Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Objective

This study explored whether breast MRI manifestations could be used to predict the stroma distribution of breast cancer (BC) and the role of tumor stroma-based MRI manifestations in molecular subtype prediction.

Methods

57 patients with pathologically confirmed invasive BC (non-special type) who had lumpy BC on MRI within one week before surgery were retrospectively collected in the study. Stroma distributions were classified according to their characteristics in the pathological sections. The stromal distribution patterns among molecular subtypes were compared with the MRI manifestations of BC with different stroma distribution types (SDTs).

Results

SDTs were significantly different and depended on the BC hormone receptor (HR) (<0.001). There were also significant differences among five SDTs on T2WI, ADC map, internal delayed enhanced features (IDEF), marginal delayed enhanced features (MDEF), and time signal intensity (TSI) curves. Spiculated margin and the absence of type-I TSI were independent predictors for BC with star grid type stroma. The appearance frequency of hypo-intensity on T2WI in HR- BCs was significantly lower (=0.043) than in HR+ BCs. Star grid stroma and spiculated margin were key factors in predicting HR+ BCs, and the AUC was 0.927 (95% CI: 0.867-0.987).

Conclusion

Breast MRI can be used to predict BC's stromal distribution and molecular subtypes.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056287368240213135143
2024-01-01
2025-07-10
The full text of this item is not currently available.

References

  1. LoiblS. PoortmansP. MorrowM. DenkertC. CuriglianoG. Breast cancer.Lancet2021397102861750176910.1016/S0140‑6736(20)32381‑333812473
    [Google Scholar]
  2. SiegelR. NaishadhamD. JemalA. Cancer statistics, 2012.CA Cancer J. Clin.2012621102910.3322/caac.2013822237781
    [Google Scholar]
  3. MallyaV. SinghV. KaurN. YadavP. MandalS. KhuranaN. LalP. Does tumor stroma ratio of breast cancer trucut biopsy determine response to neoadjuvant therapy?Indian J. Pathol. Microbiol.202063511310.4103/IJPM.IJPM_793_1832108642
    [Google Scholar]
  4. LiY. WangZ. ChenF. QinX. LiC. ZhaoY. YanC. WuY. HaoP. XuY. Intravoxel incoherent motion diffusion-weighted MRI in patients with breast cancer: Correlation with tumor stroma characteristics.Eur. J. Radiol.201912010868610.1016/j.ejrad.2019.10868631586850
    [Google Scholar]
  5. SoysalS.D. TzankovA. MuenstS.E. Role of the tumor microenvironment in breast cancer.Pathobiology2015823-414215210.1159/00043049926330355
    [Google Scholar]
  6. KramerC.J.H. VangangeltK.M.H. van PeltG.W. DekkerT.J.A. TollenaarR.A.E.M. MeskerW.E. The prognostic value of tumour–stroma ratio in primary breast cancer with special attention to triple-negative tumours: A review.Breast Cancer Res. Treat.20191731556410.1007/s10549‑018‑4987‑430302588
    [Google Scholar]
  7. PiersmaB. HaywardM-K. WeaverV.M. Fibrosis and cancer: A strained relationship. Biochimica et Biophysica Acta (BBA) -.Rev. Can.202018732188356
    [Google Scholar]
  8. HanL SewardC LeoneG Origin, activation and heterogeneity of fibroblasts associated with pancreas and breast cancers.2022154169201
    [Google Scholar]
  9. DowneyC.L. SimpkinsS.A. WhiteJ. HollidayD.L. JonesJ.L. JordanL.B. KulkaJ. PollockS. RajanS.S. ThygesenH.H. HanbyA.M. SpeirsV. The prognostic significance of tumour–stroma ratio in oestrogen receptor-positive breast cancer.Br. J. Cancer201411071744174710.1038/bjc.2014.6924548861
    [Google Scholar]
  10. RoekeT. Sobral-LeiteM. DekkerT.J.A. WesselingJ. SmitV.T.H.B.M. TollenaarR.A.E.M. SchmidtM.K. MeskerW.E. The prognostic value of the tumour-stroma ratio in primary operable invasive cancer of the breast: a validation study.Breast Cancer Res. Treat.2017166243544510.1007/s10549‑017‑4445‑828795248
    [Google Scholar]
  11. MacchiniM. PonzianiM. IamurriA.P. PistelliM. De LisaM. BerardiR. GiuseppettiG.M. Role of DCE-MR in predicting breast cancer subtypes.Radiol. Med. 20181231075376410.1007/s11547‑018‑0908‑129869226
    [Google Scholar]
  12. YuenS. MonzawaS. YanaiS. MatsumotoH. YataY. IchinoseY. DeaiT. HashimotoT. TashiroT. YamagamiK. The association between MRI findings and breast cancer subtypes: Focused on the combination patterns on diffusion-weighted and T2-weighted images.Breast Cancer20202751029103710.1007/s12282‑020‑01105‑z32377938
    [Google Scholar]
  13. MannR.M. ChoN. MoyL. Breast MRI: State of the art.Radiology2019292352053610.1148/radiol.201918294731361209
    [Google Scholar]
  14. BlaschkeE. AbeH. MRI phenotype of breast cancer: Kinetic assessment for molecular subtypes.J. Magn. Reson. Imaging201542492092410.1002/jmri.2488425758675
    [Google Scholar]
  15. Ab MuminN. Ramli HamidM.T. WongJ.H.D. RahmatK. NgK.H. Magnetic resonance imaging phenotypes of breast cancer molecular subtypes: A systematic review.Acad. Radiol.202229Suppl. 1S89S10610.1016/j.acra.2021.07.01734481705
    [Google Scholar]
  16. UematsuT. Focal breast edema associated with malignancy on T2-weighted images of breast MRI: peritumoral edema, prepectoral edema, and subcutaneous edema.Breast Cancer2015221667010.1007/s12282‑014‑0572‑925336185
    [Google Scholar]
  17. HaradaT.L. UematsuT. NakashimaK. KawabataT. NishimuraS. TakahashiK. TadokoroY. HayashiT. TsuchiyaK. WatanabeJ. SuginoT. Evaluation of breast edema findings at t2-weighted breast mri is useful for diagnosing occult inflammatory breast cancer and can predict prognosis after neoadjuvant chemotherapy.Radiology20212991536210.1148/radiol.202120260433560188
    [Google Scholar]
  18. LewinA.A. Gene KimS. BabbJ.S. MelsaetherA.N. McKellopJ. MoccaldiM. Klautau LeiteA.P. MoyL. Assessment of background parenchymal enhancement and lesion kinetics in breast mri of brca 1/2 mutation carriers compared to matched controls using quantitative kinetic analysis.Acad. Radiol.201623335836710.1016/j.acra.2015.11.01126774741
    [Google Scholar]
  19. Christine A Iacobuzio-DonahueP.A. PaulaM. Hempen,Jessa Jones,Scott E Kern. The desmoplastic response to infiltrating breast carcinoma: Gene expression at the site of primary invasion and implications for comparisons between tumor types.Cancer Res.200262187
    [Google Scholar]
  20. AldukA.M. BrcicI. PodolskiP. PrutkiM. Correlation of MRI features and pathohistological prognostic factors in invasive ductal breast carcinoma.Acta Clin. Belg.201772530631210.1080/17843286.2016.126643227996889
    [Google Scholar]
  21. KimJ.Y. KimJ.J. HwangboL. KangT. ParkH. Diffusion-weighted imaging of invasive breast cancer: Relationship to distant metastasis–free survival.Radiology2019291230030710.1148/radiol.201918170630860453
    [Google Scholar]
  22. KimJ.Y. KimJ.J. HwangboL. LeeJ.W. LeeN.K. NamK.J. ChooK.S. KangT. ParkH. SonY. GrimmR. Diffusion-weighted MRI of estrogen receptor-positive, HER2-negative, node-negative breast cancer: Association between intratumoral heterogeneity and recurrence risk.Eur. Radiol.2020301667610.1007/s00330‑019‑06383‑631385051
    [Google Scholar]
  23. KoE.S. LeeB.H. KimH.A. NohW.C. KimM.S. LeeS.A. Triple-negative breast cancer: correlation between imaging and pathological findings.Eur. Radiol.20102051111111710.1007/s00330‑009‑1656‑319898850
    [Google Scholar]
  24. YoukJ.H. SonE.J. ChungJ. KimJ.A. KimE. Triple-negative invasive breast cancer on dynamic contrast-enhanced and diffusion-weighted MR imaging: Comparison with other breast cancer subtypes.Eur. Radiol.20122281724173410.1007/s00330‑012‑2425‑222527371
    [Google Scholar]
  25. VerrasG.I. MulitaF. TchabashviliL. GrypariI.M. SourouniS. PanagodimouE. ArgentouM.I. A rare case of invasive micropapillary carcinoma of the breast.Przegl. Menopauz.2022211738010.5114/pm.2022.11383435388282
    [Google Scholar]
  26. PapadoliopoulouM. MatiatouM. KoutsoumposS. MulitaF. GianniosP. MargarisI. MoutzourisK. ArkadopoulosN. MichalopoulosN.V. Optical imaging in human lymph node specimens for detecting breast cancer metastases: A review.Cancers20231522543810.3390/cancers1522543838001697
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056287368240213135143
Loading
/content/journals/cmir/10.2174/0115734056287368240213135143
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test