Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Objective

Cytoarchitectonic mapping has revealed distinct subregions within Broadmann area 4 (BA 4) – BA 4a and BA 4p – with varying functional roles across tasks. We investigate their functional connectivity using resting-state functional magnetic resonance imaging (rsfMRI) to explore bilateral differences and the impact of handedness on connectivity within major brain networks.

Methods

This retrospective study involved 54 left- and right-handed subjects. We employed regions-to-regions-network rsfMRI analysis to examine the Cytoarchitectonic mapping of BA 4a and BA 4p functional connectivity with eight major brain networks.

Results

Our findings reveal differential connectivity patterns in both right-handed and left-handed subjects:

Both right-handed subjects' BA 4a and BA 4p subregions exhibit connections to sensorimotor, dorsal attention, frontoparietal, and anterior cerebellar networks. Notably, BA 4a shows unique connectivity to the posterior cerebellum, lateral visual networks, and select salience regions. Similar connectivity patterns are observed in left-handed subjects, with BA 4a linked to sensorimotor, dorsal attention, frontoparietal, and anterior cerebellar networks. However, BA 4a in left-handed subjects shows distinct connectivity only to the posterior cerebellum. In both groups, the right portion of BA 4 demonstrates heightened connectivity compared to the left portion within each subregion.

Conclusion

Our study uncovers complex patterns of functional connectivity within BA 4a and BA 4p, influenced by handedness. These findings emphasize the importance of considering hemisphere-specific and handedness-related factors in functional connectivity analyses, with potential implications for understanding brain organization in health and neurodegenerative diseases.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056267728231129104243
2024-01-01
2025-06-22
The full text of this item is not currently available.

References

  1. EickhoffS.B. StephanK.E. MohlbergH. GrefkesC. FinkG.R. AmuntsK. ZillesK. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data.Neuroimage20052541325133510.1016/j.neuroimage.2004.12.03415850749
    [Google Scholar]
  2. GeyerS LedbergA SchleicherA KinomuraS SchormannT BürgelU Two different areas within the primary motor cortex of man.Nature1996382659480580710.1038/382805a0
    [Google Scholar]
  3. GraftonS.T. HazeltineE. IvryR.B. Motor sequence learning with the nondominant left hand.Exp. Brain Res.2002146336937810.1007/s00221‑002‑1181‑y12232693
    [Google Scholar]
  4. KellyR.M. StrickP.L. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate.J Neurosci.2003232384328444
    [Google Scholar]
  5. WagerT.D. VazquezA. HernandezL. NollD.C. Accounting for nonlinear BOLD effects in fMRI: Parameter estimates and a model for prediction in rapid event-related studies.Neuroimage200525120621810.1016/j.neuroimage.2004.11.00815734356
    [Google Scholar]
  6. VerstynenT. DiedrichsenJ. AlbertN. AparicioP. IvryR.B. Ipsilateral motor cortex activity during unimanual hand movements relates to task complexity.J. Neurophysiol.20059331209122210.1152/jn.00720.200415525809
    [Google Scholar]
  7. BenwellN.M. ByrnesM.L. MastagliaF.L. ThickbroomG.W. Primary sensorimotor cortex activation with task-performance after fatiguing hand exercise.Exp. Brain Res.2005167216016410.1007/s00221‑005‑0013‑216034578
    [Google Scholar]
  8. WardN.S. NewtonJ.M. SwayneO.B.C. LeeL. ThompsonA.J. GreenwoodR.J. RothwellJ.C. FrackowiakR.S.J. Motor system activation after subcortical stroke depends on corticospinal system integrity.Brain2006129380981910.1093/brain/awl00216421171
    [Google Scholar]
  9. NachevP. KennardC. HusainM. Functional role of the supplementary and pre-supplementary motor areas.Nat. Rev. Neurosci.200891185686910.1038/nrn247818843271
    [Google Scholar]
  10. Van ImpeA. CoxonJ.P. GobleD.J. WenderothN. SwinnenS.P. Ipsilateral coordination at preferred rate: Effects of age, body side and task complexity.Neuroimage20094741854186210.1016/j.neuroimage.2009.06.02719539766
    [Google Scholar]
  11. SchlerfJ.E. VerstynenT.D. IvryR.B. SpencerR.M.C. Evidence of a novel somatopic map in the human neocerebellum during complex actions.J. Neurophysiol.201010363330333610.1152/jn.01117.200920393055
    [Google Scholar]
  12. AlahmadiA.A.S. The cerebellum’s orchestra: Understanding the functional connectivity of its lobes and deep nuclei in coordination and integration of brain networks.Tomography20239288389310.3390/tomography902007237104143
    [Google Scholar]
  13. StrickP.L. PrestonJ.B. Two representations of the hand in area 4 of a primate. II. Somatosensory input organization.J. Neurophysiol.198248115015910.1152/jn.1982.48.1.1507119842
    [Google Scholar]
  14. StrickP.L. PrestonJ.B. Two representations of the hand in area 4 of a primate. I. Motor output organization.J. Neurophysiol.198248113914910.1152/jn.1982.48.1.1396288884
    [Google Scholar]
  15. KaasJ.H. CollinsC.E. The organization of somatosensory cortex in anthropoid primates.Adv. Neurol.200393576712894401
    [Google Scholar]
  16. SharmaN. JonesP.S. CarpenterT.A. BaronJ.C. Mapping the involvement of BA 4a and 4p during motor imagery.Neuroimage2008411929910.1016/j.neuroimage.2008.02.00918358742
    [Google Scholar]
  17. BinkofskiF. FinkG.R. GeyerS. BuccinoG. GruberO. ShahN.J. TaylorJ.G. SeitzR.J. ZillesK. FreundH.J. Neural activity in human primary motor cortex areas 4a and 4p is modulated differentially by attention to action.J. Neurophysiol.200288151451910.1152/jn.2002.88.1.51412091573
    [Google Scholar]
  18. KingM. RauchH.G. SteinD.J. BrooksS.J. The handyman’s brain: A neuroimaging meta-analysis describing the similarities and differences between grip type and pattern in humans.Neuroimage2014102Pt 292393710.1016/j.neuroimage.2014.05.06424927986
    [Google Scholar]
  19. AlahmadiA.A.S. SamsonR.S. GasstonD. PardiniM. FristonK.J. D’AngeloE. ToosyA.T. Wheeler-KingshottC.A.M. Complex motor task associated with non-linear BOLD responses in cerebro-cortical areas and cerebellum.Brain Struct. Funct.201622152443245810.1007/s00429‑015‑1048‑125921976
    [Google Scholar]
  20. AlahmadiA.A.S. PardiniM. SamsonR.S. D’AngeloE. FristonK.J. ToosyA.T. Wheeler-KingshottG.C.A.M. Blood oxygenation level-dependent response to multiple grip forces in multiple sclerosis: Going beyond the main effect of movement in brodmann area 4a and 4p.Front. Cell. Neurosci.20211561602810.3389/fncel.2021.61602833981201
    [Google Scholar]
  21. LogothetisN.K. What we can do and what we cannot do with fMRI.Nature2008453719786987810.1038/nature0697618548064
    [Google Scholar]
  22. BiswalB. Zerrin YetkinF. HaughtonV.M. HydeJ.S. Functional connectivity in the motor cortex of resting human brain using echo-planar mri.Magn. Reson. Med.199534453754110.1002/mrm.19103404098524021
    [Google Scholar]
  23. van den HeuvelM.P. HulshoffP.H.E. Exploring the brain network: A review on resting-state fMRI functional connectivity.Eur. Neuropsychopharmacol.201020851953410.1016/j.euroneuro.2010.03.00820471808
    [Google Scholar]
  24. LeeM.H. SmyserC.D. ShimonyJ.S. Resting-state fMRI: A review of methods and clinical applications.AJNR Am. J. Neuroradiol.201334101866187210.3174/ajnr.A326322936095
    [Google Scholar]
  25. SmithS.M. VidaurreD. BeckmannC.F. GlasserM.F. JenkinsonM. MillerK.L. NicholsT.E. RobinsonE.C. Salimi-KhorshidiG. WoolrichM.W. BarchD.M. UğurbilK. Van EssenD.C. Functional connectomics from resting-state fMRI.Trends Cogn. Sci.2013171266668210.1016/j.tics.2013.09.01624238796
    [Google Scholar]
  26. AlahmadiA.A.S. PardiniM. SamsonR.S. D’AngeloE. FristonK.J. ToosyA.T. Wheeler-KingshottG.C.A.M. Differential involvement of cortical and cerebellar areas using dominant and nondominant hands: An FMRI study.Hum. Brain Mapp.201536125079510010.1002/hbm.2299726415818
    [Google Scholar]
  27. Johansen-BergH. DawesH. GuyC. SmithS.M. WadeD.T. MatthewsP.M. Correlation between motor improvements and altered fMRI activity after rehabilitative therapy.Brain2002125122731274210.1093/brain/awf28212429600
    [Google Scholar]
  28. Johansen-BergH. PM. Attention to movement modulates activity in sensori-motor areas, including primary motor cortex.Exp. Brain Res.20021421132410.1007/s00221‑001‑0905‑811797080
    [Google Scholar]
  29. WardN.S. BrownM.M. ThompsonA.J. FrackowiakR.S. Neural correlates of motor recovery after stroke: A longitudinal fMRI study.Brain2003126112476249610.1093/brain/awg24512937084
    [Google Scholar]
  30. WardN.S. FrackowiakR.S. Age-related changes in the neural correlates of motor performance.Brain2003126487388810.1093/brain/awg07112615645
    [Google Scholar]
  31. MakaryM.M. EunS. ParkK. Greater corticostriatal activation associated with facial motor imagery compared with motor execution.Neuroreport2017281061061710.1097/WNR.000000000000080928538517
    [Google Scholar]
  32. MakaryM.M. EunS. SolimanR.S. MohamedA.Z. LeeJ. ParkK. Functional topography of the primary motor cortex during motor execution and motor imagery as revealed by functional MRI.Neuroreport2017281273173810.1097/WNR.000000000000082528617759
    [Google Scholar]
  33. AlahmadiA.A.S. Functional network analysis of the sub-regions of the primary motor cortex during rest.Neuroreport202031969169510.1097/WNR.000000000000147032427715
    [Google Scholar]
  34. Whitfield-GabrieliS. Nieto-CastanonA. Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks.Brain Connect.20122312514110.1089/brain.2012.007322642651
    [Google Scholar]
  35. Kuhtz-BuschbeckJ.P. EhrssonH.H. ForssbergH. Human brain activity in the control of fine static precision grip forces: an fMRI study.Eur. J. Neurosci.200114238239010.1046/j.0953‑816x.2001.01639.x11553288
    [Google Scholar]
  36. HamzeiF. DettmersC. RijntjesM. GlaucheV. KiebelS. WeberB. WeillerC. Visuomotor control within a distributed parieto-frontal network.Exp. Brain Res.2002146327328110.1007/s00221‑002‑1139‑012232684
    [Google Scholar]
  37. KeiskerB. Hepp-ReymondM.C. BlickenstorferA. MeyerM. KolliasS.S. Differential force scaling of fine‐graded power grip force in the sensorimotor network.Hum. Brain Mapp.20093082453246510.1002/hbm.2067619172654
    [Google Scholar]
  38. PoolE.M. RehmeA.K. EickhoffS.B. FinkG.R. GrefkesC. Functional resting-state connectivity of the human motor network: Differences between right- and left-handers.Neuroimage201510929830610.1016/j.neuroimage.2015.01.03425613438
    [Google Scholar]
  39. HammondG. Correlates of human handedness in primary motor cortex: A review and hypothesis.Neurosci. Biobehav. Rev.200226328529210.1016/S0149‑7634(02)00003‑912034131
    [Google Scholar]
  40. AmuntsK. SchlaugG. SchleicherA. SteinmetzH. DabringhausA. RolandP.E. ZillesK. Asymmetry in the human motor cortex and handedness.Neuroimage19964321622210.1006/nimg.1996.00739345512
    [Google Scholar]
  41. LiuH. StufflebeamS.M. SepulcreJ. HeddenT. BucknerR.L. Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors.Proc. Natl. Acad. Sci.200910648204992050310.1073/pnas.090807310619918055
    [Google Scholar]
  42. UddinL.Q. Salience network of the human brain.Academic press2016
    [Google Scholar]
  43. SeeleyW.W. The salience network: A neural system for perceiving and responding to homeostatic demands.J. Neurosci.201939509878988210.1523/JNEUROSCI.1138‑17.201931676604
    [Google Scholar]
  44. AckermannH. RieckerA. The contribution of the insula to motor aspects of speech production: A review and a hypothesis.Brain Lang.200489232032810.1016/S0093‑934X(03)00347‑X15068914
    [Google Scholar]
  45. LiT. ZhuX. WuX. GongY. JonesJ.A. LiuP. ChangY. YanN. ChenX. LiuH. Continuous theta burst stimulation over left and right supramarginal gyri demonstrates their involvement in auditory feedback control of vocal production.Cereb. Cortex2022331112210.1093/cercor/bhac04935174862
    [Google Scholar]
  46. Ben-ShabatE. MatyasT.A. PellG.S. BrodtmannA. CareyL.M. The right supramarginal gyrus is important for proprioception in healthy and stroke-affected participants: A functional MRI study.Front. Neurol.2015624810.3389/fneur.2015.0024826696951
    [Google Scholar]
  47. StrickP.L. DumR.P. FiezJ.A. Cerebellum and nonmotor function.Annu. Rev. Neurosci.200932141343410.1146/annurev.neuro.31.060407.12560619555291
    [Google Scholar]
  48. KüperM. DimitrovaA. ThürlingM. MaderwaldS. RothsJ. EllesH.G. GizewskiE.R. LaddM.E. DiedrichsenJ. TimmannD. Evidence for a motor and a non-motor domain in the human dentate nucleus : An fMRI study.Neuroimage20115442612262210.1016/j.neuroimage.2010.11.02821081171
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056267728231129104243
Loading
/content/journals/cmir/10.2174/0115734056267728231129104243
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test