Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) is considered a potential marker of hepatic fibrosis (HF).

Objective

To explore the influencing factors of repeatability and reliability in IVIM-DWI parameters of ROI-based liver segments in participants with HF and healthy volunteers (HV) and to assess the diagnostic efficiency of these parameters in HF.

Methods

Participants with early HF (EHF, n=59) or advanced HF (AHF, n=38) and HV (n=48) were recruited. Two examiners measured IVIM data using mono-, bi-exponential and stretched exponential models. The results and influencing factors of repeatability and reliability of IVIM-DWI, and the diagnostic efficiency were analyzed.

Results

The repeatability of D* (CV: 26.62–41.47%) and DDC (CV: 18.01–34.40%) was poor, the repeatability of ADC (CV: 4.95–9.76%), D (CV: 7.09–15.52%), (CV: 9.35–17.15%), and α (CV: 7.48–13.81%) was better; ordered logistic regression showed statistically significant results of IVIM-derived parameters; the reliability showed no obvious trend, and ordered logistic regression showed statistically significant results of IVIM-derived parameters, groups, and partial hepatic segments (all <0.001). IVIM-derived parameters with relatively good repeatability (CV<20%) and reliability (ICC>0.4) were used to establish regression models for differential diagnosis. The AUC of regression models was 0.744–0.783 (EHF . AHF), but no statistically significant parameters were found in the HV F comparison.

Conclusion

IVIM-derived parameters were the most important factors affecting the repeatability and reliability, while staging of HF and hepatic segments may be the influencing factors of reliability. IVIM-derived parameters showed medium diagnostic efficiency in distinguishing between EHF and AHF.

Trial Registration

Registered on Clinical Trial Management Public Platform (registration code: ChiCTR2100052114, date: 17th Oct. 2021).

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056288517240221113847
2024-01-01
2025-06-21
The full text of this item is not currently available.

References

  1. DonatoH. FrançaM. CandeláriaI. Caseiro-AlvesF. Liver MRI: From basic protocol to advanced techniques.Eur. J. Radiol.201793303910.1016/j.ejrad.2017.05.02828668428
    [Google Scholar]
  2. ZhangL. MengL. LiuB. ZhangY. ZhuH. CuiJ. SunA. HuY. JinJ. JiangH. ZhangX. LiY. LiuL. ZhangW. LiuX. GuJ. QiaoJ. OuyangG. LiuX. LuoJ. JiangM. XieX. LiJ. ZhaoC. ZhangM. YangT. WangJ. Flumatinib versus imatinib for newly diagnosed chronic phase chronic myeloid leukemia: A Phase III, randomized, open-label, multi-center FESTnd Study.Clin. Cancer Res.2021271707710.1158/1078‑0432.CCR‑20‑160032928796
    [Google Scholar]
  3. CongX. ZhangJ. XuX. ZhangM. ChenY. Renal epithelioid angiomyolipoma: Magnetic resonance imaging characteristics.Abdom. Radiol.201843102756276310.1007/s00261‑018‑1548‑629525877
    [Google Scholar]
  4. WooS. SuhC.H. KimS.Y. ChoJ.Y. KimS.H. Head-to-head comparison between high- and standard-b-value dwi for detecting prostate cancer: A systematic review and meta-analysis.AJR Am. J. Roentgenol.201821019110010.2214/AJR.17.1848028952806
    [Google Scholar]
  5. Le BihanD. What can we see with IVIM MRI?Neuroimage2019187566710.1016/j.neuroimage.2017.12.06229277647
    [Google Scholar]
  6. Szubert-FranczakA.E. Naduk-OstrowskaM. PasiczK. PodgórskaJ. SkrzyńskiW. CieszanowskiA. Intravoxel incoherent motion magnetic resonance imaging: Basic principles and clinical applications.Pol. J. Radiol.202085162463510.5114/pjr.2020.10147633376564
    [Google Scholar]
  7. TosunM. OnalT. UsluH. AlparslanB. Çetin AkhanS. Intravoxel incoherent motion imaging for diagnosing and staging the liver fibrosis and inflammation.Abdom. Radiol.2020451152310.1007/s00261‑019‑02300‑z31705248
    [Google Scholar]
  8. SandrasegaranK. TerritoP. ElkadyR.M. LinY. GasparisP. BorthakurG. LinC. Does intravoxel incoherent motion reliably stage hepatic fibrosis, steatosis, and inflammation?Abdom. Radiol.201843360060610.1007/s00261‑017‑1263‑828828711
    [Google Scholar]
  9. RenH. LiuY. LuJ. AnW. WangW. YanT. LiY. DongJ. CaiJ. Evaluating the clinical value of MRI multi-model diffusion-weighted imaging on liver fibrosis in chronic hepatitis B patients.Abdom. Radiol.20214641552156110.1007/s00261‑020‑02806‑x33051757
    [Google Scholar]
  10. LiT. Che-NordinN. WángY.X.J. RongP.F. QiuS.W. ZhangS.W. ZhangP. JiangY.F. ChevallierO. ZhaoF. XiaoX.Y. WangW. Intravoxel incoherent motion derived liver perfusion/diffusion readouts can be reliable biomarker for the detection of viral hepatitis B induced liver fibrosis.Quant. Imaging Med. Surg.20199337138510.21037/qims.2019.02.1131032185
    [Google Scholar]
  11. LeeY. LeeS.S. KimN. KimE. KimY.J. YunS.C. KühnB. KimI.S. ParkS.H. KimS.Y. LeeM.G. Intravoxel incoherent motion diffusion-weighted MR imaging of the liver: Effect of triggering methods on regional variability and measurement repeatability of quantitative parameters.Radiology2015274240541510.1148/radiol.1414075925232802
    [Google Scholar]
  12. ScheuerP.J. Classification of chronic viral hepatitis: a need for reassessment.J. Hepatol.199113337237410.1016/0168‑8278(91)90084‑O1808228
    [Google Scholar]
  13. BennettK.M. SchmaindaK.M. BennettR.T. RoweD.B. LuH. HydeJ.S. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model.Magn. Reson. Med.200350472773410.1002/mrm.1058114523958
    [Google Scholar]
  14. Le BihanD. BretonE. LallemandD. AubinM.L. VignaudJ. Laval-JeantetM. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging.Radiology1988168249750510.1148/radiology.168.2.33936713393671
    [Google Scholar]
  15. SeoN. ChungY.E. ParkY.N. KimE. HwangJ. KimM.J. Liver fibrosis: Stretched exponential model outperforms mono-exponential and bi-exponential models of diffusion-weighted MRI.Eur. Radiol.20182872812282210.1007/s00330‑017‑5292‑z29404771
    [Google Scholar]
  16. CouinaudC. [Graft of the jejuno-ileum in man. Study of surgical possibilities. I. Anatomical and physiological considerations].J. Chir. 19659053894065855693
    [Google Scholar]
  17. KakiteS. DyvorneH. BesaC. CooperN. FacciutoM. DonnerhackC. TaouliB. Hepatocellular carcinoma: Short‐term reproducibility of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0T.J. Magn. Reson. Imaging201541114915610.1002/jmri.2453824415565
    [Google Scholar]
  18. LeclerA. SavatovskyJ. BalvayD. ZmudaM. SadikJ.C. GalatoireO. CharbonneauF. BergèsO. PicardH. FournierL. Repeatability of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0 Tesla in orbital lesions.Eur. Radiol.201727125094510310.1007/s00330‑017‑4933‑628677061
    [Google Scholar]
  19. AmornsiripanitchN. NguyenV.T. RahbarH. HippeD.S. GadiV.K. RendiM.H. PartridgeS.C. Diffusion‐weighted MRI characteristics associated with prognostic pathological factors and recurrence risk in invasive ER+/HER2– breast cancers.J. Magn. Reson. Imaging201848122623610.1002/jmri.2590929178616
    [Google Scholar]
  20. ChevallierO. ZhouN. HeJ. LoffroyR. WángY.X.J. Removal of evidential motion-contaminated and poorly fitted image data improves IVIM diffusion MRI parameter scan–rescan reproducibility.Acta Radiol.201859101157116710.1177/028418511875694929430937
    [Google Scholar]
  21. YoonJ.H. LeeJ.M. LeeK.B. KimD. KabasawaH. HanJ.K. Comparison of monoexponential, intravoxel incoherent motion diffusion-weighted imaging and diffusion kurtosis imaging for assessment of hepatic fibrosis.Acta Radiol.201960121593160110.1177/028418511984021930935212
    [Google Scholar]
  22. FuF. LiX. ChenC. BaiY. LiuQ. ShiD. SangJ. WangK. WangM. Non-invasive assessment of hepatic fibrosis: Comparison of MR elastography to transient elastography and intravoxel incoherent motion diffusion-weighted MRI.Abdom. Radiol.2020451738210.1007/s00261‑019‑02140‑x31372777
    [Google Scholar]
  23. ZawadaE. SerafinZ. DybowskaD. HalotaW. WypychA. NadolskaK. RusakG. Monoexponential and biexponential fitting of diffusional magnetic resonance imaging signal analysis for prediction of liver fibrosis severity.J. Comput. Assist. Tomogr.201943685786210.1097/RCT.000000000000093731738209
    [Google Scholar]
  24. HuF. YangR. HuangZ. WangM. ZhangH. YanX. SongB. Liver fibrosis: In vivo evaluation using intravoxel incoherent motion-derived histogram metrics with histopathologic findings at 3.0 T.Abdom. Radiol. (N.Y.)201742122855286310.1007/s00261‑017‑1208‑228624925
    [Google Scholar]
  25. FrançaM. Martí-BonmatíL. Alberich-BayarriÁ. OliveiraP. GuimaraesS. OliveiraJ. AmorimJ. GonzalezJ.S. VizcaínoJ.R. MirandaH.P. Evaluation of fibrosis and inflammation in diffuse liver diseases using intravoxel incoherent motion diffusion-weighted MR imaging.Abdom. Radiol.201742246847710.1007/s00261‑016‑0899‑027638516
    [Google Scholar]
  26. ChungS.R. LeeS.S. KimN. YuE.S. KimE. KühnB. KimI.S. Intravoxel incoherent motion MRI for liver fibrosis assessment: A pilot study.Acta Radiol.201556121428143610.1177/028418511455976325414372
    [Google Scholar]
  27. WuC.H. HoM.C. JengY.M. LiangP.C. HuR.H. LaiH.S. ShihT.T.F. Assessing hepatic fibrosis: Comparing the intravoxel incoherent motion in MRI with acoustic radiation force impulse imaging in US.Eur. Radiol.201525123552355910.1007/s00330‑015‑3774‑425991478
    [Google Scholar]
  28. IchikawaS. MotosugiU. MorisakaH. SanoK. IchikawaT. EnomotoN. MatsudaM. FujiiH. OnishiH. MRI-based staging of hepatic fibrosis: Comparison of intravoxel incoherent motion diffusion-weighted imaging with magnetic resonance elastography.J. Magn. Reson. Imaging201542120421010.1002/jmri.2476025223820
    [Google Scholar]
  29. ParenteD.B. PaivaF.F. Oliveira NetoJ.A. Machado-SilvaL. FigueiredoF.A.F. LanzoniV. CamposC.F.F. do BrasilP.E.A.A. GomesM.B. PerezR.M. RodriguesR.S. Intravoxel incoherent motion diffusion weighted MR imaging at 3.0 T: Assessment of steatohepatitis and fibrosis compared with liver biopsy in type 2 diabetic patients.PLoS One2015105e012565310.1371/journal.pone.012565325961735
    [Google Scholar]
  30. CuiyunC. BinW. DapengS. FangfangF. JiliangZ. ZejunW. ShaochengZ. JunlingX. QingL. JingL. SheweiD. Initial study of biexponential model of intravoxel incoherent motion magnetic resonance imaging in evaluation of the liver fibrosis.Chin. Med. J.2014127173082308710.3760/cma.j.issn.0366‑6999.2014034625189949
    [Google Scholar]
  31. GuidoM. RuggeM. Liver biopsy sampling in chronic viral hepatitis.Semin. Liver Dis.2004241899710.1055/s‑2004‑82310315085489
    [Google Scholar]
  32. SchianoT. AzeemS. BodianC. BodenheimerH.Jr MeratiS. ThungS. HytiroglouP. Importance of specimen size in accurate needle liver biopsy evaluation of patients with chronic hepatitis C.Clin. Gastroenterol. Hepatol.20053993093510.1016/S1542‑3565(05)00541‑016234033
    [Google Scholar]
  33. RousseletM.C. MichalakS. DupréF. CrouéA. BedossaP. Saint-AndréJ.P. CalèsP. Hepatitis Network 49 Sources of variability in histological scoring of chronic viral hepatitis.Hepatology200541225726410.1002/hep.2053515660389
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056288517240221113847
Loading
/content/journals/cmir/10.2174/0115734056288517240221113847
Loading

Data & Media loading...

Supplements

Supplementary material is available on the Publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test