Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background

Deep learning reconstruction for free-breathing pulmonary MRI.

Objective

To propose a motion-resolved 3D pulmonary MRI reconstruction scheme using the sinusoidal representation network (SIREN).

Methods

The proposed scheme learns the registration maps using SIREN to register an averaging image to get the final reconstructions. The learning of the network relies only on the undersampled data from the specific subject. The usage of the network for outputting the registration maps enables a memory-efficient algorithm, as outputting registration maps instead of images only requires small networks. The training of the network based on only undersampled data enables an unsupervised learning scheme, which makes the proposed scheme useful in cases in which fully sampled data is not available.

Results

We compare the proposed SIREN-based motion-resolved reconstruction with two state-of-the-art methods for ten datasets. Both visual and quantitative comparison indicates the better performance of the proposed method.

Conclusion

In conclusion, the use of SIREN for 3D pulmonary MRI reconstruction allows for the efficient and accurate reconstruction of data that has been undersampled.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056270732231204061123
2024-01-01
2025-07-10
The full text of this item is not currently available.

References

  1. RoachD.J. CrémillieuxY. FleckR.J. BrodyA.S. SeraiS.D. SzczesniakR.D. KerlakianS. ClancyJ.P. WoodsJ.C. Ultrashort echo-time magnetic resonance imaging is a sensitive method for the evaluation of early cystic fibrosis lung disease.Ann. Am. Thorac. Soc.201613111923193110.1513/AnnalsATS.201603‑203OC27551814
    [Google Scholar]
  2. WangY.X. LoG.G. YuanJ. LarsonP.E. ZhangX. Magnetic resonance imaging for lung cancer screen.J. Thorac. Dis.2014691340134825276380
    [Google Scholar]
  3. WildJ.M. MarshallH. BockM. SchadL.R. JakobP.M. PuderbachM. MolinariF. Van BeekE.J.R. BiedererJ. MRI of the lung (1/3): methods.Insights Imaging20123434535310.1007/s13244‑012‑0176‑x22695952
    [Google Scholar]
  4. MatthewD. PeterD.G. MarkB. Magnetic resonance: An introduction to ultrashort te (ute) imaging,”.J. Comput. Assist. Tomogr.200327682584610.1097/00004728‑200311000‑0000114600447
    [Google Scholar]
  5. HolmesJ.E. BydderG.M. MR imaging with ultrashort TE (UTE) pulse sequences: Basic principles.Radiography200511316317410.1016/j.radi.2004.07.007
    [Google Scholar]
  6. AdrienneG. Characterization of the ultrashort-te (ute) mr collagen signal.NMR in Biomedicine20151012361244
    [Google Scholar]
  7. KumarS. RaiR. StemmerA. JosanS. HollowayL. VinodS. MosesD. LineyG. Feasibility of free breathing Lung MRI for Radiotherapy using non-Cartesian k -space acquisition schemes.Br. J. Radiol.20179010802017003710.1259/bjr.2017003728937270
    [Google Scholar]
  8. OlthofS.C. ReinertC. NikolaouK. PfannenbergC. GatidisS. BenkertT. KüstnerT. KrummP. Detection of lung lesions in breath-hold VIBE and free-breathing Spiral VIBE MRI compared to CT.Insights Imaging202112117510.1186/s13244‑021‑01124‑034817715
    [Google Scholar]
  9. JavedA. RamasawmyR. O’BrienK. ManciniC. SuP. MajeedW. BenkertT. BhatH. SuffrediniA.F. MalayeriA. Campbell-WashburnA.E. Self‐gated 3D stack‐of‐spirals UTE pulmonary imaging at 0.55T.Magn. Reson. Med.20228741784179810.1002/mrm.2907934783391
    [Google Scholar]
  10. FauveauV. JacobiA. BernheimA. ChungM. BenkertT. FayadZ.A. FengL. Performance of spiral UTE-MRI of the lung in post-COVID patients.Magn. Reson. Imaging20239613514310.1016/j.mri.2022.12.00236503014
    [Google Scholar]
  11. HiganoN.S. FleckR.J. SpielbergD.R. WalkupL.L. HahnA.D. ThomenR.P. MerharS.L. KingmaP.S. TkachJ.A. FainS.B. WoodsJ.C. Quantification of neonatal lung parenchymal density via ultrashort echo time MRI with comparison to CT.J. Magn. Reson. Imaging2017464992100010.1002/jmri.2564328160357
    [Google Scholar]
  12. AndrewD. Pulmonary mri of neonates in the intensive care unit using 3d ultrashort echo time and a small footprint mri system.J. Magn. Reson. Imaging201745246347110.1002/jmri.2539427458992
    [Google Scholar]
  13. ZhaW. StanleyJ. Pulmonary ventilation imaging in asthma and cystic fibrosis using oxygen-enhanced 3d radial ultrashort echo time mri.J. Magn. Reson. Imaging20184751287129710.1002/jmri.2587729086454
    [Google Scholar]
  14. FengL. Xd-grasp: Golden-angle radial mri with reconstruction of extra motion-state dimensions using compressed sensing.Magn. Reson. Med.201675277578810.1002/mrm.2566525809847
    [Google Scholar]
  15. SitzmannV. MartelJ. BergmanA. LindellD. WetzsteinG. Implicit neural representations with periodic activation functions.Adv. Neural Inf. Process. Syst.20203374627473
    [Google Scholar]
  16. ParkJ.J. FlorenceP. StraubJ. NewcombeR. LovegroveS. Deepsdf: Learning continuous signed distance functions for shape representationProceedings of the IEEE/CVF conference on computer vision and pattern recognition201916517410.1109/CVPR.2019.00025
    [Google Scholar]
  17. LeeJ. TackJ. LeeN. ShinJ. Meta-learning sparse implicit neural representations.Adv. Neural Inf. Process. Syst.2021341176911780
    [Google Scholar]
  18. ZhangJ. LiuX. YeX. ZhaoF. ZhangY. WuM. ZhangY. XuL. YuJ. Editable free-viewpoint video using a layered neural representation.ACM Trans. Graph.2021404118
    [Google Scholar]
  19. WuQ. LiY. XuL. FengR. WeiH. YangQ. YuB. LiuX. YuJ. ZhangY. Irem: high-resolution magnetic resonance image reconstruction via implicit neural representation202124th International ConferenceStrasbourg, FranceSeptember 27–October 1, 2021657410.1007/978‑3‑030‑87231‑1_7
    [Google Scholar]
  20. FengR. WuQ. ZhangY. WeiH. A scan- specific unsupervised method for parallel mri reconstruction via implicit neural representationarXiv:2210.104392022
    [Google Scholar]
  21. KlaasP Advances in sensitivity encoding with arbitrary k-space trajectories,” magnetic resonance in medicine.An Official Journal of the Interna- tional Society for Magnetic Resonance in Medicine200146638651
    [Google Scholar]
  22. PedersenH. KozerkeS. RinggaardS. NehrkeK. KimW.Y. k‐t PCA: Temporally constrained k‐t BLAST reconstruction using principal component analysis.Magn. Reson. Med.200962370671610.1002/mrm.2205219585603
    [Google Scholar]
  23. OngF. ZhuX. ChengJ.Y. JohnsonK.M. LarsonP.E.Z. VasanawalaS.S. LustigM. Extreme MRI: Large‐scale volumetric dynamic imaging from continuous non‐gated acquisitions.Magn. Reson. Med.20208441763178010.1002/mrm.2823532270547
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056270732231204061123
Loading
/content/journals/cmir/10.2174/0115734056270732231204061123
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test