Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Diffusion Magnetic Resonance Imaging (MRI) is a useful method to evaluate tumor biology and tumor microstructure. The apparent diffusion coefficient (ADC) value correlates negatively with the cellular density of the tumor.

Objective

This study aimed to investigate the effectiveness of the ADC histogram analysis in showing the relationship between breast cancer prognostic factors and ADC parameters.

Methods

This study is a retrospective observational descriptive study. ADC histogram parameters were evaluated in all tumor volumes of 67 breast cancer patients. Minimum, 5, 10, 25, 50, 75, 90, 95 percentiles, maximum, mean, median ADC values, kurtosis, and skewness were calculated. Breast MRI examinations were performed on a 3T MR scanner. We evaluated the fibroglandular tissue density of bilateral breasts, background enhancement, localization of masses, multifocality-multicentricity, shape, rim, internal contrast enhancement, and kinetic curve on breast MRI. BI-RADS scoring was performed according to breast MRI. Pathologically, histologic type, histologic grade, HER 2, Ki 67, ER-, and PR status were evaluated.

Results

A significant correlation was found between tumor volume and ADC scores. There is a significant correlation between min ADC values (p< 0.031), max ADC (p< 0.001), and skewness (p< 0.019). A significant correlation was found between tumor kurtosis and lymph nodes (p< 0.029). There was a significant difference in ADC , ADC, ADC, ADC, ADC, ADC, ADC and ADC values depending on ER-and PR-status. (for ER p = 0.004, p = 0.018, p = 0.010, p = 0.008, p = 0.004, p = 0.004, p = 0.02, p = 0.02 and p = 0.038, for PR p < 0.001, p = 0.028, p = 0.011, p = 0.001, p < 0.001, p =<0.001, p < 0.001, and p < 0.001, respectively; p < 0.05). These values were lower in ER-and PR-positive status than in ER-and PR-negative receptor status. According to HER2 status, there was a statistically significant difference in ADC and measurements of the lesions (p = 0.041; p < 0.05). Our study found no significant correlation between other prognostic factors, such as histological grade, Ki-67 indices, and ADC values.

Conclusion

Our study found a significant difference between tumor volume, ER- and, PR status, HER2, and lymph node involvement, and some ADC values among prognostic factors for breast cancer. Furthermore, ADC histogram analysis can provide additional value in predicting some prognostic factors.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056271069231221094118
2024-01-01
2025-06-24
The full text of this item is not currently available.

References

  1. KimE.J. KimS.H. ParkG.E. KangB.J. SongB.J. KimY.J. LeeD. AhnH. KimI. SonY.H. GrimmR. Histogram analysis of apparent diffusion coefficient at 3.0t: Correlation with prognostic factors and subtypes of invasive ductal carcinoma.J. Magn. Reson. Imaging20154261666167810.1002/jmri.2493425919239
    [Google Scholar]
  2. LiuH. ZongM. WeiH. WangC. LouJ. WangS. ZouQ. JiangY. Added value of histogram analysis of apparent diffusion coefficient maps for differentiating triple-negative breast cancer from other subtypes of breast cancer on standard MRI.Cancer Manag. Res.2019118239824710.2147/CMAR.S21058331564982
    [Google Scholar]
  3. CostantiniM. BelliP. RinaldiP. BufiE. GiardinaG. FranceschiniG. PetroneG. BonomoL. Diffusion-weighted imaging in breast cancer: Relationship between apparent diffusion coefficient and tumour aggressiveness.Clin. Radiol.201065121005101210.1016/j.crad.2010.07.00821070905
    [Google Scholar]
  4. JehS.K. KimS.H. KimH.S. KangB.J. JeongS.H. YimH.W. SongB.J. Correlation of the apparent diffusion coefficient value and dynamic magnetic resonance imaging findings with prognostic factors in invasive ductal carcinoma.J. Magn. Reson. Imaging201133110210910.1002/jmri.2240021182127
    [Google Scholar]
  5. KamitaniT. MatsuoY. YabuuchiH. FujitaN. NagaoM. JinnouchiM. YonezawaM. YamasakiY. TokunagaE. KuboM. YamamotoH. YoshiuraT. HondaH. Correlations between apparent diffusion coefficient values and prognostic factors of breast cancer.Magn. Reson. Med. Sci.201312319319910.2463/mrms.2012‑009523857151
    [Google Scholar]
  6. BelliP. CostantiniM. BufiE. GiardinaG.G. RinaldiP. FranceschiniG. BonomoL. Diffusion magnetic resonance imaging in breast cancer characterisation: Correlations between the apparent diffusion coefficient and major prognostic factors.Radiol. Med.2015120326827610.1007/s11547‑014‑0442‑825096888
    [Google Scholar]
  7. RabascoP. CaivanoR. SimeonV. DinardoG. LotumoloA. GioiosoM. VillonioA. IannelliG. D’AntuonoF. ZandolinoA. MacariniL. GuglielmiG. CammarotaA. Can diffusion-weighted imaging and related apparent diffusion coefficient be a prognostic value in women with breast cancer?Cancer Invest.2017352929910.1080/07357907.2016.126774028107084
    [Google Scholar]
  8. SuoS. ZhangK. CaoM. SuoX. HuaJ. GengX. ChenJ. ZhuangZ. JiX. LuQ. WangH. XuJ. Characterization of breast masses as benign or malignant at 3.0T MRI with whole-lesion histogram analysis of the apparent diffusion coefficient.J. Magn. Reson. Imaging201643489490210.1002/jmri.2504326343918
    [Google Scholar]
  9. ChoG.Y. MoyL. KimS.G. BaeteS.H. MoccaldiM. BabbJ.S. SodicksonD.K. SigmundE.E. Evaluation of breast cancer using intravoxel incoherent motion (IVIM) histogram analysis: Comparison with malignant status, histological subtype, and molecular prognostic factors.Eur. Radiol.20162682547255810.1007/s00330‑015‑4087‑326615557
    [Google Scholar]
  10. TanişmanÖ. KiziltepeF.T. YildirimÇ. CoşarZ.S. Prediction of prognostic factors in breast cancer: A noninvasive method utilizing histogram parameters derived from Adc maps.Heliyon202395e1628210.1016/j.heliyon.2023.e1628237251865
    [Google Scholar]
  11. SibelKul Meme Meme manyetik rezonans görüntülemede yeni teknolojiler: Difüzyon görüntüleme ve spektroskopi.J. Turk. Radiol. Seminars.20142129139
    [Google Scholar]
  12. WolffA.C. HammondM.E.H. AllisonK.H. HarveyB.E. ManguP.B. BartlettJ.M.S. BilousM. EllisI.O. FitzgibbonsP. HannaW. JenkinsR.B. PressM.F. SpearsP.A. VanceG.H. VialeG. McShaneL.M. DowsettM. Human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of american pathologists clinical practice guideline focused update.J. Clin. Oncol.201836202105212210.1200/JCO.2018.77.873829846122
    [Google Scholar]
  13. GuoY. KongQ. LiL. TangW. ZhangW. NingG. XueJ. ZhouQ. LiangY. WuM. JiangX. Whole Volume Apparent Diffusion Coefficient (ADC) Histogram as a Quantitative Imaging Biomarker to Differentiate Breast Lesions: Correlation with the Ki-67 Proliferation Index.BioMed Res. Int.202120211910.1155/2021/497026534258262
    [Google Scholar]
  14. IimaM. HondaM. SigmundE.E. Ohno KishimotoA. KataokaM. TogashiK. Diffusion MRI of the breast: Current status and future directions.J. Magn. Reson. Imaging2020521709010.1002/jmri.2690831520518
    [Google Scholar]
  15. SonmezG. CuceF. MutluH. IncedayiM. OzturkE. SildirogluO. VeliogluM. BashekimC.C. KizilkayaE. Value of diffusion-weighted MRI in the differentiation of benign and malign breast lesions.Wien. Klin. Wochenschr.201112321-2265566110.1007/s00508‑011‑0053‑521922210
    [Google Scholar]
  16. HiranoM. SatakeH. IshigakiS. IkedaM. KawaiH. NaganawaS. Diffusion-weighted imaging of breast masses: Comparison of diagnostic performance using various apparent diffusion coefficient parameters.AJR Am. J. Roentgenol.2012198371772210.2214/AJR.11.709322358015
    [Google Scholar]
  17. BougiasH. GhiatasA. PriovolosD. VeliouK. ChristouA. Whole-lesion histogram analysis metrics of the apparent diffusion coefficient as a marker of breast lesions characterization at 1.5 T.Radiography2017232e41e4610.1016/j.radi.2017.02.00228390558
    [Google Scholar]
  18. KunimatsuN. KunimatsuA. UchidaY. MoriI. KiryuS. Whole-lesion histogram analysis of apparent diffusion coefficient for the assessment of non-mass enhancement lesions on breast MRI.J. Clin. Imaging Sci.2022121210.25259/JCIS_201_202135414962
    [Google Scholar]
  19. AhnS.J. ChoiS.H. KimY.J. KimK.G. SohnC.H. HanM.H. ChangK.H. MinH.S. Histogram analysis of apparent diffusion coefficient map of standard and high B-value diffusion MR imaging in head and neck squamous cell carcinoma: A correlation study with histological grade.Acad. Radiol.201219101233124010.1016/j.acra.2012.04.01922818788
    [Google Scholar]
  20. RazekA.A.K.A. GaballaG. DenewerA. NadaN. Invasive ductal carcinoma: correlation of apparent diffusion coefficient value with pathological prognostic factors.NMR Biomed.201023661962310.1002/nbm.150320232453
    [Google Scholar]
  21. ParkM.J. ChaE.S. KangB.J. IhnY.K. BaikJ.H. The role of diffusion-weighted imaging and the apparent diffusion coefficient (ADC) values for breast tumors.Korean J. Radiol.20078539039610.3348/kjr.2007.8.5.39017923781
    [Google Scholar]
  22. ParkE.K. ChoK.R. SeoB.K. WooO.H. ChoS.B. BaeJ.W. Additional value of diffusion-weighted imaging to evaluate prognostic factors of breast cancer: Correlation with the apparent diffusion coefficient.Iran. J. Radiol.2016131e3313310.5812/iranjradiol.3313327127582
    [Google Scholar]
  23. ChoiS.Y. ChangY-W. ParkH.J. KimH.J. HongS.S. SeoD.Y. Correlation of the apparent diffusion coefficiency values on diffusion-weighted imaging with prognostic factors for breast cancer.Br. J. Radiol.2012851016e474e47910.1259/bjr/7938146422128125
    [Google Scholar]
  24. ParkS.H. ChoiH.Y. HahnS.Y. Correlations between apparent diffusion coefficient values of invasive ductal carcinoma and pathologic factors on diffusion‐weighted MRI at 3.0 Tesla.J. Magn. Reson. Imaging201541117518210.1002/jmri.2451924353241
    [Google Scholar]
  25. CipollaV. SantucciD. GuerrieriD. DrudiF.M. MeggioriniM.L. de FeliceC. Correlation between 3 T apparent diffusion coefficient values and grading of invasive breast carcinoma.Eur. J. Radiol.201483122144215010.1016/j.ejrad.2014.09.01525305145
    [Google Scholar]
  26. ChoiY. KimS.H. YounI.K. KangB.J. ParkW. LeeA. Rim sign and histogram analysis of apparent diffusion coefficient values on diffusion-weighted MRI in triple-negative breast cancer: Comparison with ER-positive subtype.PLoS One2017125e017790310.1371/journal.pone.017790328542297
    [Google Scholar]
  27. MartincichL. DeantoniV. BertottoI. RedanaS. KubatzkiF. SarottoI. RossiV. LiottiM. PonzoneR. AgliettaM. ReggeD. MontemurroF. Correlations between diffusion-weighted imaging and breast cancer biomarkers.Eur. Radiol.20122271519152810.1007/s00330‑012‑2403‑822411304
    [Google Scholar]
  28. MoriN. OtaH. MugikuraS. TakasawaC. IshidaT. WatanabeG. TadaH. WatanabeM. TakaseK. TakahashiS. Luminal-type breast cancer: correlation of apparent diffusion coefficients with the Ki-67 labeling index.Radiology20152741667310.1148/radiol.1414028325203132
    [Google Scholar]
  29. Tuan LinhL. Minh DucN. Minh DucN. Tra MyT.T. Viet BangL. Cong TienN. Minh ThongP. Correlations between apparent diffusion coefficient values and histopathologic factors in breast cancer.Clin. Ter.2021172321822433956041
    [Google Scholar]
  30. AydinH. GunerB. Esen BostanciI. BulutZ.M. AribasB.K. DoganL. GulcelikM.A. Is there any relationship between adc values of diffusion-weighted imaging and the histopathological prognostic factors of invasive ductal carcinoma?Br. J. Radiol.20189110842017070510.1259/bjr.2017070529299933
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056271069231221094118
Loading
/content/journals/cmir/10.2174/0115734056271069231221094118
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test