Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background:

Glutamine Synthetase (GS) could induce vascular sprouting through the improvement of endothelial cell migration in inflammatory diseases. MR vessel-size imaging has been proposed as a valuable approach for visualizing the underlying angiogenic processes in the brain.

Objective:

This study aims to investigate the role of GS in the neovascularization of gliomas through the utilization of MR vessel-size imaging and histopathological techniques.

Methods:

In this exploratory animal study, we randomly divided the C6 glioma rat models into a control group and an L-methionine sulfoximine (MSO) treatment group. Daily intraperitoneal injections were administered for three consecutive days, starting from day 10 following the implantation of C6 glioma cells in rats. Subsequently, MR vessel size imaging was conducted using a BRUKER 7 T/200 mm MRI scanner, and the MRI results were validated through histopathological examination.

Results:

A significant decrease in microvessel density was observed in both the tumor periphery and center areas in the MSO treatment group compared to that in the control group. The mean vessel diameter (mVD) and vessel size index (VSI) did not exhibit significant changes compared to the control group. Moreover, the staining intensity of platelet endothelial cell adhesion molecule-1 (CD31) and GS in the tumor periphery was significantly decreased in the MSO treatment group. Additionally, the MSO treatment demonstrated a substantial inhibition of tumor growth.

Conclusion:

GS inhibitors significantly reduced angiogenesis in the periphery area of C6 glioma, exerting an inhibitory effect on tumor progression. Thus, GS inhibitors could be potential therapeutic agents for treating glioma. Additionally, MR vessel size imaging detects changes in vascular-related parameters after tumor treatment, making it a promising method for detecting neovascularization in glioma.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056287859240319062720
2024-03-27
2025-06-21
The full text of this item is not currently available.

References

  1. AlexanderB.M. CloughesyT.F. Adult glioblastoma.J. Clin. Oncol.201735212402240910.1200/JCO.2017.73.011928640706
    [Google Scholar]
  2. LeBlancV.G. TrinhD.L. AslanpourS. HughesM. LivingstoneD. JinD. AhnB.Y. BloughM.D. CairncrossJ.G. ChanJ.A. KellyJ.J.P. MarraM.A. Single-cell landscapes of primary glioblastomas and matched explants and cell lines show variable retention of inter- and intratumor heterogeneity.Cancer Cell2022404379392.e910.1016/j.ccell.2022.02.01635303420
    [Google Scholar]
  3. WuA.C. YangW.B. ChangK.Y. LeeJ.S. LiouJ.P. SuR.Y. ChengS.M. HwangD.Y. KikkawaU. HsuT.I. WangC.Y. ChangW.C. ChenP.Y. ChuangJ.Y. HDAC6 involves in regulating the lncRNA-microRNA-mRNA network to promote the proliferation of glioblastoma cells.J. Exp. Clin. Cancer Res.20224114710.1186/s13046‑022‑02257‑w35109908
    [Google Scholar]
  4. ZouR. ZhongX. LiangK. ZhiC. ChenD. XuZ. ZhangJ. LiaoD. LaiM. WengY. PengH. PangX. JiY. KeY. ZhangH. WangZ. WangY. Elevated LILRB1 expression predicts poor prognosis and is associated with tumor immune infiltration in patients with glioma.BMC Cancer202323140310.1186/s12885‑023‑10906‑237142967
    [Google Scholar]
  5. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  6. RongL. LiN. ZhangZ. Emerging therapies for glioblastoma: Current state and future directions.J. Exp. Clin. Cancer Res.202241114210.1186/s13046‑022‑02349‑735428347
    [Google Scholar]
  7. LeeE. LeeE.A. KongE. ChonH. CondoriL.M. ParkC.H. ParkB.Y. KangN.R. YooJ.S. LeeH.S. KimH.S. ParkS.H. ChoiS.W. VestweberD. LeeJ.H. KimP. LeeW.S. KimI. An agonistic anti-Tie2 antibody suppresses the normal-to-tumor vascular transition in the glioblastoma invasion zone.Exp. Mol. Med.202355247048410.1038/s12276‑023‑00939‑936828931
    [Google Scholar]
  8. ZhangX.N. YangK.D. ChenC. HeZ.C. WangQ.H. FengH. LvS.Q. WangY. MaoM. LiuQ. TanY.Y. WangW.Y. LiT.R. CheL.R. QinZ.Y. WuL.X. LuoM. LuoC.H. LiuY.Q. YinW. WangC. GuoH.T. LiQ.R. WangB. ChenW. WangS. ShiY. BianX.W. PingY.F. Pericytes augment glioblastoma cell resistance to temozolomide through CCL5-CCR5 paracrine signaling.Cell Res.202131101072108710.1038/s41422‑021‑00528‑334239070
    [Google Scholar]
  9. LombardiG. De SalvoG.L. BrandesA.A. EoliM. RudàR. FaediM. LolliI. PaceA. DanieleB. PasqualettiF. RizzatoS. BelluL. PambukuA. FarinaM. MagniG. IndraccoloS. GardimanM.P. SoffiettiR. ZagonelV. Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): A multicentre, open-label, randomised, controlled, phase 2 trial.Lancet Oncol.201920111011910.1016/S1470‑2045(18)30675‑230522967
    [Google Scholar]
  10. WangZ. YuanY. JiX. XiaoX. LiZ. YiX. ZhuY. GuoT. WangY. ChenL. LiuY. The Hippo-TAZ axis mediates vascular endothelial growth factor C in glioblastoma-derived exosomes to promote angiogenesis.Cancer Lett.202151311310.1016/j.canlet.2021.05.00234010715
    [Google Scholar]
  11. JainR.K. Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy.Science20053075706586210.1126/science.110481915637262
    [Google Scholar]
  12. ParkJ.S. KimI.K. HanS. ParkI. KimC. BaeJ. OhS.J. LeeS. KimJ.H. WooD.C. HeY. AugustinH.G. KimI. LeeD. KohG.Y. Normalization of tumor vessels by tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment.Cancer Cell201630695396710.1016/j.ccell.2016.10.01827960088
    [Google Scholar]
  13. BerteroT. OldhamW.M. CottrillK.A. PisanoS. VanderpoolR.R. YuQ. ZhaoJ. TaiY. TangY. ZhangY.Y. RehmanS. SugaharaM. QiZ. GorcsanJ.III VargasS.O. SaggarR. SaggarR. WallaceW.D. RossD.J. HaleyK.J. WaxmanA.B. ParikhV.N. De MarcoT. HsueP.Y. MorrisA. SimonM.A. NorrisK.A. GaggioliC. LoscalzoJ. FesselJ. ChanS.Y. Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension.J. Clin. Invest.201612693313333510.1172/JCI8638727548520
    [Google Scholar]
  14. WangZ. YemanyiF. BlomfieldA.K. BoraK. HuangS. LiuC.H. BrittonW.R. ChoS.S. TomitaY. FuZ. MaJ. LiW. ChenJ. Amino acid transporter SLC38A5 regulates developmental and pathological retinal angiogenesis.eLife202211e73105e7310510.7554/eLife.7310536454214
    [Google Scholar]
  15. BerlickiL. Inhibitors of glutamine synthetase and their potential application in medicine.Mini Rev. Med. Chem.20088986987810.2174/13895570878513280018691144
    [Google Scholar]
  16. MengaA. SerraM. TodiscoS. Riera-DomingoC. AmmarahU. EhlingM. PalmieriE.M. Di NoiaM.A. GissiR. FaviaM. PierriC.L. PorporatoP.E. CastegnaA. MazzoneM. Glufosinate constrains synchronous and metachronous metastasis by promoting anti‐tumor macrophages.EMBO Mol. Med.20201210e1121010.15252/emmm.20191121032885605
    [Google Scholar]
  17. EelenG. DuboisC. CantelmoA.R. GoveiaJ. BrüningU. DeRanM. JarugumilliG. van RijsselJ. SaladinoG. ComitaniF. ZecchinA. RochaS. ChenR. HuangH. VandekeereS. KaluckaJ. LangeC. RodriguezM.F. CruysB. TrepsL. RamerL. VinckierS. BrepoelsK. WynsS. SouffreauJ. SchoonjansL. LamersW.H. WuY. HaustraeteJ. HofkensJ. LiekensS. CubbonR. GhesquièreB. DewerchinM. GervasioF.L. LiX. van BuulJ.D. WuX. CarmelietP. Role of glutamine synthetase in angiogenesis beyond glutamine synthesis.Nature20185617721636910.1038/s41586‑018‑0466‑730158707
    [Google Scholar]
  18. PalmieriE.M. MengaA. Martín-PérezR. QuintoA. Riera-DomingoC. De TullioG. HooperD.C. LamersW.H. GhesquièreB. McVicarD.W. GuariniA. MazzoneM. CastegnaA. Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis.Cell Rep.20172071654166610.1016/j.celrep.2017.07.05428813676
    [Google Scholar]
  19. ChiuM. TarditoS. PillozziS. ArcangeliA. ArmentoA. UggeriJ. MissaleG. BianchiM.G. BarilliA. Dall’AstaV. CampaniniN. SiliniE.M. FuchsJ. EbingerA.S. BussolatiO. Glutamine depletion by crisantaspase hinders the growth of human hepatocellular carcinoma xenografts.Br. J. Cancer201411161159116710.1038/bjc.2014.42525072259
    [Google Scholar]
  20. HirschlerL. SollmannN. Schmitz-AbecassisB. PintoJ. ArzanforooshF. BarkhofF. BoothT. Calvo-ImirizalduM. CassiaG. ChmelikM. ClementP. ErcanE. Fernández-SearaM.A. FurtnerJ. Fuster-GarciaE. Grech-SollarsM. GuvenN.T. HatayG.H. KaramiG. KeilV.C. KimM. KoekkoekJ.A.F. KukranS. ManciniL. NechiforR.E. ÖzcanA. Ozturk-IsikE. PiskinS. SchmaindaK. SvenssonS.F. TsengC.H. UnnikrishnanS. VosF. WarnertE. ZhaoM.Y. JancalekR. NunesT. EmblemK.E. SmitsM. PetrJ. HangelG. Advanced MR techniques for preoperative glioma characterization: Part 1.J. Magn. Reson. Imaging20235761655167510.1002/jmri.2866236866773
    [Google Scholar]
  21. XuC. SchmidtW.U.H. VillringerK. BruneckerP. KiselevV. GallP. FiebachJ.B. Vessel size imaging reveals pathological changes of microvessel density and size in acute ischemia.J. Cereb. Blood Flow Metab.20113181687169510.1038/jcbfm.2011.3821468091
    [Google Scholar]
  22. LemassonB. ValableS. FarionR. KrainikA. RémyC. BarbierE.L. In vivo imaging of vessel diameter, size, and density: A comparative study between MRI and histology.Magn. Reson. Med.2013691182610.1002/mrm.2421822431289
    [Google Scholar]
  23. XuX. MengT. WenQ. TaoM. WangP. ZhongK. ShenY. Dynamic changes in vascular size and density in transgenic mice with Alzheimer’s disease.Aging20201217172241723410.18632/aging.10367232908022
    [Google Scholar]
  24. TroprèsI. GrimaultS. VaethA. GrillonE. JulienC. PayenJ.F. LamalleL. DécorpsM. Vessel size imaging.Magn. Reson. Med.200145339740810.1002/1522‑2594(200103)45:3<397::AID‑MRM1052>3.0.CO;2‑311241696
    [Google Scholar]
  25. YanH. MiX. MidgleyA.C. DuX. HuangZ. WeiT. LiuR. MaT. ZhiD. ZhuD. WangT. FengG. ZhaoY. ZhangW. HeJ. ZhuM. KongD. WangK. Targeted repair of vascular injury by adipose‐derived stem cells modified with p‐selectin binding peptide.Adv. Sci.2020711190351610.1002/advs.20190351632537407
    [Google Scholar]
  26. EngelholmL.H. RiazA. SerraD. HansenD.F. JohansenJ.V. RugiuS.E. HansenS.H. NiolaF. FrödinM. CRISPR/Cas9 engineering of adult mouse liver demonstrates that the Dnajb1–Prkaca gene fusion is sufficient to induce tumors resembling fibrolamellar hepatocellular carcinoma.Gastroenterology2017153616621673.e1010.1053/j.gastro.2017.09.00828923495
    [Google Scholar]
  27. AndersenJ.V. SchousboeA. Glial glutamine homeostasis in health and disease.Neurochem. Res.20234841100112810.1007/s11064‑022‑03771‑136322369
    [Google Scholar]
  28. KimB. LiJ. JangC. AranyZ. Glutamine fuels proliferation but not migration of endothelial cells.EMBO J.201736162321233310.15252/embj.20179643628659379
    [Google Scholar]
  29. HuangH. VandekeereS. KaluckaJ. BierhanslL. ZecchinA. BrüningU. VisnagriA. YuldashevaN. GoveiaJ. CruysB. BrepoelsK. WynsS. RayportS. GhesquièreB. VinckierS. SchoonjansL. CubbonR. DewerchinM. EelenG. CarmelietP. Role of glutamine and interlinked asparagine metabolism in vessel formation.EMBO J.201736162334235210.15252/embj.20169551828659375
    [Google Scholar]
  30. CheungK.C.P. FantiS. MauroC. WangG. NairA.S. FuH. AngelettiS. SpotoS. FogolariM. RomanoF. AksentijevicD. LiuW. LiB. ChengL. JiangL. VuononvirtaJ. PoobalasingamT.R. SmithD.M. CiccozziM. SolitoE. Marelli-BergF.M. Preservation of microvascular barrier function requires CD31 receptor-induced metabolic reprogramming.Nat. Commun.2020111359510.1038/s41467‑020‑17329‑832681081
    [Google Scholar]
  31. TarditoS. OudinA. AhmedS.U. FackF. KeunenO. ZhengL. MileticH. SakariassenP.Ø. WeinstockA. WagnerA. LindsayS.L. HockA.K. BarnettS.C. RuppinE. MørkveS.H. Lund-JohansenM. ChalmersA.J. BjerkvigR. NiclouS.P. GottliebE. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma.Nat. Cell Biol.201517121556156810.1038/ncb327226595383
    [Google Scholar]
  32. UnterluggauerH. MazurekS. LenerB. HütterE. EigenbrodtE. ZwerschkeW. Jansen-DürrP. Premature senescence of human endothelial cells induced by inhibition of glutaminase.Biogerontology20089424725910.1007/s10522‑008‑9134‑x18317946
    [Google Scholar]
  33. Marin-ValenciaI. YangC. MashimoT. ChoS. BaekH. YangX.L. RajagopalanK.N. MaddieM. VemireddyV. ZhaoZ. CaiL. GoodL. TuB.P. HatanpaaK.J. MickeyB.E. MatésJ.M. PascualJ.M. MaherE.A. MalloyC.R. DeBerardinisR.J. BachooR.M. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo.Cell Metab.201215682783710.1016/j.cmet.2012.05.00122682223
    [Google Scholar]
  34. ZidlikV. BrychtovaS. UvirovaM. ZiakD. DvorackovaJ. The changes of angiogenesis and immune cell infiltration in the intra- and peri-tumoral melanoma microenvironment.Int. J. Mol. Sci.201516127876788910.3390/ijms1604787625913374
    [Google Scholar]
  35. KatoT. KimuraT. IshiiN. FujiiA. YamamotoK. KameokaS. NishikawaT. KasajimaT. The methodology of quantitation of microvessel density and prognostic value of neovascularization associated with long-term survival in Japanese patients with breast cancer.Breast Cancer Res. Treat.1999531193110.1023/A:100619302438210206069
    [Google Scholar]
  36. MiyagamiM. KatayamaY. Angiogenesis of glioma: Evaluation of ultrastructural characteristics of microvessels and tubular bodies (Weibel?Palade) in endothelial cells and immunohistochemical findings with VEGF and p53 protein.Med. Mol. Morphol.2005381364210.1007/s00795‑004‑0273‑016158178
    [Google Scholar]
  37. HahnA. BodeJ. KrüwelT. SoleckiG. HeilandS. BendszusM. TewsB. WinklerF. BreckwoldtM.O. KurzF.T. Glioblastoma multiforme restructures the topological connectivity of cerebrovascular networks.Sci. Rep.2019911175710.1038/s41598‑019‑47567‑w31409816
    [Google Scholar]
  38. VajkoczyP. SchillingL. UllrichA. SchmiedekP. MengerM.D. Characterization of angiogenesis and microcirculation of high-grade glioma: An intravital multifluorescence microscopic approach in the athymic nude mouse.J. Cereb. Blood Flow Metab.199818551052010.1097/00004647‑199805000‑000069591843
    [Google Scholar]
  39. ChoiH.I. RyuC.W. KimS. RheeH.Y. JahngG.H. Changes in microvascular morphology in subcortical vascular dementia: A study of vessel size magnetic resonance imaging.Front. Neurol.20201154545054545010.3389/fneur.2020.54545033192974
    [Google Scholar]
  40. ArzanforooshF. van der VoortS.R. IncekaraF. VincentA. Van den BentM. KrosJ.M. SmitsM. WarnertE.A.H. Microvasculature features derived from hybrid EPI MRI in non-enhancing adult-type diffuse glioma subtypes.Cancers2023157213510.3390/cancers1507213537046796
    [Google Scholar]
  41. ChakhoyanA. YaoJ. LeuK. PopeW.B. SalamonN. YongW. LaiA. NghiemphuP.L. EversonR.G. PrinsR.M. LiauL.M. NathansonD.A. CloughesyT.F. EllingsonB.M. Validation of vessel size imaging (VSI) in high-grade human gliomas using magnetic resonance imaging, image-guided biopsies, and quantitative immunohistochemistry.Sci. Rep.201991284610.1038/s41598‑018‑37564‑w30808879
    [Google Scholar]
  42. FriegB. GörgB. HomeyerN. KeitelV. HäussingerD. GohlkeH. Molecular mechanisms of glutamine synthetase mutations that lead to clinically relevant pathologies.PLOS Comput. Biol.2016122e100469310.1371/journal.pcbi.100469326836257
    [Google Scholar]
  43. FanS. WangY. ZhangZ. LuJ. WuZ. ShanQ. SunC. WuD. LiM. ShengN. XieY. ZhengY. High expression of glutamate‐ammonia ligase is associated with unfavorable prognosis in patients with ovarian cancer.J. Cell. Biochem.201811976008601510.1002/jcb.2679729575012
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056287859240319062720
Loading
/content/journals/cmir/10.2174/0115734056287859240319062720
Loading

Data & Media loading...

Supplements

Supplementary material is available on the Publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test