Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

In developing Computer-Aided Diagnosis (CAD), a Convolutional Neural Network (CNN) has been commonly used as a Deep Learning (DL) model. Although it is still early, DL has excellent potential in implementing computers in medical diagnosis.

Methods

This study reviews the use of DL for Anterior Cruciate Ligament (ACL) tear diagnosis. A comprehensive search was performed in PubMed, Embase, and Web of Science databases from 2018 to 2024. The included study criteria used MRI images to evaluate ACL tears, and the diagnosis of ACL tears was performed using the DL model. We summarized the paper by reporting their model accuracy, model comparison with arthroscopy, and explainable.

Results

AI implementation in tabular format; we conclude that many medical professionals believe that arthroscopic diagnosis is the most reliable method for diagnosing ACL tears. However, due to its intrusive treatment, CAD is projected to be able to produce similar outcomes from MRI scan results. To gain the trust of physicians and meet the demand for reliable knee injury detection systems, an algorithm for CAD should also meet several criteria, such as being transparent, interpretable, explainable, and easy to use. Therefore, future works should consider creating an Explainable DL model for ACL tear diagnosis. It is also essential to evaluate the performance of this Explainable DL model compared to the gold standard of arthroscopy diagnosis.

Conclusion

There are issues regarding the need for Explainable DL in CAD to increase confidence in its result while also highlighting the importance of the involvement of medical practitioners in system design. There is no funding for this work.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056295157240418043624
2024-01-01
2025-06-25
The full text of this item is not currently available.

References

  1. AkhilJ. Ashok SontakkeY. Injuries of anterior cruciate ligament: A review.J. Adv. Res. Med. Heal. Sci.20217615
    [Google Scholar]
  2. VoineaŞ-V. GheoneaI.A. SelişteanuD. TeicaR.V. FlorescuL.M. CiofiacC.M. Detection and classification of knee ligament pathology based on convolutional neural networks.2023 9th International Conference on Control, Decision and Information Technologies (CoDIT),Rome, Italy, 2023, pp. 543-548.10.1109/CoDIT58514.2023.10284270
    [Google Scholar]
  3. Palmieri-SmithR.M. MackC.D. BrophyR.H. OwensB.D. HerzogM.M. BeynnonB.D. SpindlerK.P. WojtysE.M. Epidemiology of anterior cruciate ligament tears in the national football league.Am. J. Sports Med.20214971786179310.1177/0363546521101014633929907
    [Google Scholar]
  4. SalmiC. LebcirA. DjemmalA.M. LebcirA. BoubendirN. A machine learning model for automation of ligament injury detection process.9th International Conference, MEDI,Toulouse, France, October 28–31, 2019, pp. 317-33210.1007/978‑3‑030‑32065‑2_22
    [Google Scholar]
  5. SunJ. WangL. RazmjooyN. Anterior cruciate ligament tear detection based on deep belief networks and improved honey badger algorithm.Biomed. Signal Process. Control20238410501910.1016/j.bspc.2023.105019
    [Google Scholar]
  6. AnzA.W. EdisonJ. DenneyT.S. BranchE.A. WalzC.R. BrockK.V. GoodlettM.D. 3-T MRI mapping is a valid in vivo method of quantitatively evaluating the anterior cruciate ligament: rater reliability and comparison across age.Skeletal Radiol.202049344345210.1007/s00256‑019‑03301‑131482257
    [Google Scholar]
  7. Ghasem HanafiM. Momen GharibvandM. Jaffari GharibvandR. SadoniH. Diagnostic value of oblique coronal and oblique sagittal magnetic resonance imaging (MRI) in diagnosis of anterior cruciate ligament (ACL) Tears.J. Med. Life201811428128510.25122/jml‑2018‑001530894883
    [Google Scholar]
  8. LiuF. GuanB. ZhouZ. SamsonovA. RosasH. LianK. SharmaR. KanarekA. KimJ. GuermaziA. KijowskiR. Fully automated diagnosis of anterior cruciate ligament tears on knee mr images by using deep learning.Radiol. Artif. Intell.20191318009110.1148/ryai.201918009132076658
    [Google Scholar]
  9. MazlanS.S. BaktiM.Z.A.Z.A.K. Anterioer Crucial Injury Classification Using Svm.2017September1820
    [Google Scholar]
  10. VassalouE.E. KlontzasM.E. KouvidisG.K. MatalliotakiP.I. KarantanasA.H. Rotational knee laxity in anterior cruciate ligament deficiency: An additional secondary sign on MRI.AJR Am. J. Roentgenol.2016206115115410.2214/AJR.15.1481626700347
    [Google Scholar]
  11. CristianiR. van de BuntF. KvistJ. StålmanA. High prevalence of meniscal ramp lesions in anterior cruciate ligament injuries.Knee Surg. Sports Traumatol. Arthrosc.202331131632410.1007/s00167‑022‑07135‑836045182
    [Google Scholar]
  12. CrawfordR. WalleyG. BridgmanS. MaffulliN. Magnetic resonance imaging versus arthroscopy in the diagnosis of knee pathology, concentrating on meniscal lesions and ACL tears: A systematic review.Br. Med. Bull.200784152310.1093/bmb/ldm02217785279
    [Google Scholar]
  13. MurmuC. TiwariP.K. SircarS. AgrawalV.K. Accuracy of magnetic resonance imaging in diagnosis of knee injuries.Int. J. Orthopa. Sci.201731b858810.22271/ortho.2017.v3.i1b.15
    [Google Scholar]
  14. BennettK. KamineniS. History of elbow arthroscopy.J Arthrosc Surg Sport Med.20212020119
    [Google Scholar]
  15. MinaeeS. BoykovY. PorikliF. PlazaA. KehtarnavazN. TerzopoulosD. Image segmentation using deep learning: A survey.IEEE Trans. Pattern Anal. Mach. Intell.20224473523354233596172
    [Google Scholar]
  16. LiuH. ZhangC. DengY. LiuT. ZhangZ. LiY.F. Orientation cues-aware facial relationship representation for head pose estimation via transformer.IEEE Trans. Image Process.2023326289630210.1109/TIP.2023.333130937963008
    [Google Scholar]
  17. LiuH. ZhangC. DengY. XieB. LiuT. ZhangZ. TransIFC: invariant cues-aware feature concentration learning for efficient fine-grained bird image classification.IEEE Trans. Multimed.2023117
    [Google Scholar]
  18. LiuH. LiuT. ZhangZ. SangaiahA.K. YangB. LiY. Arhpe: Asymmetric relation-aware representation learning for head pose estimation in industrial human–computer interaction.IEEE Trans. Industr. Inform.202218107107711710.1109/TII.2022.3143605
    [Google Scholar]
  19. SiourasA. MoustakidisS. GiannakidisA. ChalatsisG. LiampasI. VlychouM. HantesM. TasoulisS. TsaopoulosD. Knee injury detection using deep learning on mri studies: A systematic review.Diagnostics202212253710.3390/diagnostics1202053735204625
    [Google Scholar]
  20. QuC. YangH. WangC. WangC. YingM. ChenZ. A deep learning approach for anterior cruciate ligament rupture localization on knee MR images.Front Bioeng Biotechnol2022101024527Available from: https://www.frontiersin.org/articles/10.3389/fbioe.2022.1024527
    [Google Scholar]
  21. GianniniV. MazzettiS. CappelloG. DoronzioV.M. VassalloL. RussoF. GiacobbeA. MutoG. ReggeD. Computer-aided diagnosis improves the detection of clinically significant prostate cancer on multiparametric-mri: A multi-observer performance study involving inexperienced readers.Diagnostics202111697310.3390/diagnostics1106097334071215
    [Google Scholar]
  22. HussainM. KoundalD. ManhasJ. Deep learning-based diagnosis of disc degenerative diseases using MRI: A comprehensive review.Comput. Electr. Eng.202310510852410.1016/j.compeleceng.2022.108524
    [Google Scholar]
  23. ChanH.P. SamalaR.K. HadjiiskiL.M. ZhouC. Deep learning in medical image analysis.Adv. Exp. Med. Biol.2020121332110.1007/978‑3‑030‑33128‑3_132030660
    [Google Scholar]
  24. RahimzadehM. AttarA. SakhaeiS.M. A fully automated deep learning-based network for detecting COVID-19 from a new and large lung CT scan dataset.Biomed. Signal Process. Control20216810258810.1016/j.bspc.2021.10258833821166
    [Google Scholar]
  25. ZhangM. HuangC. DruzhininZ. A new optimization method for accurate anterior cruciate ligament tear diagnosis using convolutional neural network and modified golden search algorithm.Biomed. Signal Process. Control20248910569710.1016/j.bspc.2023.105697
    [Google Scholar]
  26. HubelD.H. WieselT.N. Receptive fields of single neurones in the cat’s striate cortex.J. Physiol.1959148357459110.1113/jphysiol.1959.sp00630814403679
    [Google Scholar]
  27. RawatW. WangZ. Deep convolutional neural networks for image classification: A comprehensive review.Neural Comput.20172992352244910.1162/neco_a_0099028599112
    [Google Scholar]
  28. AlbawiS. MohammedT.A.M. AlzawiS. Layers of a convolutional neural network.Icet2017201716
    [Google Scholar]
  29. LiuH. FangS. ZhangZ. LiD. LinK. WangJ. MFDNet: Collaborative poses perception and matrix Fisher distribution for head pose estimation.IEEE Trans. Multimed.2022242449246010.1109/TMM.2021.3081873
    [Google Scholar]
  30. LiuH. NieH. ZhangZ. LiY.F. Anisotropic angle distribution learning for head pose estimation and attention understanding in human-computer interaction.Neurocomputing202143331032210.1016/j.neucom.2020.09.068
    [Google Scholar]
  31. LiuT LiuH YangB ZhangZ. LDCNet: limb direction cues-aware network for flexible human pose estimation in industrial behavioral biometrics systems.IEEE Transac. Ind. Inform.2023111
    [Google Scholar]
  32. LeCunY. BengioY. HintonG. Deep learning.Nature2015521755343644410.1038/nature1453926017442
    [Google Scholar]
  33. GuptaS. PawarP.M. TamizharasanP.S. Intelligent detection of knee injury in MRI exam.Int. J. Inform. Technol.20221441815182110.1007/s41870‑022‑00859‑3
    [Google Scholar]
  34. JoshiK. SuganthiK. Anterior cruciate ligament tear detection based on deep convolutional neural network.Diagnostics20221210231410.3390/diagnostics1210231436292003
    [Google Scholar]
  35. Javed AwanM. Mohd RahimM. SalimN. MohammedM. Garcia-ZapirainB. AbdulkareemK. Efficient detection of knee anterior cruciate ligament from magnetic resonance imaging using deep learning approach.Diagnostics202111110510.3390/diagnostics1101010533440798
    [Google Scholar]
  36. LiZ RenS ZhouR JiangX YouT LiC Deep learning-based magnetic resonance imaging image features for diagnosis of anterior cruciate ligament injury.J Healthc Eng.202120214076175
    [Google Scholar]
  37. LiF. ZhaiP. YangC. FengG. YangJ. YuanY. Automated diagnosis of anterior cruciate ligament via a weighted multi-view network.Front. Bioeng. Biotechnol.202311126854310.3389/fbioe.2023.126854337885456
    [Google Scholar]
  38. JeonY. YoshinoK. HagiwaraS. WatanabeA. QuekS.T. YoshiokaH. FengM. Interpretable and lightweight 3-D deep learning model for automated acl diagnosis.IEEE J. Biomed. Health Inform.20212572388239710.1109/JBHI.2021.308135534003757
    [Google Scholar]
  39. ZhangL. LiM. ZhouY. LuG. ZhouQ. Deep learning approach for anterior cruciate ligament lesion detection: Evaluation of diagnostic performance using arthroscopy as the reference standard.J. Magn. Reson. Imaging20205261745175210.1002/jmri.2726632715584
    [Google Scholar]
  40. NamiriN.K. FlamentI. AstutoB. ShahR. TibrewalaR. CalivaF. LinkT.M. PedoiaV. MajumdarS. Deep learning for hierarchical severity staging of anterior cruciate ligament injuries from mri.Radiol. Artif. Intell.202024e19020710.1148/ryai.202019020732793889
    [Google Scholar]
  41. TranA. LassalleL. ZilleP. GuillinR. PluotE. AdamC. CharachonM. BratH. WallaertM. d’AssigniesG. RizkB. Deep learning to detect anterior cruciate ligament tear on knee MRI: multi-continental external validation.Eur. Radiol.202232128394840310.1007/s00330‑022‑08923‑z35726103
    [Google Scholar]
  42. GermannC. MarbachG. CivardiF. FucenteseS.F. FritzJ. SutterR. PfirrmannC.W.A. FritzB. Deep convolutional neural network–based diagnosis of anterior cruciate ligament tears.Invest. Radiol.202055849950610.1097/RLI.000000000000066432168039
    [Google Scholar]
  43. SridharS AmutharajJ ValsalanP ArthiB RamkumarS MathupriyaS A Torn ACL mapping in knee MRI images using deep convolution neural network with Inception-v3.J. Healthc. Eng.202220227872500
    [Google Scholar]
  44. AwanM.J. RahimM.S.M. SalimN. RehmanA. NobaneeH. ShabirH. Improved deep convolutional neural network to classify osteoarthritis from anterior cruciate ligament tear using magnetic resonance imaging.J. Pers. Med.20211111116310.3390/jpm1111116334834515
    [Google Scholar]
  45. JoshiK. SuganthiK. Anterior cruciate ligament tear detection based on convolutional neural network and generative adversarial neural network.Neural Comput. Appl.20243695021503010.1007/s00521‑023‑09350‑x
    [Google Scholar]
  46. Andaur NavarroC.L. DamenJ.A.A.G. TakadaT. NijmanS.W.J. DhimanP. MaJ. CollinsG.S. BajpaiR. RileyR.D. MoonsK.G.M. HooftL. Protocol for a systematic review on the methodological and reporting quality of prediction model studies using machine learning techniques.BMJ Open20201011e03883210.1136/bmjopen‑2020‑03883233177137
    [Google Scholar]
  47. RamkumarP.N. KunzeK.N. HaeberleH.S. KarnutaJ.M. LuuB.C. NwachukwuB.U. WilliamsR.J. Clinical and research medical applications of artificial intelligence.Arthroscopy20213751694169710.1016/j.arthro.2020.08.00932828936
    [Google Scholar]
  48. XuQ XieW LiaoB Interpretability of clinical decision support systems based on artificial intelligence from technological and medical perspective: A systematic review.J. Health Eng.202320239919269
    [Google Scholar]
  49. KunzeK.N. RossiD.M. WhiteG.M. KarhadeA.V. DengJ. WilliamsB.T. ChahlaJ. Diagnostic performance of artificial intelligence for detection of anterior cruciate ligament and meniscus tears: A systematic review.Arthroscopy202137277178110.1016/j.arthro.2020.09.01232956803
    [Google Scholar]
  50. CorbanJ. LorangeJ.P. LaverdiereC. KhouryJ. RachevskyG. BurmanM. MartineauP.A. Artificial intelligence in the management of anterior cruciate ligament injuries.Orthop. J. Sports Med.20219710.1177/2325967121101420634277880
    [Google Scholar]
  51. SiddiqueN. PahedingS. ElkinC.P. DevabhaktuniV. U-net and its variants for medical image segmentation: A review of theory and applications.IEEE Access20219820318205710.1109/ACCESS.2021.3086020
    [Google Scholar]
  52. AdouniM. FaisalT. DhaherY. Effect of surgical design variations on the knee contact behavior during anterior cruciate ligament reconstruction.J. Knee Surg.202336331032110.1055/s‑0041‑173387934375997
    [Google Scholar]
  53. RuizOG DhaherY Multi-color and multi-material 3d printing of knee joint models.3D Print Med2021711210.1186/s41205‑021‑00100‑0
    [Google Scholar]
  54. IslamM.R. AhmedM.U. BaruaS. BegumS. A systematic review of explainable artificial intelligence in terms of different application domains and tasks.Appl. Sci.2022123135310.3390/app12031353
    [Google Scholar]
  55. YuC. WangM. ChenS. QiuC. ZhangZ. ZhangX. Improving anterior cruciate ligament tear detection and grading through efficient use of inter-slice information and simplified transformer module.Biomed. Signal Process. Control20238610535610.1016/j.bspc.2023.105356
    [Google Scholar]
  56. WangJ. LuoJ. LiangJ. CaoY. FengJ. TanL. Lightweight attentive graph neural network with conditional random field for diagnosis of anterior cruciate ligament tear.J. Imaging. Informatics. Med.2024118
    [Google Scholar]
  57. HengW.W. Abdul-KadirN.A. Deep learning and explainable machine learning on hair disease detection.In: 2023 IEEE 5th Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS),IEEE; 2023. p. 150–3.10.1109/ECBIOS57802.2023.10218472
    [Google Scholar]
  58. YangG. YeQ. XiaJ. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond.Inf. Fusion202277295210.1016/j.inffus.2021.07.01634980946
    [Google Scholar]
  59. DağlarliE. Explainable artificial intelligence (xAI) approaches and deep meta-learning models.Adv Appl Deep Learn20207910.5772/intechopen.92172
    [Google Scholar]
  60. de VriesB.M. ZwezerijnenG.J.C. BurchellG.L. van VeldenF.H.P. Menke-van der Houven van OordtC.W. BoellaardR. Explainable artificial intelligence (XAI) in radiology and nuclear medicine: A literature review.Front. Med.202310118077310.3389/fmed.2023.118077337250654
    [Google Scholar]
  61. MinamotoY. AkagiR. MakiS. ShikoY. TozawaR. KimuraS. YamaguchiS. KawasakiY. OhtoriS. SashoT. Automated detection of anterior cruciate ligament tears using a deep convolutional neural network.BMC Musculoskelet. Disord.202223157710.1186/s12891‑022‑05524‑135705930
    [Google Scholar]
  62. KimD.H. ChaiJ.W. KangJ.H. LeeJ.H. KimH.J. SeoJ. ChoiJ.W. Ensemble deep learning model for predicting anterior cruciate ligament tear from lateral knee radiograph.Skeletal Radiol.202251122269227910.1007/s00256‑022‑04081‑x35792956
    [Google Scholar]
  63. WangD. LiuS. DingJ. SunA. JiangD. JiangJ. A deep learning model enhances clinicians’ diagnostic accuracy to more than 96% for anterior cruciate ligament ruptures on magnetic resonance imaging.Arthroscopy20234041197120537597705
    [Google Scholar]
  64. XueY. YangS. SunW. TanH. LinK. PengL. WangZ. ZhangJ. Approaching expert-level accuracy for differentiating ACL tear types on MRI with deep learning.Sci. Rep.202414193810.1038/s41598‑024‑51666‑838195977
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056295157240418043624
Loading
/content/journals/cmir/10.2174/0115734056295157240418043624
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article. Supplementary material, along with the published article, is available on the publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test