Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Alterations in ocular blood flow play an important role in the pathogenesis of diabetic macular edema; however, this remains unclear.

Objectives

This study aimed to investigate ocular blood flow in eyes with or without diabetic macular edema using arterial spin labeling.

Methods

This cross-sectional study included 118 eyes of 65 patients with diabetic retinopathy analyzed between November 2018 and December 2019. We included a total of 53 eyes without diabetic macular edema (mean [SD] age, 57.83 [7.23] years; 29 men [54.7%]) and 65 eyes with diabetic macular edema (mean [SD] age, 60.11 [7.63] years; 38 men [58.5%]). Using a 3.0-T magnetic resonance imaging, participants were imaged with arterial spin labeling with multiple post-labeling delays.

Results

The mean ocular blood flow at post-labeling delays of 1.5 and 2.5 s was significantly lower in eyes with diabetic macular edema among patients with diabetic retinopathy compared with the remaining subgroups (P=0.022 and P <0.001, respectively). The mean ocular blood flow exhibited a significant decrease in eyes with diabetic macular edema when the post-labeling delay was set at 2.5 s in the nonproliferative and proliferative diabetic retinopathy groups, compared with the remaining subgroups (P=0.005 and P=0.002, respectively). The cutoff points of ocular blood flow at post-labeling delays of 1.5 s and 2.5 s were 9.40 and 11.10 mL/100 g/min, respectively.

Conclusion

Three-dimensional pseudocontinuous arterial spin labeling can identify differences in the ocular blood flow of patients with diabetic eyes with and without diabetic macular edema.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056307305240403060707
2024-04-30
2025-06-22
The full text of this item is not currently available.

References

  1. KleinR. KleinB.E.K. MossS.E. CruickshanksK.J. The wisconsin epidemiologic study of diabetic retinopathy. xv. the long-term incidence of macular edema.Ophthalmology1995102171610.1016/S0161‑6420(95)31052‑47831044
    [Google Scholar]
  2. LechnerJ. MedinaR.J. LoisN. StittA.W. Advances in cell therapies using stem cells/progenitors as a novel approach for neurovascular repair of the diabetic retina.Stem Cell Res. Ther.202213138810.1186/s13287‑022‑03073‑x35907890
    [Google Scholar]
  3. LeeB. NovaisE.A. WaheedN.K. AdhiM. de CarloT.E. ColeE.D. MoultE.M. ChoiW. LaneM. BaumalC.R. DukerJ.S. FujimotoJ.G. En face Doppler optical coherence tomography measurement of total retinal blood flow in diabetic retinopathy and diabetic macular edema.JAMA Ophthalmol.2017135324425110.1001/jamaophthalmol.2016.577428196198
    [Google Scholar]
  4. WesselM.M. NairN. AakerG.D. EhrlichJ.R. D’AmicoD.J. KissS. Peripheral retinal ischaemia, as evaluated by ultra-widefield fluorescein angiography, is associated with diabetic macular oedema.Br. J. Ophthalmol.201296569469810.1136/bjophthalmol‑2011‑30077422423055
    [Google Scholar]
  5. VaghefiE. PontréB. Application of arterial spin labelling in the assessment of ocular tissues.BioMed Res. Int.2016201611310.1155/2016/624050427066501
    [Google Scholar]
  6. KhanalS. TurnbullP.R.K. VaghefiE. PhillipsJ.R. Repeatability of arterial spin labeling MRI in measuring blood perfusion in the human eye.J. Magn. Reson. Imaging201949496697410.1002/jmri.2632330252997
    [Google Scholar]
  7. MalekiN. AlsopD.C. DaiW. HudsonC. HanJ.S. FisherJ. MikulisD. The effect of hypercarbia and hyperoxia on the total blood flow to the retina as assessed by magnetic resonance imaging.Invest. Ophthalmol. Vis. Sci.20115296867687410.1167/iovs.10‑676221447683
    [Google Scholar]
  8. ZhangY. HarrisonJ.M. NaterasO.S.E. ChalfinS. DuongT.Q. Decreased retinal–choroidal blood flow in retinitis pigmentosa as measured by MRI.Doc. Ophthalmol.2013126318719710.1007/s10633‑013‑9374‑123408312
    [Google Scholar]
  9. Emeterio NaterasO.S. HarrisonJ.M. MuirE.R. ZhangY. PengQ. ChalfinS. GutierrezJ.E. JohnsonD.A. KielJ.W. DuongT.Q. Choroidal blood flow decreases with age: An MRI study.Curr. Eye Res.201439101059106710.3109/02713683.2014.89299724655028
    [Google Scholar]
  10. MuirE.R. RenteríaR.C. DuongT.Q. Reduced ocular blood flow as an early indicator of diabetic retinopathy in a mouse model of diabetes.Invest. Ophthalmol. Vis. Sci.201253106488649410.1167/iovs.12‑975822915034
    [Google Scholar]
  11. WangH. SunJ. LiJ. LiH. WangY. WangZ. Ocular blood flow measurements in diabetic retinopathy using 3D pseudocontinuous arterial spin labeling.J. Magn. Reson. Imaging202153379179810.1002/jmri.2739833140547
    [Google Scholar]
  12. ChenY. FengX. HuangY. ZhaoL. ChenX. QinS. SunJ. JingJ. ZhangX. WangY. Blood flow perfusion in visual pathway detected by arterial spin labeling magnetic resonance imaging for differential diagnosis of ocular ischemic syndrome.Front. Neurosci.202317112149010.3389/fnins.2023.112149036860621
    [Google Scholar]
  13. LiH. SunJ. WangH. WangY. WangZ. LiJ. Evaluation of hemodynamic changes in nonarteritic anterior ischemic optic neuropathy using multimodality imaging.Quant. Imaging Med. Surg.20211151932194510.21037/qims‑20‑69933936976
    [Google Scholar]
  14. CaiL. NiuH. RenP. LiuY. ZhangT. LiuD. ZhaoE. ZhuL. LiJ. QiaoP. ZhengW. WangZ. The effect of dobutamine on ocular blood flow of healthy adults: A 3D pseudocontinuous aterial spin labelling study.Front. Physiol.202213100391510.3389/fphys.2022.100391536523560
    [Google Scholar]
  15. ChenH. TanM.H. PomerleauD. ChongE.W. LimL.L. SymonsR.C.A. Optical coherence tomography analysis of patients with untreated diabetic macular edema.Graefes Arch. Clin. Exp. Ophthalmol.2020258365366110.1007/s00417‑019‑04549‑y31879819
    [Google Scholar]
  16. JohannesenS.K. VikenJ.N. VergmannA.S. GrauslundJ. Optical coherence tomography angiography and microvascular changes in diabetic retinopathy: A systematic review.Acta Ophthalmol.201997171410.1111/aos.1385930238633
    [Google Scholar]
  17. HwangD.J. LeeE.J. LeeS.Y. ParkK.H. WooS.J. Effect of diabetic macular edema on peripapillary retinal nerve fiber layer thickness profiles.Invest. Ophthalmol. Vis. Sci.20145574213421910.1167/iovs.13‑1377624833740
    [Google Scholar]
  18. CuypersM.H.M. KasanardjoJ.S. PolakB.C.P. Retinal blood flow changes in diabetic retinopathy measured with the Heidelberg scanning laser Doppler flowmeter.Graefes Arch. Clin. Exp. Ophthalmol.20002381293594110.1007/s00417000020711196354
    [Google Scholar]
  19. LeeJ. MoonB.G. ChoA.R. YoonY.H. Optical coherence tomography angiography of DME and its association with anti-VEGF treatment response.Ophthalmology2016123112368237510.1016/j.ophtha.2016.07.01027613201
    [Google Scholar]
  20. DasA. McGuireP.G. RangasamyS. Diabetic macular edema: Pathophysiology and novel therapeutic targets.Ophthalmology201512271375139410.1016/j.ophtha.2015.03.02425935789
    [Google Scholar]
  21. TotanY. AkyüzT.K. GülerE. GüragaçF.B. Evaluation of ocular pulse amplitude and choroidal thickness in diabetic macular edema.Eye201630336937410.1038/eye.2015.23226563658
    [Google Scholar]
  22. KaseS. EndoH. TakahashiM. ItoY. SaitoM. YokoiM. KatsutaS. SonodaS. SakamotoT. IshidaS. KaseM. Alteration of choroidal vascular structure in diabetic macular edema.Graefes Arch. Clin. Exp. Ophthalmol.2020258597197710.1007/s00417‑020‑04604‑z32002623
    [Google Scholar]
  23. KimJ.T. LeeD.H. JoeS.G. KimJ.G. YoonY.H. Changes in choroidal thickness in relation to the severity of retinopathy and macular edema in type 2 diabetic patients.Invest. Ophthalmol. Vis. Sci.20135453378338410.1167/iovs.12‑1150323611988
    [Google Scholar]
  24. SunZ. TangF. WongR. LokJ. SzetoS.K.H. ChanJ.C.K. ChanC.K.M. ThamC.C. NgD.S. CheungC.Y. OCT angiography metrics predict progression of diabetic retinopathy and development of diabetic macular edema: A prospective study.Ophthalmology2019126121675168410.1016/j.ophtha.2019.06.01631358386
    [Google Scholar]
  25. MuirE.R. De La GarzaB. DuongT.Q. Blood flow and anatomical MRI in a mouse model of retinitis pigmentosa.Magn. Reson. Med.201369122122810.1002/mrm.2423222392583
    [Google Scholar]
  26. LiG. ShihY.Y.I. KielJ.W. De La GarzaB.H. DuF. DuongT.Q. MRI study of cerebral, retinal and choroidal blood flow responses to acute hypertension.Exp. Eye Res.201311211812410.1016/j.exer.2013.04.00323623996
    [Google Scholar]
  27. PengQ. ZhangY. NaterasO.S.E. van OschM.J.P. DuongT.Q. MRI of blood flow of the human retina.Magn. Reson. Med.20116561768177510.1002/mrm.2276321590806
    [Google Scholar]
  28. ZhangY. NaterasO.S.E. PengQ. RosendeC.A. DuongT.Q. Blood flow MRI of the human retina/choroid during rest and isometric exercise.Invest. Ophthalmol. Vis. Sci.20125374299430510.1167/iovs.11‑938422661466
    [Google Scholar]
  29. WuB. LouX. WuX. MaL. Intra‐ and interscanner reliability and reproducibility of 3D whole‐brain pseudo‐continuous arterial spin‐labeling MR perfusion at 3T.J. Magn. Reson. Imaging201439240240910.1002/jmri.2417523723043
    [Google Scholar]
  30. LouX. MaX. LiebeskindD.S. MaN. TianC. LyuJ. LongX. MaL. WangD.J.J. Collateral perfusion using arterial spin labeling in symptomatic versus asymptomatic middle cerebral artery stenosis.J. Cereb. Blood Flow Metab.201939110811710.1177/0271678X1772521228786338
    [Google Scholar]
  31. LiuY. ZengX. WangZ. ZhangN. FanD. YuanH. Different post label delay cerebral blood flow measurements in patients with Alzheimer’s disease using 3D arterial spin labeling.Magn. Reson. Imaging20153391019102510.1016/j.mri.2015.05.00126113261
    [Google Scholar]
  32. KhatriM. SaxenaS. KaurA. BhaskerS.K. KumarM. MeyerC.H. Resistive index of ophthalmic artery correlates with retinal pigment epithelial alterations on spectral domain optical coherence tomography in diabetic retinopathy.Int. J. Retina Vitreous2018411210.1186/s40942‑018‑0116‑029657836
    [Google Scholar]
  33. KatoN. HarutaM. FurushimaK. AraiR. MatsuoY. YoshidaS. Decrease in ocular blood flow thirty minutes after intravitreal injections of brolucizumab and aflibercept for neovascular age-related macular degeneration.Clin. Ophthalmol.2023171187119210.2147/OPTH.S40724937096209
    [Google Scholar]
  34. Ghasemi FalavarjaniK. IafeN.A. HubschmanJ.P. TsuiI. SaddaS.R. SarrafD. Optical coherence tomography angiography analysis of the foveal avascular zone and macular vessel density after anti-vegf therapy in eyes with diabetic macular edema and retinal vein occlusion.Invest. Ophthalmol. Vis. Sci.2017581303410.1167/iovs.16‑2057928114569
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056307305240403060707
Loading
/content/journals/cmir/10.2174/0115734056307305240403060707
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test