Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Aim:

Our aim was to explore the feasibility of using radiomics data derived from intratumoral and peritumoral edema on fat-suppressed T2-weighted imaging (T2 FS) to distinguish triple-negative breast cancer (TNBC) from non-triple-negative breast cancer (non-TNBC).

Methods:

This retrospective study enrolled 174 breast cancer patients. According to the MRI examination time, patients before 2021 were divided into training (n = 119) or internal test (n = 30) cohorts at a ratio of 8:2. Patients from 2022 were included in the external test cohort (n = 25). Four regions of interest for each lesion were defined: intratumoral regions, peritumoral edema regions, regions with a combination of intratumoral and peritumoral edema, and regions with a combination of intratumoral and 5-mm peritumoral. Four radiomic signatures were built using the least absolute shrinkage and selection operator (LASSO) method after selecting features. Furthermore, a radio mic-radiological model was constructed using a combination of intratumoral and peritumoral edema regions along with clinical-radiologic features. Area under the receiver operating characteristic curve (AUC) calculations, decision curve analysis, and calibration curve analysis were performed to assess the performance of each model.

Results:

The radiomic-radiological model showed the highest AUC values of 0.906 (0.788-1.000) and 0.825 (0.622-0.947) in both the internal and external test sets, respectively. The radiology-radiomic model exhibited excellent predictive performance, as evidenced by the calibration curves and decision curve analysis.

Conclusion:

The ensemble model based on T2 FS-based radiomic features of intratumoral and peritumoral edema, along with radiological factors, performed better in distinguishing TNBC from non-TNBC than a single model. We explored the possibility of developing explainable models to support the clinical decision-making process.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056293294240417100820
2024-04-19
2025-05-30
The full text of this item is not currently available.

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. FoulkesW.D. SmithI.E. Reis-FilhoJ.S. Triple-negative breast cancer.N. Engl. J. Med.2010363201938194810.1056/NEJMra100138921067385
    [Google Scholar]
  3. KwapiszD. Pembrolizumab and atezolizumab in triple-negative breast cancer.Cancer Immunol. Immunother.202170360761710.1007/s00262‑020‑02736‑z33015734
    [Google Scholar]
  4. YinL. DuanJ.J. BianX.W. YuS. Triple-negative breast cancer molecular subtyping and treatment progress.Breast Cancer Res.20202216110.1186/s13058‑020‑01296‑532517735
    [Google Scholar]
  5. MishraD. MishraA. RaiS.N. VamanuE. SinghM.P. Identification of prognostic biomarkers for suppressing tumorigenesis and metastasis of hepatocellular carcinoma through transcriptome analysis.Diagnostics202313596510.3390/diagnostics1305096536900109
    [Google Scholar]
  6. MishraD. MishraA. Nand RaiS. VamanuE. SinghM.P. Demystifying the role of prognostic biomarkers in breast cancer through integrated transcriptome and pathway enrichment analyses.Diagnostics2023136114210.3390/diagnostics1306114236980449
    [Google Scholar]
  7. MishraD. MishraA. RaiS. SinghS. VamanuE. SinghM.P. In Silico insight to identify potential inhibitors of bub1b from mushroom bioactive compounds to prevent breast cancer metastasis.Frontiers in Bioscience-Landmark202328715110.31083/j.fbl280715137525917
    [Google Scholar]
  8. DingJ. ChenS. Serrano SosaM. CattellR. LeiL. SunJ. PrasannaP. LiuC. HuangC. Optimizing the peritumoral region size in radiomics analysis for sentinel lymph node status prediction in breast cancer.Acad. Radiol.202229Suppl 1Suppl. 1S223S22810.1016/j.acra.2020.10.01533160860
    [Google Scholar]
  9. JiangT. SongJ. WangX. NiuS. ZhaoN. DongY. WangX. LuoY. JiangX. Intratumoral and peritumoral analysis of mammography, tomosynthesis, and multiparametric mri for predicting Ki-67 level in breast cancer: A radiomics-based study.Mol. Imaging Biol.202224455055910.1007/s11307‑021‑01695‑w34904187
    [Google Scholar]
  10. MaoN. ShiY. LianC. WangZ. ZhangK. XieH. ZhangH. ChenQ. ChengG. XuC. DaiY. Intratumoral and peritumoral radiomics for preoperative prediction of neoadjuvant chemotherapy effect in breast cancer based on contrast-enhanced spectral mammography.Eur. Radiol.20223253207321910.1007/s00330‑021‑08414‑735066632
    [Google Scholar]
  11. NiuS. JiangW. ZhaoN. JiangT. DongY. LuoY. YuT. JiangX. Intra and peritumoral radiomics on assessment of breast cancer molecular subtypes based on mammography and MRI.J. Cancer Res. Clin. Oncol.202214819710610.1007/s00432‑021‑03822‑034623517
    [Google Scholar]
  12. HaradaT.L. UematsuT. NakashimaK. KawabataT. NishimuraS. TakahashiK. TadokoroY. HayashiT. TsuchiyaK. WatanabeJ. SuginoT. Evaluation of breast edema findings at T2-weighted Breast MRI is useful for diagnosing occult inflammatory breast cancer and can predict prognosis after neoadjuvant chemotherapy.Radiology20212991536210.1148/radiol.202120260433560188
    [Google Scholar]
  13. UematsuT. KasamiM. YuenS. Triple-negative breast cancer: Correlation between MR imaging and pathologic findings.Radiology2009250363864710.1148/radiol.250308105419244039
    [Google Scholar]
  14. BaltzerP.A.T. YangF. DietzelM. HerzogA. SimonA. VagT. GajdaM. CamaraO. KaiserW.A. Sensitivity and specificity of unilateral edema on T2w-TSE sequences in MR-Mammography considering 974 histologically verified lesions.Breast J.201016323323910.1111/j.1524‑4741.2010.00915.x20565468
    [Google Scholar]
  15. CheonH. KimH.J. KimT.H. RyeomH.K. LeeJ. KimG.C. YukJ.S. KimW.H. Invasive breast cancer: Prognostic value of peritumoral edema identified at preoperative MR imaging.Radiology20182871687510.1148/radiol.201717115729315062
    [Google Scholar]
  16. KaiserC.G. HeroldM. KrammerJ. BaltzerP. GajdaM. CamaraO. SchoenbergS. KaiserW.A. DietzelM. Prognostic value of “prepectoral edema” in MR-mammography.Anticancer Res.20173741989199510.21873/anticanres.1154228373472
    [Google Scholar]
  17. UematsuT. KasamiM. WatanabeJ. Is evaluation of the presence of prepectoral edema on T2-weighted with fat-suppression 3 T breast MRI a simple and readily available noninvasive technique for estimation of prognosis in patients with breast cancer?Breast Cancer201421668469210.1007/s12282‑013‑0440‑z23341125
    [Google Scholar]
  18. CostantiniM. BelliP. DistefanoD. BufiE. MatteoM.D. RinaldiP. GiulianiM. PetroneG. MagnoS. BonomoL. Magnetic resonance imaging features in triple-negative breast cancer: comparison with luminal and HER2-overexpressing tumors.Clin. Breast Cancer201212533133910.1016/j.clbc.2012.07.00223040001
    [Google Scholar]
  19. PanzironiG. MoffaG. GalatiF. MarzoccaF. RizzoV. PediconiF. Peritumoral edema as a biomarker of the aggressiveness of breast cancer: results of a retrospective study on a 3 T scanner.Breast Cancer Res. Treat.20201811536010.1007/s10549‑020‑05592‑832185587
    [Google Scholar]
  20. GuoZ. TianZ. ShiF. Radiomic features of the edema region may contribute to grading meningiomas with peritumoral edema.J. Magn. Reson. Imaging202258130131036259547
    [Google Scholar]
  21. LongH. ZhangP. BiY. YangC. WuM. HeD. HuangS. YangK. QiS. WangJ. MRI radiomic features of peritumoral edema may predict the recurrence sites of glioblastoma multiforme.Front. Oncol.202312104249810.3389/fonc.2022.104249836686829
    [Google Scholar]
  22. RathoreS. AkbariH. DoshiJ. ShuklaG. RozyckiM. BilelloM. LustigR. DavatzikosC. Radiomic signature of infiltration in peritumoral edema predicts subsequent recurrence in glioblastoma: Implications for personalized radiotherapy planning.J. Med. Imaging 201852110.1117/1.JMI.5.2.02121929531967
    [Google Scholar]
  23. ShaZ. SongY. WuY. The value of texture analysis in peritumoral edema of differentiating diagnosis between glioblastoma and primary brain lymphoma.Br. J. Neurosurg.20233751074107733307833
    [Google Scholar]
  24. LiptonZC The Mythos of Model Interpretability: In machine learning, the concept of interpretability is both important and slippery.Queue20181633157
    [Google Scholar]
  25. AminM.B. EdgeS.B. GreeneF.L. AJCC cancer staging manual.Springer2017XVII1032
    [Google Scholar]
  26. FischerU. KopkaL. GrabbeE. Breast carcinoma: Effect of preoperative contrast-enhanced MR imaging on the therapeutic approach.Radiology1999213388188810.1148/radiology.213.3.r99dc0188110580970
    [Google Scholar]
  27. HyunS.J. KimE.K. YoonJ.H. MoonH.J. KimM.J. Adding MRI to ultrasound and ultrasound-guided fine-needle aspiration reduces the false-negative rate of axillary lymph node metastasis diagnosis in breast cancer patients.Clin. Radiol.201570771672210.1016/j.crad.2015.03.00425917544
    [Google Scholar]
  28. WuJ. XiaY. WangX. WeiY. LiuA. InnanjeA. ZhengM. ChenL. ShiJ. WangL. ZhanY. ZhouX.S. XueZ. ShiF. ShenD. uRP: An integrated research platform for one-stop analysis of medical images.Frontiers in Radiology20233115378410.3389/fradi.2023.115378437492386
    [Google Scholar]
  29. BentoV. KohlerM. DiazP. MendozaL. PachecoM.A. Improving deep learning performance by using Explainable Artificial Intelligence (XAI) approaches.Disc. Artif. Intell.202111910.1007/s44163‑021‑00008‑y
    [Google Scholar]
  30. MilitelloC. PrinziF. SollamiG. RundoL. La GruttaL. VitabileS. CT radiomic features and clinical biomarkers for predicting coronary artery disease.Cognit. Comput.202315123825310.1007/s12559‑023‑10118‑7
    [Google Scholar]
  31. HauptB. RoJ.Y. SchwartzM.R. Basal-like breast carcinoma: A phenotypically distinct entity.Arch. Pathol. Lab. Med.2010134113013310.5858/134.1.13020073617
    [Google Scholar]
  32. JabalM.S. MohammedM.A. KobeissiH. LanzinoG. BrinjikjiW. FlemmingK.D. Quantitative image signature and machine learning-based prediction of outcomes in cerebral cavernous malformations.J. Stroke Cerebrovasc. Dis.202433110746210.1016/j.jstrokecerebrovasdis.2023.10746237931483
    [Google Scholar]
  33. CaiL. Sidey-GibbonsC. NeesJ. RiedelF. SchaefgenB. TogawaR. KillingerK. HeilJ. PfobA. GolattaM. Ultrasound radiomics features to identify patients with triple-negative breast cancer.J. Ultrasound Med.202443346747810.1002/jum.1637738069582
    [Google Scholar]
  34. GuoY. HuY. QiaoM. WangY. YuJ. LiJ. ChangC. Radiomics analysis on ultrasound for prediction of biologic behavior in breast invasive ductal carcinoma.Clin. Breast Cancer2018183e335e34410.1016/j.clbc.2017.08.00228890183
    [Google Scholar]
  35. YangZ. WangN. HanR. TangY. ChenH. XieY. WangR. TangL. Low breast density and peritumoral edema on MR predict worse overall survival of breast cancer patients after neoadjuvant chemotherapy.Eur. J. Radiol.202417111129410.1016/j.ejrad.2024.11129438218065
    [Google Scholar]
  36. KoyamaH. KobayashiN. HaradaM. TakeokaM. KawaiY. SanoK. FujimoriM. AmanoJ. OhhashiT. KannagiR. KimataK. TaniguchiS. ItanoN. Significance of tumor-associated stroma in promotion of intratumoral lymphangiogenesis: pivotal role of a hyaluronan-rich tumor microenvironment.Am. J. Pathol.2008172117919310.2353/ajpath.2008.07036018079437
    [Google Scholar]
  37. ParkN.J.Y. JeongJ.Y. ParkJ.Y. KimH.J. ParkC.S. LeeJ. ParkH.Y. JungJ.H. KimW.W. ChaeY.S. LeeS.J. KimW.H. Peritumoral edema in breast cancer at preoperative MRI: An interpretative study with histopathological review toward understanding tumor microenvironment.Sci. Rep.20211111299210.1038/s41598‑021‑92283‑z34155253
    [Google Scholar]
  38. LiangT. HuB. DuH. ZhangY. Predictive value of T2-weighted magnetic resonance imaging for the prognosis of patients with mass-type breast cancer with peritumoral edema.Oncol. Lett.2020206110.3892/ol.2020.1217733133250
    [Google Scholar]
  39. MaW. ZhaoY. JiY. GuoX. JianX. LiuP. WuS. Breast cancer molecular subtype prediction by mammographic radiomic features.Acad. Radiol.201926219620110.1016/j.acra.2018.01.02329526548
    [Google Scholar]
  40. SaedniaK. LagreeA. AleraM.A. FleshnerL. ShinerA. LawE. LawB. DodingtonD.W. LuF.I. TranW.T. Sadeghi-NainiA. Quantitative digital histopathology and machine learning to predict pathological complete response to chemotherapy in breast cancer patients using pre-treatment tumor biopsies.Sci. Rep.2022121969010.1038/s41598‑022‑13917‑435690630
    [Google Scholar]
  41. BramanN. PrasannaP. WhitneyJ. SinghS. BeigN. EtesamiM. BatesD.D.B. GallagherK. BlochB.N. VulchiM. TurkP. BeraK. AbrahamJ. SikovW.M. SomloG. HarrisL.N. GilmoreH. PlechaD. VaradanV. MadabhushiA. Association of peritumoral radiomics with tumor biology and pathologic response to preoperative targeted therapy for HER2 (ERBB2) positive breast cancer.JAMA Netw. Open201924e19256110.1001/jamanetworkopen.2019.256131002322
    [Google Scholar]
  42. XieT. ZhaoQ. FuC. BaiQ. ZhouX. LiL. GrimmR. LiuL. GuY. PengW. Differentiation of triple-negative breast cancer from other subtypes through whole-tumor histogram analysis on multiparametric MR imaging.Eur. Radiol.20192952535254410.1007/s00330‑018‑5804‑530402704
    [Google Scholar]
  43. SongS.E. WooO.H. ChoY. ChoK.R. ParkK.H. KimJ.W. Prediction of axillary lymph node metastasis in early-stage triple-negative breast cancer using multiparametric and radiomic features of breast MRI.Acad. Radiol.202330Suppl. 2S25S3710.1016/j.acra.2023.05.02537331865
    [Google Scholar]
  44. GoodmanB FlaxmanS European Union regulations on algorithmic decision-making and a "right to explanation"ICML Workshop on Human Interpretability in Machine Learning (WHI 2016)New York, NY20173835057
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056293294240417100820
Loading
/content/journals/cmir/10.2174/0115734056293294240417100820
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test