Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

The combination of FFDM and DBT can significantly improve the diagnostic efficiency of breast cancer, but with the increase of breast radiation absorbed dose.

Objectives

To compare and analyze the radiation dose and diagnostic performance of different mammography positions combinations of digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) for different density types of breasts.

Methods

This retrospective study involved 1,195 patients who underwent simultaneous breast DBT and FFDM. The mammography combinations were Group A, FFDM(CC+MLO); Group B, FDM(CC)+DBT(MLO); Group C, FFDM(MLO)+DBT(CC); Group D, DBT(CC+MLO); and Group E, FFDM(CC+MLO)+DBT(CC+MLO). An intergroup comparative analysis of radiation dose and diagnostic performance of different combinations of mammography positions for different breast density types was performed using the pathologic and 24-month follow-up results as the diagnostic basis.

Results

Overall, 2,403 mammograms indicated 477 cases of non-dense breast tissues and 1,926 cases of dense breast tissues. Differences in the mean radiation dose for each non-dense and dense breast group were statistically significant. The areas under the diagnostic receiver operating characteristic (ROC) curves for the non-dense breast group were not statistically significant. In the dense breast group, the z-values were 1.623 (p = 0.105) and 1.724 (p = 0.085) for the area under the ROC curve in Group C compared with Groups D and E, respectively, and 0.724 (p = 0.469) when comparing Group D with Group E. The differences between the remaining groups were statistically significant.

Conclusion

Group A had the lowest radiation dose and no significant difference in diagnostic performance compared with the other non-dense breast groups. Group C had high diagnostic performance in the dense breast group considering the low radiation dose.

© 2024 The Author(s). Published by Bentham Open. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405620666230328085655
2023-04-11
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e280323215029.html?itemId=/content/journals/cmir/10.2174/1573405620666230328085655&mimeType=html&fmt=ahah

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  2. ComstockC.E. GatsonisC. NewsteadG.M. SnyderB.S. GareenI.F. BerginJ.T. RahbarH. SungJ.S. JacobsC. HarveyJ.A. NicholsonM.H. WardR.C. HoltJ. PratherA. MillerK.D. SchnallM.D. KuhlC.K. Comparison of abbreviated breast MRI vs digital breast tomosynthesis for breast cancer detection among women with dense breasts undergoing screening.JAMA2020323874675610.1001/jama.2020.057232096852
    [Google Scholar]
  3. ChongA. WeinsteinS.P. McDonaldE.S. ConantE.F. Digital Breast tomosynthesis: Concepts and clinical practice.Radiology2019292111410.1148/radiol.201918076031084476
    [Google Scholar]
  4. GilbertF.J. Pinker-DomenigK. Diagnosis and Staging of Breast Cancer: when and how to use mammography, tomosynthesis, ultrasound, contrast-enhanced mammography, and magnetic resonance imaging. HodlerJ. Kubik-HuchRA SchulthessGK Diseases of the Chest, Breast, Heart and Vessels 2019-2022: Diagnostic and Interventional Imaging.Cham (CH)Springer Copyright2019155166
    [Google Scholar]
  5. SkaaneP. Breast cancer screening with digital breast tomosynthesis. Digital Breast Tomosynthesis.Springer20161128
    [Google Scholar]
  6. EndoT. MoritaT. OiwaM. SudaN. SatoY. IchiharaS. ShiraiwaM. YoshikawaK. HoribaT. OgawaH. HayashiY. SendaiT. AraiT. Diagnostic performance of digital breast tomosynthesis and full-field digital mammography with new reconstruction and new processing for dose reduction.Breast Cancer201825215916610.1007/s12282‑017‑0805‑928956298
    [Google Scholar]
  7. M AliR.M.K. EnglandA. TootellA.K. HoggP. Radiation dose from digital breast tomosynthesis screening - A comparison with full field digital mammography.J. Med. Imaging Radiat. Sci.202051459960310.1016/j.jmir.2020.08.01832943362
    [Google Scholar]
  8. TeohK.C. MananH.A. Mohd NorsuddinN. RizuanaI.H. Comparison of mean glandular dose between full-field digital mammography and digital breast tomosynthesis.Healthcare2021912175810.3390/healthcare912175834946484
    [Google Scholar]
  9. PetersS. HellmichM. StorkA. KemperJ. GrinsteinO. PüskenM. StahlhutL. KinnerS. MaintzD. KrugK.B. Comparison of the detection rate of simulated microcalcifications in full-field digital mammography, digital breast tomosynthesis, and synthetically reconstructed 2-dimensional images performed with 2 different digital x-ray mammography systems.Invest. Radiol.201752420621510.1097/RLI.000000000000033427861206
    [Google Scholar]
  10. MelnikowJ. FentonJ.J. WhitlockE.P. MigliorettiD.L. WeyrichM.S. ThompsonJ.H. ShahK. Supplemental screening for breast cancer in women with dense breasts: A systematic review for the U.S. preventive services task force.Ann. Intern. Med.2016164426827810.7326/M15‑178926757021
    [Google Scholar]
  11. DangP.A. WangA. SenapatiG.M. IpI.K. LacsonR. KhorasaniR. GiessC.S. Comparing tumor characteristics and rates of breast cancers detected by screening digital breast tomosynthesis and full-field digital mammography.AJR Am. J. Roentgenol.2020214370170610.2214/AJR.18.2106031613659
    [Google Scholar]
  12. TagliaficoA. MariscottiG. DurandoM. StevaninC. TagliaficoG. MartinoL. BignottiB. CalabreseM. HoussamiN. Characterisation of microcalcification clusters on 2D digital mammography (FFDM) and digital breast tomosynthesis (DBT): does DBT underestimate microcalcification clusters? Results of a multicentre study.Eur. Radiol.201525191410.1007/s00330‑014‑3402‑825163902
    [Google Scholar]
  13. ConantE.F. BarlowW.E. HerschornS.D. WeaverD.L. BeaberE.F. TostesonA.N.A. HaasJ.S. LowryK.P. StoutN.K. Trentham-DietzA. diFlorio-AlexanderR.M. LiC.I. SchnallM.D. OnegaT. SpragueB.L. Association of digital breast tomosynthesis vs digital mammography with cancer detection and recall rates by age and breast density.JAMA Oncol.20195563564210.1001/jamaoncol.2018.707830816931
    [Google Scholar]
  14. VaughanC.L. Novel imaging approaches to screen for breast cancer: Recent advances and future prospects.Med. Eng. Phys.201972273710.1016/j.medengphy.2019.09.00131554573
    [Google Scholar]
  15. MovikE. DalsbøT.K. FagelundB.C. FribergE.G. HåheimL.L. SkårÅ. IPH Systematic reviews. digital breast tomosynthesis with hologic 3D mammography selenia dimensions system for use in breast cancer screening: a single technology assessment.NorwayKnowledge Centre for the Health Services at The Norwegian Institute of Public Health (NIPH)2017
    [Google Scholar]
  16. ØsteråsB.H. SkaaneP. GullienR. MartinsenA.C.T. Average glandular dose in paired digital mammography and digital breast tomosynthesis acquisitions in a population based screening program: effects of measuring breast density, air kerma and beam quality.Phys. Med. Biol.201863303500610.1088/1361‑6560/aaa61429311416
    [Google Scholar]
  17. WeiJ. ChanH.P. HelvieM.A. RoubidouxM.A. NealC.H. LuY. HadjiiskiL.M. ZhouC. Synthesizing mammogram from digital breast tomosynthesis.Phys. Med. Biol.201964404501110.1088/1361‑6560/aafcda30625429
    [Google Scholar]
  18. AmbinderE.B. HarveyS.C. PanigrahiB. LiX. WoodsR.W. Synthesized mammography.Acad. Radiol.201825897397610.1016/j.acra.2017.12.01529395801
    [Google Scholar]
  19. IkejimbaL.C. SaladJ. GraffC.G. GhammraouiB. ChengW.C. LoJ.Y. GlickS.J. A four‐alternative forced choice (4AFC) methodology for evaluating microcalcification detection in clinical full‐field digital mammography (FFDM) and digital breast tomosynthesis (DBT) systems using an inkjet‐printed anthropomorphic phantom.Med. Phys.20194693883389210.1002/mp.1362931135960
    [Google Scholar]
  20. ZengB. YuK. GaoL. ZengX. ZhouQ. Breast cancer screening using synthesized two-dimensional mammography: A systematic review and meta-analysis.Breast20215927027810.1016/j.breast.2021.07.01634329948
    [Google Scholar]
  21. NakajimaE. TsunodaH. OokuraM. BanK. KawaguchiY. InagakiM. IkedaN. FurukawaK. IshikawaT. Digital breast tomosynthesis complements two-dimensional synthetic mammography for secondary examination of breast cancer.J. Belg. Soc. Radiol.202110516310.5334/jbsr.245734786534
    [Google Scholar]
  22. PhiX.A. TagliaficoA. HoussamiN. GreuterM.J.W. de BockG.H. Digital breast tomosynthesis for breast cancer screening and diagnosis in women with dense breasts – a systematic review and meta-analysis.BMC Cancer201818138010.1186/s12885‑018‑4263‑329615072
    [Google Scholar]
  23. CaumoF. ZorziM. BrunelliS. RomanucciG. RellaR. CugolaL. BricoloP. FedatoC. MontemezziS. HoussamiN. Digital breast tomosynthesis with synthesized two-dimensional images versus full-field digital mammography for population screening: Outcomes from the verona screening program.Radiology20182871374610.1148/radiol.201717074529237146
    [Google Scholar]
  24. ShengM. JiJ. ZhangC. ZhangZ. GongS. LuY. Optimization of the radiation dose of digital breast tomosynthesis in opportunistic screening by studying the effect of different combinations of FFDM and DBT views.Int. J. Gen. Med.2021141147115410.2147/IJGM.S30058433833554
    [Google Scholar]
  25. DhouS. DalahE. AlGhafeerR. HamiduA. ObaideenA. Regression analysis between the different breast dose quantities reported in digital mammography and patient age, breast thickness, and acquisition parameters.J. Imaging20228821110.3390/jimaging808021136005454
    [Google Scholar]
  26. ShinS.U. ChangJ.M. BaeM.S. LeeS.H. ChoN. SeoM. KimW.H. MoonW.K. Comparative evaluation of average glandular dose and breast cancer detection between single-view digital breast tomosynthesis (DBT) plus single-view digital mammography (DM) and two-view DM: correlation with breast thickness and density.Eur. Radiol.20152511810.1007/s00330‑014‑3399‑z25182628
    [Google Scholar]
  27. GennaroG. HendrickR.E. ToledanoA. PaqueletJ.R. BezzonE. ChersevaniR. di MaggioC. La GrassaM. PescariniL. PolicoI. ProiettiA. BaldanE. PomerriF. MuzzioP.C. Combination of one-view digital breast tomosynthesis with one-view digital mammography versus standard two-view digital mammography: Per lesion analysis.Eur. Radiol.20132382087209410.1007/s00330‑013‑2831‑023620367
    [Google Scholar]
  28. Rodriguez-RuizA. Gubern-MeridaA. Imhof-TasM. LardenoijeS. WandersA.J.T. AnderssonI. ZackrissonS. LångK. DustlerM. KarssemeijerN. MannR.M. SechopoulosI. One-view digital breast tomosynthesis as a stand-alone modality for breast cancer detection: Do we need more?Eur. Radiol.20182851938194810.1007/s00330‑017‑5167‑329230524
    [Google Scholar]
  29. KimS. TranT.X.M. SongH. RyuS. ChangY. ParkB. Mammographic breast density, benign breast disease, and subsequent breast cancer risk in 3.9 Million Korean Women.Radiology2022304353454110.1148/radiol.21272735579518
    [Google Scholar]
  30. BodewesF.T.H. van AsseltA.A. DorriusM.D. GreuterM.J.W. de BockG.H. Mammographic breast density and the risk of breast cancer: A systematic review and meta-analysis.Breast202266626810.1016/j.breast.2022.09.00736183671
    [Google Scholar]
  31. GastouniotiA. PantaloneL. ScottC.G. CohenE.A. WuF.F. WinhamS.J. JensenM.R. MaidmentA.D.A. VachonC.M. ConantE.F. KontosD. fully automated volumetric breast density estimation from digital breast tomosynthesis.Radiology2021301356156810.1148/radiol.202121019034519572
    [Google Scholar]
/content/journals/cmir/10.2174/1573405620666230328085655
Loading
/content/journals/cmir/10.2174/1573405620666230328085655
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test