. ChicheJ.D. CoopersmithC.M. HotchkissR.S. LevyM.M. MarshallJ.C. MartinG.S. OpalS.M. RubenfeldG.D. van der PollT. VincentJ.L. AngusD.C. The third international consensus definitions for sepsis and septic shock (sepsis-3).JAMA2016315880181010.1001/jama.2016.028726903338
    [Google Scholar]
  2. HunterJ.D. DoddiM. Sepsis and the heart.Br. J. Anaesth.2010104131110.1093/bja/aep33919939836
    [Google Scholar]
  3. GahhosF.N. ChiuR.C.J. BethuneD. DionY. John HincheyE. RichardsG.K. Hemodynamic responses to sepsis: Hypodynamic versus hyperdynamic states.J. Surg. Res.198131647548110.1016/0022‑4804(81)90185‑27031368
    [Google Scholar]
  4. HoffmanM. KyriazisI.D. LuccheseA.M. de LuciaC. PiedepalumboM. BauerM. SchulzeP.C. BoniosM.J. KochW.J. DrosatosK. Myocardial strain and cardiac output are preferable measurements for cardiac dysfunction and can predict mortality in septic mice.J. Am. Heart Assoc.2019810e01226010.1161/JAHA.119.01226031112430
    [Google Scholar]
  5. KakihanaY. ItoT. NakaharaM. YamaguchiK. YasudaT. Sepsis-induced myocardial dysfunction: Pathophysiology and management.J. Intensive Care2016412210.1186/s40560‑016‑0148‑127011791
    [Google Scholar]
  6. MarshallJ.C. Why have clinical trials in sepsis failed?Trends Mol. Med.201420419520310.1016/j.molmed.2014.01.00724581450
    [Google Scholar]
  7. LevyM.M. EvansL.E. RhodesA. The surviving sepsis campaign bundle: 2018 update.Intensive Care Med.201844692592810.1007/s00134‑018‑5085‑029675566
    [Google Scholar]
  8. LewisA.J. SeymourC.W. RosengartM.R. Current murine models of sepsis.Surg. Infect.201617438539310.1089/sur.2016.02127305321
    [Google Scholar]
  9. GottsJ.E. MatthayM.A. Sepsis: Pathophysiology and clinical management.BMJ2016353i158510.1136/bmj.i158527217054
    [Google Scholar]
  10. LinC. TangW. WenF. ChenJ. ZengX. ChenZ. Diagnostic accuracy of NTProBNP for heart failure with sepsis in patients younger than 18 years.PLoS One2016111e014793010.1371/journal.pone.014793026812689
    [Google Scholar]
  11. BaiY. HuB.L. WenH.C. ZhangY.L. ZhuJ.J. Prognostic value of plasma brain natriuretic peptide value for patientswith sepsis: A meta-analysis.J. Crit. Care20184814515210.1016/j.jcrc.2018.08.04030195194
    [Google Scholar]
  12. ZingarelliB. CoopersmithC.M. DrechslerS. EfronP. MarshallJ.C. MoldawerL. WiersingaW.J. XiaoX. OsuchowskiM.F. ThiemermannC. Part I: Minimum quality threshold in preclinical sepsis studies (MQTiPSS) for study design and humane modeling endpoints.Shock2019511102210.1097/SHK.000000000000124330106874
    [Google Scholar]
  13. LibertC. AyalaA. BauerM. CavaillonJ.M. DeutschmanC. FrostellC. KnappS. KozlovA.V. WangP. OsuchowskiM.F. RemickD.G. Part II: Minimum quality threshold in preclinical sepsis studies (MQTiPSS) for types of infections and organ dysfunction endpoints.Shock2019511233210.1097/SHK.000000000000124230106873
    [Google Scholar]
  14. HellmanJ. BahramiS. BorosM. ChaudryI.H. FritschG. GozdzikW. InoueS. RadermacherP. SingerM. OsuchowskiM.F. Huber-LangM. Part III: Minimum quality threshold in preclinical sepsis studies (MQTiPSS) for fluid resuscitation and antimicrobial therapy endpoints.Shock2019511334310.1097/SHK.000000000000120929923896
    [Google Scholar]
  15. OsuchowskiM.F. AyalaA. BahramiS. BauerM. BorosM. CavaillonJ.M. ChaudryI.H. CoopersmithC.M. DeutschmanC.S. DrechslerS. EfronP. FrostellC. FritschG. GozdzikW. HellmanJ. Huber-LangM. InoueS. KnappS. KozlovA.V. LibertC. MarshallJ.C. MoldawerL.L. RadermacherP. RedlH. RemickD.G. SingerM. ThiemermannC. WangP. WiersingaW.J. XiaoX. ZingarelliB. Minimum quality threshold in preclinical sepsis studies (MQTiPSS): An international expert consensus initiative for improvement of animal modeling in sepsis.Shock201850437738010.1097/SHK.000000000000121230106875
    [Google Scholar]
  16. KokkinakiD. HoffmanM. KallioraC. KyriazisI.D. ManingJ. LuccheseA.M. ShanmughapriyaS. TomarD. ParkJ.Y. WangH. YangX.F. MadeshM. LymperopoulosA. KochW.J. Christofidou-SolomidouM. DrosatosK. Chemically synthesized Secoisolariciresinol diglucoside (LGM2605) improves mitochondrial function in cardiac myocytes and alleviates septic cardiomyopathy.J. Mol. Cell. Cardiol.201912723224510.1016/j.yjmcc.2018.12.01630611795
    [Google Scholar]
  17. DrosatosK. Drosatos-TampakakiZ. KhanR. HommaS. SchulzeP.C. ZannisV.I. GoldbergI.J. Inhibition of c-Jun-N-terminal kinase increases cardiac peroxisome proliferator-activated receptor alpha expression and fatty acid oxidation and prevents lipopolysaccharide-induced heart dysfunction.J. Biol. Chem.201128642363313633910.1074/jbc.M111.27214621873422
    [Google Scholar]
  18. DrosatosK. KhanR.S. TrentC.M. JiangH. SonN.H. BlanerW.S. HommaS. SchulzeP.C. GoldbergI.J. Peroxisome proliferator-activated receptor-γ activation prevents sepsis-related cardiac dysfunction and mortality in mice.Circ. Heart Fail.20136355056210.1161/CIRCHEARTFAILURE.112.00017723572494
    [Google Scholar]
  19. DrosatosK. PollakN.M. PolC.J. NtziachristosP. WilleckeF. ValentiM.C. TrentC.M. HuY. GuoS. AifantisI. GoldbergI.J. Cardiac myocyte KLF5 regulates Ppara expression and cardiac function.Circ. Res.2016118224125310.1161/CIRCRESAHA.115.30638326574507
    [Google Scholar]
  20. JosephL.C. KokkinakiD. ValentiM.C. KimG.J. BarcaE. TomarD. HoffmanN.E. SubramanyamP. ColecraftH.M. HiranoM. RatnerA.J. MadeshM. DrosatosK. MorrowJ.P. Inhibition of NADPH oxidase 2 (NOX2) prevents sepsis-induced cardiomyopathy by improving calcium handling and mitochondrial function.JCI Insight2017217e9424810.1172/jci.insight.9424828878116
    [Google Scholar]
  21. BlessbergerH. BinderT. Two dimensional speckle tracking echocardiography: Basic principles.Heart201096971672210.1136/hrt.2007.14100220424157
    [Google Scholar]
  22. ChangW.T. LeeW.H. LeeW.T. ChenP.S. SuY.R. LiuP.Y. LiuY.W. TsaiW.C. Left ventricular global longitudinal strain is independently associated with mortality in septic shock patients.Intensive Care Med.201541101791179910.1007/s00134‑015‑3970‑326183489
    [Google Scholar]
  23. SanfilippoF. CorredorC. FletcherN. TritapepeL. LoriniF.L. ArcadipaneA. Vieillard-BaronA. CecconiM. Left ventricular systolic function evaluated by strain echocardiography and relationship with mortality in patients with severe sepsis or septic shock: A systematic review and meta-analysis.Crit. Care201822118310.1186/s13054‑018‑2113‑y30075792
    [Google Scholar]
  24. PotterE. MarwickT.H. Assessment of left ventricular function by echocardiography: The case for routinely adding global longitudinal strain to ejection fraction.Imaging2018112 Pt 126027429413646
    [Google Scholar]
  25. LaitanoO. Van SteenbergenD. MattinglyA.J. GarciaC.K. RobinsonG.P. MurrayK.O. ClantonT.L. NunamakerE.A. Xiphoid surface temperature predicts mortality in a murine model of septic shock.Shock201850222623210.1097/SHK.000000000000100728957876
    [Google Scholar]
  26. ChenX. PengY. GeS. LiY. Inflammation and cardiac dysfunction during sepsis, muscular dystrophy, and myocarditis.Burns Trauma20131310912110.4103/2321‑3868.12307227574633
    [Google Scholar]
  27. OsuchowskiM.F. CraciunF. WeixelbaumerK.M. DuffyE.R. RemickD.G. Sepsis chronically in MARS: Systemic cytokine responses are always mixed regardless of the outcome, magnitude, or phase of sepsis.J. Immunol.201218994648465610.4049/jimmunol.120180623008446
    [Google Scholar]
  28. SeemannS. ZohlesF. LuppA. Comprehensive comparison of three different animal models for systemic inflammation.J. Biomed. Sci.20172416010.1186/s12929‑017‑0370‑828836970
    [Google Scholar]
  29. de Braga Lima Carvalho CanessoM. BorgesI.N. de Deus Queiroz SantosT.A. RisT.H. de BarrosM.V.L. NobreV. NunesM.C.P. Value of speckle-tracking echocardiography changes in monitoring myocardial dysfunction during treatment of sepsis: Potential prognostic implications.Int. J. Cardiovasc. Imaging201935585585910.1007/s10554‑018‑01525‑130847658
    [Google Scholar]
  30. YamamotoK. MasuyamaT. TanouchiJ. DoiY. KondoH. HoriM. KitabatakeA. KamadaT. Effects of heart rate on left ventricular filling dynamics: Assessment from simultaneous recordings of pulsed Doppler transmitral flow velocity pattern and haemodynamic variables.Cardiovasc. Res.199327693594110.1093/cvr/27.6.9358221781
    [Google Scholar]
  31. MottramP.M. MarwickT.H. Assessment of diastolic function: What the general cardiologist needs to know.Heart200591568169510.1136/hrt.2003.02941315831663
    [Google Scholar]
  32. De GeerL. EngvallJ. OscarssonA. Strain echocardiography in septic shock – a comparison with systolic and diastolic function parameters, cardiac biomarkers and outcome.Crit. Care201519112210.1186/s13054‑015‑0857‑125882600
    [Google Scholar]
  33. BoissierF. RazaziK. SeemannA. BedetA. ThilleA.W. de ProstN. LimP. Brun-BuissonC. Mekontso DessapA. Left ventricular systolic dysfunction during septic shock: The role of loading conditions.Intensive Care Med.201743563364210.1007/s00134‑017‑4698‑z28204860
    [Google Scholar]
  34. LangelandS. WoutersP.F. ClausP. LeatherH.A. BijnensB. SutherlandG.R. RademakersF.E. D’hoogeJ. Experimental assessment of a new research tool for the estimation of two-dimensional myocardial strain.Ultrasound Med. Biol.200632101509151310.1016/j.ultrasmedbio.2006.06.02117045871
    [Google Scholar]
  35. GjesdalO. HoppE. VartdalT. LundeK. Helle-ValleT. AakhusS. SmithH.J. IhlenH. EdvardsenT. Global longitudinal strain measured by two-dimensional speckle tracking echocardiography is closely related to myocardial infarct size in chronic ischaemic heart disease.Clin. Sci.2007113628729610.1042/CS2007006617501720
    [Google Scholar]
  36. MigrinoR.Q. AggarwalD. KonorevE. BrahmbhattT. BrightM. KalyanaramanB. Early detection of doxorubicin cardiomyopathy using two-dimensional strain echocardiography.Ultrasound Med. Biol.200834220821410.1016/j.ultrasmedbio.2007.07.01817935867
    [Google Scholar]
  37. ShahulS. RheeJ. HackerM.R. GulatiG. MitchellJ.D. HessP. MahmoodF. AranyZ. RanaS. TalmorD. Subclinical left ventricular dysfunction in preeclamptic women with preserved left ventricular ejection fraction: A 2D speckle-tracking imaging study.Circ. Cardiovasc. Imaging20125673473910.1161/CIRCIMAGING.112.97381822891044
    [Google Scholar]
  38. RittirschD. Huber-LangM.S. FlierlM.A. WardP.A. Immunodesign of experimental sepsis by cecal ligation and puncture.Nat. Protoc.200941313610.1038/nprot.2008.21419131954
    [Google Scholar]
  39. ChenJ. ChiazzaF. CollinoM. PatelN.S.A. ColdeweyS.M. ThiemermannC. Gender dimorphism of the cardiac dysfunction in murine sepsis: Signalling mechanisms and age-dependency.PLoS One201496e10063110.1371/journal.pone.010063124945834
    [Google Scholar]
  40. LuptakI. CroteauD. ValentineC. QinF. SiwikD. RemickD. ColucciW.S. HobaiI. Myocardial redox hormesis protects the hearts of female mice in sepsis.Shock201890000000097766
    [Google Scholar]
  41. ToscanoM.G. GaneaD. GameroA.M. Cecal ligation puncture procedure.J. Vis. Exp.20115151e286021587163
    [Google Scholar]
  42. WenH. Sepsis induced by cecal ligation and puncture.Methods Mol. Biol.2013103111712410.1007/978‑1‑62703‑481‑4_1523824895
    [Google Scholar]
  43. CavazzoniS.L.Z. GuglielmiM. ParrilloJ.E. WalkerT. DellingerR.P. HollenbergS.M. Ventricular dilation is associated with improved cardiovascular performance and survival in sepsis.Chest2010138484885510.1378/chest.09‑108620651022
    [Google Scholar]
  44. ZhouF. PengZ.Y. BishopJ.V. CoveM.E. SingbartlK. KellumJ.A. Effects of fluid resuscitation with 0.9% saline versus a balanced electrolyte solution on acute kidney injury in a rat model of sepsis.Crit. Care Med.2014424e270e27810.1097/CCM.000000000000014524335444
    [Google Scholar]
  45. KhanA.I. ColdeweyS.M. PatelN.S.A. RogazzoM. CollinoM. YaqoobM.M. RadermacherP. KapoorA. ThiemermannC. Erythropoietin attenuates cardiac dysfunction in experimental sepsis in mice via activation of the β-common receptor.Dis. Model. Mech.201364dmm.01190810.1242/dmm.01190823519033
    [Google Scholar]
  46. SudaK. KitagawaY. OzawaS. SaikawaY. UedaM. EbinaM. YamadaS. HashimotoS. FukataS. AbrahamE. MaruyamaI. KitajimaM. IshizakaA. Anti-high-mobility group box chromosomal protein 1 antibodies improve survival of rats with sepsis.World J. Surg.20063091755176210.1007/s00268‑005‑0369‑216850155
    [Google Scholar]
  47. FangZ.X. LiY.F. ZhouX.Q. ZhangZ. ZhangJ.S. XiaH.M. XingG.P. ShuW.P. ShenL. YinG.Q. Effects of resuscitation with crystalloid fluids on cardiac function in patients with severe sepsis.BMC Infect. Dis.2008815010.1186/1471‑2334‑8‑5018419825
    [Google Scholar]
  48. BrandtS. RegueiraT. BrachtH. PortaF. DjafarzadehS. TakalaJ. GorrasiJ. BorottoE. KrejciV. HiltebrandL.B. BrueggerL.E. BeldiG. WilkensL. LepperP.M. KesslerU. JakobS.M. Effect of fluid resuscitation on mortality and organ function in experimental sepsis models.Crit. Care2009136R18610.1186/cc817919930656
    [Google Scholar]
  49. HiltonA.K. BellomoR. A critique of fluid bolus resuscitation in severe sepsis.Crit. Care201216130210.1186/cc1115422277834
    [Google Scholar]
  50. SchnelleM. CatibogN. ZhangM. NabeebaccusA.A. AndersonG. RichardsD.A. SawyerG. ZhangX. ToischerK. HasenfussG. MonaghanM.J. ShahA.M. Echocardiographic evaluation of diastolic function in mouse models of heart disease.J. Mol. Cell. Cardiol.2018114202810.1016/j.yjmcc.2017.10.00629055654
    [Google Scholar]
  51. de LuciaC. WallnerM. EatonD.M. ZhaoH. HouserS.R. KochW.J. Echocardiographic strain analysis for the early detection of left ventricular systolic/ diastolic dysfunction and dyssynchrony in a mouse model of physiological aging.J. Gerontol. A Biol. Sci. Med. Sci.201974445546110.1093/gerona/gly13929917053
    [Google Scholar]
  52. KassD.A. HareJ.M. GeorgakopoulosD. Murine cardiac function: A cautionary tail.Circ. Res.199882451952210.1161/01.RES.82.4.5199506713
    [Google Scholar]
  53. StypmannJ. EngelenM.A. TroatzC. RothenburgerM. EckardtL. TiemannK. Echocardiographic assessment of global left ventricular function in mice.Lab. Anim.200943212713710.1258/la.2007.06001e19237453
    [Google Scholar]
  54. DallaK. HallmanC. Bech-HanssenO. HaneyM. RickstenS.E. Strain echocardiography identifies impaired longitudinal systolic function in patients with septic shock and preserved ejection fraction.Cardiovasc. Ultrasound20151313010.1186/s12947‑015‑0025‑426134971
    [Google Scholar]
  55. ParrilloJ.E. BurchC. ShelhamerJ.H. ParkerM.M. NatansonC. SchuetteW. A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance.J. Clin. Invest.19857641539155310.1172/JCI1121354056039
    [Google Scholar]
  56. TanakaS. Standard measurement of cardiac function indexes.J. Med. Ultrason.200633212312710.1007/s10396‑006‑0100‑427277734
    [Google Scholar]
  57. JardinF. FourmeT. PageB. LoubieòresY. Vieillard-BaronA. BeauchetA. BourdariasJ.P. Persistent preload defect in severe sepsis despite fluid loading: A longitudinal echocardiographic study in patients with septic shock.Chest199911651354135910.1378/chest.116.5.135410559099
    [Google Scholar]
  58. FurianT. AguiarC. PradoK. RibeiroR.V.P. BeckerL MartinelliN ClausellN RohdeLE BioloA Ventricular dysfunction and dilation in severe sepsis and septic shock: Relation to endothelial function and mortality.J Crit Care201227319
    [Google Scholar]
  59. HaileselassieB. SuE. PoziosI. NiñoD.F. LiuH. LuD.Y. VentoulisI. FultonW.B. SodhiC.P. HackamD. O’RourkeB. AbrahamT. Myocardial oxidative stress correlates with left ventricular dysfunction on strain echocardiography in a rodent model of sepsis.Intensive Care Med. Exp.2017512110.1186/s40635‑017‑0134‑528405943
    [Google Scholar]
  60. SakaiM. SuzukiT. TomitaK. YamashitaS. PalikheS. HattoriK. YoshimuraN. MatsudaN. HattoriY. Diminished responsiveness to dobutamine as an inotrope in mice with cecal ligation and puncture-induced sepsis: Attribution to phosphodiesterase 4 upregulation.Am. J. Physiol. Heart Circ. Physiol.20173126H1224H123710.1152/ajpheart.00828.201628455289
    [Google Scholar]
  61. LandesbergG. GilonD. MerozY. GeorgievaM. LevinP.D. GoodmanS. AvidanA. BeeriR. WeissmanC. JaffeA.S. SprungC.L. Diastolic dysfunction and mortality in severe sepsis and septic shock.Eur. Heart J.201233789590310.1093/eurheartj/ehr35121911341
    [Google Scholar]
  62. SchumerW. Pathophysiology and treatment of septic shock.Am. J. Emerg. Med.198421747710.1016/0735‑6757(84)90112‑86517987
    [Google Scholar]
  63. KimmounA. DucrocqN. MoryS. DelfosseR. MullerL. PerezP. FayR. LevyB. Cardiac contractile reserve parameters are related to prognosis in septic shock.BioMed Res. Int.201320131710.1155/2013/93067323957012
    [Google Scholar]
  64. RiversE.P. McCordJ. OteroR. JacobsenG. LoombaM. Clinical utility of B-type natriuretic peptide in early severe sepsis and septic shock.J. Intensive Care Med.200722636337310.1177/088506660730752318051697
    [Google Scholar]
  65. PostF. WeilemannL.S. MessowC.M. SinningC. MünzelT. B-type natriuretic peptide as a marker for sepsis-induced myocardial depression in intensive care patients.Crit. Care Med.200836113030303710.1097/CCM.0b013e31818b915318824903
    [Google Scholar]
  66. OmarA.A. El-ShahatN. RamadanM.M. Cardiac functions in patients with sepsis and septic shock.Egypt. Heart J.201264419119610.1016/j.ehj.2012.07.002
    [Google Scholar]
  67. HollenbergS.M. DumasiusA. EasingtonC. ColillaS.A. NeumannA. ParrilloJ. Characterization of a hyperdynamic murine model of resuscitated sepsis using echocardiography.Am. J. Respir. Crit. Care Med.2001164589189510.1164/ajrccm.164.5.201007311549551
    [Google Scholar]
  68. WangP. BaZ.F. CioffiW.G. BlandK.I. ChaudryI.H. The pivotal role of adrenomedullin in producing hyperdynamic circulation during the early stage of sepsis.Arch. Surg.1998133121298130410.1001/archsurg.133.12.12989865646
    [Google Scholar]
  69. MorisakiH. SibbaldW. MartinC. DoigG. InmanK. Hyperdynamic sepsis depresses circulatory compensation to normovolemic anemia in conscious rats.J. Appl. Physiol.199680265666410.1152/jappl.1996.80.2.6568929612
    [Google Scholar]
  70. Di GiantomassoD. MayC.N. BellomoR. Vital organ blood flow during hyperdynamic sepsis.Chest200312431053105910.1378/chest.124.3.105312970037
    [Google Scholar]
  71. ChvojkaJ. SykoraR. KrouzeckyA. RadejJ. VarnerovaV. KarvunidisT. HesO. NovakI. RadermacherP. MatejovicM. Renal haemodynamic, microcirculatory, metabolic and histopathological responses to peritonitis-induced septic shock in pigs.Crit. Care2009126R16410.1186/cc716419108740
    [Google Scholar]
  72. KonishiT. NakamuraY. KatoI. KawaiC. Dependence of peak and mean ejection rate on load and effect of inotropic agents on the relationship between peak and left ventricular developed pressure — assessed in the isolated working rat heart and cardiac muscles.Int. J. Cardiol.199235333334110.1016/0167‑5273(92)90231‑Q1612796
    [Google Scholar]
  73. BurnsA.T. La GercheA. D’hoogeJ. MacIsaacA.I. PriorD.L. Left ventricular strain and strain rate: Characterization of the effect of load in human subjects.Eur. J. Echocardiogr.201011328328910.1093/ejechocard/jep21420026455
    [Google Scholar]
  74. BlaudszunG. LickerM.J. MorelD.R. Preload-adjusted left ventricular d P /d t max : A sensitive, continuous, load-independent contractility index.Exp. Physiol.201398101446145610.1113/expphysiol.2013.07383323794678
    [Google Scholar]
  75. FredholmM. JörgensenK. HoultzE. RickstenS.E. Load-dependence of myocardial deformation variables - A clinical strain-echocardiographic study.Acta Anaesthesiol. Scand.20176191155116510.1111/aas.1295428804896
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230428123541
Loading
/content/journals/cmir/10.2174/1573405620666230428123541
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Blood flow; CLP; Echocardiography; Heart; Sepsis cardiomyopathy; Strain depression
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test