Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Brain tumor is a grave illness causing worldwide fatalities. The current detection methods for brain tumors are manual, invasive, and rely on histopathological analysis. Determining the type of brain tumor after its detection relies on biopsy measures and involves human subjectivity. The use of automated CAD techniques for brain tumor detection and classification can overcome these drawbacks.

Objective

The paper aims to create two deep learning-based CAD frameworks for automatic detection and severity grading of brain tumors – the first model for brain tumor detection in brain MR images and model 2 for the classification of tumors into three types: Glioma, Meningioma, and Pituitary based on severity grading.

Methods

The novelty of the research work includes the architectural design of deep learning frameworks for detection and classification of brain tumor using brain MR images. The hyperparameter tuning of the proposed models is done to achieve the optimal parameters that result in maximizing the models' performance and minimizing losses.

Results

The proposed CNN models outperform the existing state of the art models in terms of accuracy and complexity of the models. The proposed model developed for detection of brain tumors achieved an accuracy of 98.56% and CNN Model developed for severity grading of brain tumor achieved an accuracy of 92.36% on BraTs dataset.

Conclusion

The proposed models have an edge over the existing CNN models in terms of less complexity of the structure and appreciable accuracy with low training and test errors. The proposed CNN Models can be employed for clinical diagnostic purposes to aid the medical fraternity in validating their initial screening for brain tumor detection and its multi-classification.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056288248240309044616
2024-03-15
2025-01-01
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E15734056288248.html?itemId=/content/journals/cmir/10.2174/0115734056288248240309044616&mimeType=html&fmt=ahah

References

  1. Brain, other CNS and intracranial tumours incidence statistics.Available from: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/brain-other-cns-and-intracranial-tumours/incidence (Accessed on: Apr. 18, 2023).
  2. Brain tumor: Statistics.Available from: https://www.cancer.net/cancer-types/brain-tumor/statistics (Accessed on: Jun. 05, 2023).
  3. Brain tumour cases rising 'steadily' in India, 20% are children: Doctors.Available from: https://www.businessinsider.in/science/health/news/brain-tumour-cases-rising-steadily-in-india-20-are-children-doctors/articleshow/100848073.cms (Accessed on: Aug. 10, 2023).
  4. LepchaD.C. DograA. GoyalB. GoyalV. KukrejaV. BavirisettiD.P. A constructive non-local means algorithm for low-dose computed tomography denoising with morphological residual processing.PLoS One2023189e029191110.1371/journal.pone.029191137756296
    [Google Scholar]
  5. AbboodA.A. ShallalQ.M. FadhelM.A. Automated brain tumor classification using various deep learning models: A comparative study.Indones. J. Electr. Eng. Comput. Sci.202122125225910.11591/ijeecs.v22.i1.pp252‑259
    [Google Scholar]
  6. HuM. ZhangJ. Reinforcement learning in medical image analysis: Concepts, applications, challenges, and future directions.J Appl Clin Med Phys2023242e13898
    [Google Scholar]
  7. ZhouS.K. LeH.N. LuuK. NguyenV.H. AyacheN. Deep reinforcement learning in medical imaging: A literature review.Med. Image Anal.20217310219310.1016/j.media.2021.10219334371440
    [Google Scholar]
  8. KimS. ParkS. Spiking-YOLO: Spiking neural network for energy-efficient object detection.Proceedings of the AAAI Conference on Artificial Intelligence20201127011277
    [Google Scholar]
  9. ChoiH. K. PaikC. K. Recurrent DETR: Transformer-based object detection for crowded scenes.IEEE Access202311June786237864310.1109/ACCESS.2023.3293532
    [Google Scholar]
  10. AyadiW. Deep CNN for brain tumor classification.Neural Process. Lett.202153167170010.1007/s11063‑020‑10398‑2
    [Google Scholar]
  11. BhardwajN. SoodM. GillS.S. Artificial intelligence-empowered 3D bioprinting.AI Big Data-Based Eng. Appl. from Secur. Perspect.202312010.1201/9781003230113‑1
    [Google Scholar]
  12. MehrotraR. AnsariM. A. A transfer learning approach for AI-based classification of brain tumors.Learn. with Appl.2020210000310.1016/j.mlwa.2020.100003
    [Google Scholar]
  13. AminJ. SharifM. Brain tumor detection and classification using machine learning: A comprehensive survey.Complex Intell. Syst.2021831613183
    [Google Scholar]
  14. AminJ. SharifM. YasminM. FernandesS.L. Big data analysis for brain tumor detection: Deep convolutional neural networks.Future Gener. Comput. Syst.20188729029710.1016/j.future.2018.04.065
    [Google Scholar]
  15. JohnsonD.R. GuerinJ.B. GianniniC. MorrisJ.M. EckelL.J. KaufmannT.J. 2016 updates to the WHO brain tumor classification system: What the radiologist needs to know.Radiographics20173772164218010.1148/rg.201717003729028423
    [Google Scholar]
  16. Brain tumor: Grades and prognostic factors.Available from: https://www.cancer.net/cancer-types/brain-tumor/grades-and-prognostic-factors (Accessed on: Jul. 20, 2022).
  17. MuhammadK. KhanS. SerJ.D. AlbuquerqueV.H.C. Deep learning for multigrade brain tumor classification in smart healthcare systems: A prospective survey.IEEE Trans. Neural Netw. Learn. Syst.202132250752210.1109/TNNLS.2020.299580032603291
    [Google Scholar]
  18. ChetanaV.L. KolisettyS.S. AmoghK. A short survey of dimensionality reduction techniques.Recent Adv. Comput. Based Syst. Process. Appl2020931410.1201/9781003043980‑2
    [Google Scholar]
  19. DengL. YuD. Deep Learning: Methods and ApplicationsNow Foundations and Trends2014206
    [Google Scholar]
  20. Abd-EllahM. K. AwadA. I. Two-phase multi-model automatic brain tumour diagnosis system from magnetic resonance images using convolutional neural network.EURASIP J. Image Video Process.201820189710.1186/s13640‑018‑0332‑4
    [Google Scholar]
  21. ÇınarerG. EmiroğluB.G. ArslanR.S. YurttakalA.H. Brain tumor classification using deep neural network.Adv. Sci. Technol. Eng. Syst.20205576576910.25046/AJ050593
    [Google Scholar]
  22. ShafiA. S. M. RahmanM. B. Classification of brain tumors and auto-immune disease using ensemble learning.Informatics Med. Unlocked20212410060810.1016/j.imu.2021.100608
    [Google Scholar]
  23. LanY. ZouS. Potential roles of transformers in brain tumor diagnosis and treatment.Brain‐X20231210.1002/brx2.23
    [Google Scholar]
  24. PereiraF. LouB. PritchettB. RitterS. GershmanS.J. KanwisherN. BotvinickM. FedorenkoE. Toward a universal decoder of linguistic meaning from brain activation.Nat. Commun.20189196310.1038/s41467‑018‑03068‑429511192
    [Google Scholar]
  25. UcuzalH. YasarS. ColakC. Classification of brain tumor types by deep learning with convolutional neural network on magnetic resonance images using a developed web-based interface3rd International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT 2019 - Proceedings201915
    [Google Scholar]
  26. SadadT. RehmanA. MunirA. SabaT. TariqU. AyeshaN. AbbasiR. Brain tumor detection and multi-classification using advanced deep learning techniques.Microsc. Res. Tech.20218461296130810.1002/jemt.2368833400339
    [Google Scholar]
  27. AsifS. YiW. AinQ.U. HouJ. YiT. SiJ. Improving effectiveness of different deep transfer learning-based models for detecting brain tumors from MR images.IEEE Access202210347163473010.1109/ACCESS.2022.3153306
    [Google Scholar]
  28. TazinT. SarkerS. GuptaP. AyazF. IslamS. KhanM.M. BourouisS. IdrisS.A. AlshazlyH. A robust and novel approach for brain tumor classification using convolutional neural network.Comput. Intell. Neurosci.20212021239239510.1155/2021/239239534970309
    [Google Scholar]
  29. WaghmareT.P. MalpureP. Comprehensive genomic subtyping of glioma using semi-supervised multi-task deep learning on multimodal MRI.IEEE Access2021916790016791010.1109/ACCESS.2021.3136293
    [Google Scholar]
  30. Br35H : Brain tumor detection 2020.Available from: https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection (Accessed on: Aug. 03, 2022).
  31. ShanthiS. SaradhaS. SmithaJ.A. An efficient automatic brain tumor classification using optimized hybrid deep neural network.Int. J. Intell. Networks20223October18819610.1016/j.ijin.2022.11.003
    [Google Scholar]
  32. VankdothuR. Brain tumor MRI images identification and classification based on the recurrent convolutional neural network.Meas. Sensors202224810041210.1016/j.measen.2022.100412
    [Google Scholar]
  33. IfraA.B. Automatic brain tumor detection using convolutional neural networks.Lect. Notes Networks Syst.2023494419427
    [Google Scholar]
  34. ÖzkaracaO. BağrıaçıkO.İ. GürülerH. KhanF. HussainJ. KhanJ. LailaU.E. Multiple brain tumor classification with dense CNN architecture using brain MRI images.Life202313234910.3390/life1302034936836705
    [Google Scholar]
  35. MinarnoA.E. MandiriH.C. Convolutional neural network with hyperparameter tuning for brain tumor classification.Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control20216210.22219/kinetik.v6i2.1219
    [Google Scholar]
  36. SrinivasanS. BaiP.S.M. MathivananS.K. MuthukumaranV. BabuJ.C. VilcekovaL. Grade classification of tumors from brain magnetic resonance images using a deep learning technique.Diagnostics2023136115310.3390/diagnostics1306115336980463
    [Google Scholar]
  37. BhardwajN. SoodM. GillS.S. Deep learning framework using CNN for brain tumor classification.2022 5th International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT)26-27 November 2022Aligarh, India2022
    [Google Scholar]
  38. XieY. ZaccagnaF. RundoL. TestaC. AgatiR. LodiR. MannersD.N. TononC. Convolutional neural network techniques for brain tumor classification (from 2015 to 2022): Review, challenges, and future perspectives.Diagnostics2022128185010.3390/diagnostics1208185036010200
    [Google Scholar]
  39. JunW. LiyuanZ. Brain tumor classification based on attention guided deep learning model.Int. J. Comput. Intell. Syst.20221511910.1007/s44196‑022‑00090‑9
    [Google Scholar]
  40. KumarS.A. SasikalaS. Automated brain tumour detection and classification using deep features and bayesian optimised classifiers.Curr. Med. Imaging Rev.20232011410.2174/157340562066623032809221837018527
    [Google Scholar]
  41. SridharS.R. AkilaM. AsokanR. Automated brain tumor detection using ideal shallow neural network with artificial jellyfish optimization.Curr. Med. Imaging Rev.20232011510.2174/157340562066623073112092437519206
    [Google Scholar]
  42. ZhangP. WangY. Segment anything model for brain tumor segmentation.Available from: Available from: https://arxiv.org/ftp/arxiv/papers/2309/2309.08434.pdf 2023
  43. SridharR.I. KamaleswaranR. Lung segment anything model ( LuSAM ): A prompt-integrated framework for automated lung segmentation on ICU chest X-ray images.IEEE Trans. Med. Imaging2023202318
    [Google Scholar]
  44. ZhaoC. XiangS. Context-aware network fusing transformer and V-Net for semi-supervised segmentation of 3D left atrium.Expert Syst. Appl.2023214119105
    [Google Scholar]
  45. TummalaS. KadryS. BukhariS.A.C. RaufH.T. Classification of brain tumor from magnetic resonance imaging using vision transformers ensembling.Curr. Oncol.202229107498751110.3390/curroncol2910059036290867
    [Google Scholar]
  46. AlzahraniS.M. ConvAttenMixer: Brain tumor detection and type classification using convolutional mixer with external and self-attention mechanisms.J. King Saud Univ. Comput. Inf. Sci.2023351010181010.1016/j.jksuci.2023.101810
    [Google Scholar]
  47. AsiriA.A. ShafA. AliT. ShakeelU. IrfanM. MehdarK.M. HalawaniH.T. AlghamdiA.H. AlshamraniA.F.A. AlqhtaniS.M. Exploring the power of deep learning: Fine-tuned vision transformer for accurate and efficient brain tumor detection in MRI scans.Diagnostics20231312209410.3390/diagnostics1312209437370989
    [Google Scholar]
  48. FigshareAvailable from: https://www.kaggle.com/datasets/ashkhagan/figshare-brain-tumor-dataset
  49. HaqA.U. LiJ.P. KhanS. AlsharaM.A. AlotaibiR.M. MawuliC. DACBT: Deep learning approach for classification of brain tumors using MRI data in IoT healthcare environment.Sci. Rep.202212111410.1038/s41598‑022‑19465‑134992227
    [Google Scholar]
  50. Normalization.Available from: https://www.codecademy.com/article/normalization (Accessed on: Aug. 10, 2023).
  51. 6 types of classifiers in machine learning.Available from: https://www.analyticssteps.com/blogs/types-classifiers-machine-learning (Accessed on: May 26, 2022).
  52. AmouM. A. XiaK. A novel MRI diagnosis method for brain tumor classification based on cnn and bayesian optimization.Healthc.202210312110.3390/healthcare10030494
    [Google Scholar]
  53. YadavS.S. JadhavS.M. Deep convolutional neural network based medical image classification for disease diagnosis.J. Big Data20196110.1186/s40537‑019‑0276‑2
    [Google Scholar]
  54. SeethaJ. RajaS.S. Brain tumor classification using convolutional neural networks.Biomed. Pharmacol. J.20181131457146110.13005/bpj/1511
    [Google Scholar]
  55. AriA. HanbayD. Deep learning based brain tumor classification and detection system.Turk. J. Electr. Eng. Comput. Sci.20182652275228610.3906/elk‑1801‑8
    [Google Scholar]
  56. ÖzyurtF. SertE. Brain tumor detection based on Convolutional Neural Network with neutrosophic expert maximum fuzzy sure entropy.Meas. J. Int. Meas. Confed.201914710683010.1016/j.measurement.2019.07.058
    [Google Scholar]
  57. SajjadM. KhanS. Multi-grade brain tumor classification using deep CNN with extensive data augmentation.J. Comput. Sci.20193017418210.1016/j.jocs.2018.12.003
    [Google Scholar]
  58. HaoR. NamdarK. LiuL. KhalvatiF. A transfer learning-based active learning framework for brain tumor classification.Front. Artif. Intell.2021463576610.3389/frai.2021.63576634079932
    [Google Scholar]
  59. KhanM.S.I. RahmanA. DebnathT. KarimM.R. NasirM.K. BandS.S. MosaviA. DehzangiI. Accurate brain tumor detection using deep convolutional neural network.Comput. Struct. Biotechnol. J.2022204733474510.1016/j.csbj.2022.08.03936147663
    [Google Scholar]
  60. BhardwajN. SoodM. GillS.S. Data pre-processing techniques for brain tumor classification.Innovations in VLSI, Signal Processing and Computational Technologies. WREC 2023. Lecture Notes in Electrical Engineering. MehtaG. WickramasingheN. KakkarD. SingaporeSpringer20241095
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056288248240309044616
Loading
/content/journals/cmir/10.2174/0115734056288248240309044616
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test