Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Interstitial lung abnormalities (ILA) are associated with further disease progression, increased mortality risk, and decline in lung function in the elderly, which deserves enough attention.

Objective

The objective of this study was to quantify the extent of interstitial lung abnormalities (ILA) in a non-smoking asymptomatic urban cohort in China using low-dose CT (LDCT) and to analyze the age-related pathological changes.

Methods

We retrospectively analyzed clinical data and chest LDCT images from a cohort of 733 subjects who were categorized into 3 groups: 18–39, 40-59, and ≥60 years old according to age. Furthermore, we selected 40 cases of wax-embedded lung tissue blocks archived after pulmonary bullectomy and the same age groups were categorized. Four representative CT signs of ILA, including interlobular septal thickening (ILST), intralobular interstitial thickening (ILIT), ground-glass opacity (GGO), and reticular shadow (RS), were semi-quantified based on the percentage of the affected area. The scores and distribution of four CT signs of ILA were compared between different sex and age groups. The age-related pathological changes were analyzed.

Results

The ILA findings were found predominantly in the lower lobes and the subpleural region. The semi-quantitative scores of four CT signs in all subjects under 40 were 0. However, in subjects over 40 years old, the scores gradually increased with age, although most of them remained low. The size of the alveoli increased, the number of alveoli decreased, the alveolar septum became thinner, and the number of ATII cells increased with age. A statistically significant difference was observed among the different age groups (=50.624, =0.033; =80.000, =0.043; =33.833, =0.000; =13.525, =0.031). The macrophage population and the percentage of collagen fibers in the alveolar septum increased, while the percentage of elastic fibers decreased with age. There was no significant difference among the different age groups (=19.817, =0.506; =52.419, =0. 682; =54.868, =0.518).

Conclusion

When the four CT signs mentioned above are in the upper central area, and the score has a medium or high score, it is crucial to determine the underlying pathological causes. ILA may be the result of chronic lung injury.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056286928240223042225
2024-01-01
2025-05-29
The full text of this item is not currently available.

References

  1. HatabuH. HunninghakeG.M. RicheldiL. BrownK.K. WellsA.U. Remy-JardinM. VerschakelenJ. NicholsonA.G. BeasleyM.B. ChristianiD.C. EstéparS.J.R. SeoJ.B. JohkohT. SverzellatiN. RyersonC.J. BarrG.R. GooJ.M. AustinJ.H.M. PowellC.A. LeeK.S. InoueY. LynchD.A. Interstitial lung abnormalities detected incidentally on CT: A position paper from the fleischner society.Lancet Respir. Med.20208772673710.1016/S2213‑2600(20)30168‑532649920
    [Google Scholar]
  2. ChaeK.J. JinG.Y. GooJ.M. Interstitial lung abnormalities: What radiologists should know.Korean J Radiol202122454463
    [Google Scholar]
  3. PodolanczukA.J. PutmanR.K. Clinical relevance and management of “pre–interstitial lung disease”.Clin. Chest Med.202142224124910.1016/j.ccm.2021.03.00934024400
    [Google Scholar]
  4. ArakiT. PutmanR.K. HatabuH. GaoW. DupuisJ. LatourelleJ.C. NishinoM. ZazuetaO.E. KurugolS. RossJ.C. EstéparS.J.R. SchwartzD.A. RosasI.O. WashkoG.R. O’ConnorG.T. HunninghakeG.M. Development and progression of interstitial lung abnormalities in the framingham heart study.Am. J. Respir. Crit. Care Med.2016194121514152210.1164/rccm.201512‑2523OC27314401
    [Google Scholar]
  5. HataA. SchieblerM.L. LynchD.A. HatabuH. Interstitial lung abnormalities: state of the art.Radiology20213011193410.1148/radiol.202120436734374589
    [Google Scholar]
  6. PutmanR.K. GudmundssonG. AxelssonG.T. HidaT. HondaO. ArakiT. YanagawaM. NishinoM. MillerE.R. EiriksdottirG. GudmundssonE.F. TomiyamaN. HondaH. RosasI.O. WashkoG.R. ChoM.H. SchwartzD.A. GudnasonV. HatabuH. HunninghakeG.M. Imaging patterns are associated with interstitial lung abnormality progression and mortality.Am. J. Respir. Crit. Care Med.2019200217518310.1164/rccm.201809‑1652OC30673508
    [Google Scholar]
  7. SchneiderJ.P. HegermannJ. WredeC. Volume electron microscopy: Analyzing the lung.Histochem. Cell Biol.2021155224126010.1007/s00418‑020‑01916‑332944795
    [Google Scholar]
  8. SubramaniamK. KumarH. TawhaiM.H. Evidence forage-dependent air-space enlargement contributing to loss of lung tissue elastic recoil pressure and increased shear modulus in olderage.J. Appl. Physiol.198520171237987
    [Google Scholar]
  9. GodinL.M. SandriB.J. WagnerD.E. MeyerC.M. PriceA.P. AkinnolaI. WeissD.J. MortariP.A. Decreased laminin expression by human lung epithelial cells and fibroblasts cultured in acellular lung scaffolds from aged mice.PLoS One2016113e015096610.1371/journal.pone.015096626954258
    [Google Scholar]
  10. BrandenbergerC. MühlfeldC. Mechanisms of lung aging.Cell Tissue Res.2017367346948010.1007/s00441‑016‑2511‑x27743206
    [Google Scholar]
  11. GaoZ. LiX. LiY. ZhangC. LiY. SunM. WuY. LiS. ZhangY. Peripheral interstitial lung abnormalities on LDCT in an asymptomatic, nonsmoking Chinese urban cohort.Medicine202310216e3363010.1097/MD.000000000003363037083763
    [Google Scholar]
  12. HansellD.M. BankierA.A. MacMahonH. McLoudT.C. MüllerN.L. RemyJ. Fleischner society: Glossary of terms for thoracic imaging.Radiology2008246369772210.1148/radiol.246207071218195376
    [Google Scholar]
  13. ShimizuT. FujimoriF. ShimaokaY. NaritaJ. TakadaT. TajimaS. MoriyamaH. TeradaM. SuzukiE. GejyoF. Isolation and immunophenotyping of mononuclear cells from human lung tissue.Intern. Med.200746416316910.2169/internalmedicine.46.185717301510
    [Google Scholar]
  14. PrelevicV. AntunovicT. RadunovicD. Gligorovic-BarhanovicN. GledovicB. RatkovicM. JukicN.B. Malnutrition inflammation score (MIS) is stronger predictor of mortality in hemodialysis patients than waist-to-hip ratio (WHR)-4-year follow-up.Int. Urol. Nephrol.202254369570010.1007/s11255‑021‑02954‑z34258671
    [Google Scholar]
  15. LiS. LiY. KongM. ZhangC. GengY. SunM. HeL. LiS. LiuH. Factors associated with age-related changes in non-smoking urban men and women in China determined by low-dose computed tomography imaging.Med. Sci. Monit.202127e93100610.12659/MSM.93100634437515
    [Google Scholar]
  16. HarreiterJ. RodenM. Diabetes mellitus—Definition, classification, diagnosis, screening and prevention (Update 2019).Wien. Klin. Wochenschr.2019131S161510.1007/s00508‑019‑1450‑430980151
    [Google Scholar]
  17. JacobsonT.A. ItoM.K. MakiK.C. OrringerC.E. BaysH.E. JonesP.H. McKenneyJ.M. GrundyS.M. GillE.A. WildR.A. WilsonD.P. BrownW.V. National lipid association recommendations for patient-centered management of dyslipidemia: part 1--full report.J. Clin. Lipidol.20159212916910.1016/j.jacl.2015.02.00325911072
    [Google Scholar]
  18. KarrS. Epidemiology and management of hyperlipidemia.Am. J. Manag. Care201723S9S139S14828978219
    [Google Scholar]
  19. NaeemA. RaiS.N. PierreL. Histology, alveolar macrophages.StatPearlsTreasure Island (FL)StatPearls Publishing2022
    [Google Scholar]
  20. HochheggerB. LangerF.W. IrionK. SouzaA. MoreiraJ. BaldisserottoM. PallaoroY. MullerE. MedeirosT.M. AltmayerS. MarchioriE. Pulmonary acinus: Understanding the computed tomography findings from an acinar perspective.Lung2019197325926510.1007/s00408‑019‑00214‑730900014
    [Google Scholar]
  21. KangE.Y. GrenierP. LaurentF. MüllerN.L. Interlobular septal thickening: Patterns at high-resolution computed tomography.J. Thorac. Imaging199611426026410.1097/00005382‑199623000‑000038892195
    [Google Scholar]
  22. GaoJ.W. RizzoS. MaL.H. QiuX.Y. WarthA. SekiN. HasegawaM. ZouJ.W. LiQ. FemiaM. LvT.F. SongY. Pulmonary ground-glass opacity: Computed tomography features, histopathology and molecular pathology.Transl. Lung Cancer Res.201761687510.21037/tlcr.2017.01.0228331826
    [Google Scholar]
  23. Piñeiro-HermidaS. AutilioC. MartínezP. BoschF. Pérez-GilJ. BlascoM.A. Telomerase treatment prevents lung profibrotic pathologies associated with physiological aging.J. Cell Biol.202021910e20200212010.1083/jcb.20200212032777016
    [Google Scholar]
  24. LynchM.D. WattF.M. Fibroblast heterogeneity: Implications for human disease.J. Clin. Invest.20181281263510.1172/JCI9355529293096
    [Google Scholar]
  25. LeeS. IslamM.N. BoostanpourK. AranD. JinG. ChristensonS. MatthayM.A. EckalbarW.L. DePiantoD.J. ArronJ.R. MageeL. BhattacharyaS. MatsumotoR. KubotaM. FarberD.L. BhattacharyaJ. WoltersP.J. BhattacharyaM. Molecular programs of fibrotic change in aging human lung.Nat. Commun.2021121630910.1038/s41467‑021‑26603‑234728633
    [Google Scholar]
  26. SicardD. HaakA.J. ChoiK.M. CraigA.R. FredenburghL.E. TschumperlinD.J. Aging and anatomical variations in lung tissue stiffness.Am. J. Physiol. Lung Cell. Mol. Physiol.20183146L946L95510.1152/ajplung.00415.201729469613
    [Google Scholar]
  27. ThomasE.T. GuppyM. StrausS.E. BellK.J.L. GlasziouP. Rate of normal lung function decline in ageing adults: A systematic review of prospective cohort studies.BMJ Open201996e02815010.1136/bmjopen‑2018‑02815031248928
    [Google Scholar]
  28. VikgrenJ. BoijsenM. AndelidK. Ekberg-JanssonA. LarssonS. BakeB. TylÉnU. High‐resolution computed tomography in healthy smokers and never-smokers: A 6-year follow-up study of men born in 1933.Acta Radiol.2004451445210.1080/0284185031000297015164778
    [Google Scholar]
  29. CopleyS.J. WellsA.U. HawtinK.E. GibsonD.J. HodsonJ.M. JacquesA.E.T. HansellD.M. Lung morphology in the elderly: Comparative CT study of subjects over 75 years old versus those under 55 years old.Radiology2009251256657310.1148/radiol.251208124219401580
    [Google Scholar]
  30. EveraertsS. LammertynE.J. MartensD.S. De SadeleerL.J. MaesK. van BatenburgA.A. GoldschmedingR. van MoorselC.H.M. DupontL.J. WuytsW.A. VosR. RamirezG.G. KaminskiN. HoggJ.C. JanssensW. VerledenG.M. NawrotT.S. VerledenS.E. McDonoughJ.E. VanaudenaerdeB.M. The aging lung: Tissue telomere shortening in health and disease.Respir. Res.20181919510.1186/s12931‑018‑0794‑z29751799
    [Google Scholar]
  31. AlderJ.K. ArmaniosM. Telomere-mediated lung disease.Physiol. Rev.202210241703172010.1152/physrev.00046.202135532056
    [Google Scholar]
  32. Diaz de LeonA. CronkhiteJ.T. YilmazC. BrewingtonC. WangR. XingC. HsiaC.C.W. GarciaC.K. Subclinical lung disease, macrocytosis, and premature graying in kindreds with telomerase (TERT) mutations.Chest2011140375376310.1378/chest.10‑286521349926
    [Google Scholar]
  33. ChoS.J. DelgadoS.H.W. Aging and lung disease.Annu. Rev. Physiol.202082143345910.1146/annurev‑physiol‑021119‑03461031730381
    [Google Scholar]
  34. WebbW.R. Thin-section CT of the secondary pulmonary lobule: Anatomy and the image--the 2004 Fleischner lecture.Radiology2006239232233810.1148/radiol.239204196816543587
    [Google Scholar]
  35. ZhaoC. PuW. NiuM. WazirJ. SongS. WeiL. LiL. SuZ. WangH. Respiratory exposure to PM2.5 soluble extract induced chronic lung injury by disturbing the phagocytosis function of macrophage.Environ. Sci. Pollut. Res. Int.20222910139831399710.1007/s11356‑021‑16797‑934601671
    [Google Scholar]
  36. BiancatelliC.R.M.L. SolopovP. DimitropoulouC. CatravasJ.D. Age-dependent chronic lung injury and pulmonary fibrosis following single exposure to hydrochloric acid.Int. J. Mol. Sci.20212216883310.3390/ijms2216883334445540
    [Google Scholar]
  37. HananiaA.N. MainwaringW. GhebreY.T. HananiaN.A. LudwigM. Radiation-induced lung injury.Chest2019156115016210.1016/j.chest.2019.03.03330998908
    [Google Scholar]
  38. HarmoucheR. AshS.Y. PutmanR.K. HunninghakeG.M. San Jose EsteparR. MartinezF.J. ChoiA.M. LynchD.A. HatabuH. HanM.K. BowlerR.P. KalhanR. RosasI.O. WashkoG.R. EsteparS.J.R. Objectively measured chronic lung injury on chest CT.Chest201915661149115910.1016/j.chest.2019.05.02031233744
    [Google Scholar]
  39. LuR. PopovV. PatelJ. Eaves-PylesT. Burkholderia mallei and Burkholderia pseudomallei stimulate differential inflammatory responses from human alveolar type II cells (ATII) and macrophages.Front. Cell. Infect. Microbiol.2012216510.3389/fcimb.2012.0016523293773
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056286928240223042225
Loading
/content/journals/cmir/10.2174/0115734056286928240223042225
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test