Skip to content
2000
Volume 17, Issue 6
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Abnormal behaviors of tumors pose a risk to human survival. Thus, the detection of cancers at their initial stage is beneficial for patients and lowers the mortality rate. However, this can be difficult due to various factors related to imaging modalities, such as complex background, low contrast, brightness issues, poorly defined borders and the shape of the affected area. Recently, computer-aided diagnosis (CAD) models have been used to accurately diagnose tumors in different parts of the human body, especially breast, brain, lung, liver, skin and colon cancers. These cancers are diagnosed using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), colonoscopy, mammography, dermoscopy and histopathology. The aim of this review was to investigate existing approaches for the diagnosis of breast, brain, lung, liver, skin and colon tumors. The review focuses on decision-making systems, including handcrafted features and deep learning architectures for tumor detection.

Loading

Article metrics loading...

/content/journals/cmir/10.2174/1573405616666201217112521
2021-06-01
2025-05-14
Loading full text...

Full text loading...

/content/journals/cmir/10.2174/1573405616666201217112521
Loading

  • Article Type:
    Review Article
Keyword(s): Classification; colonoscopy; CT; healthcare; mammography; MRI; public health
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test