Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Background

The worldwide increase of antimicrobial resistance in ESKAPE pathogens, which includes , , , , , and , constitutes a substantial public health hazard, constraining treatment alternatives and elevating morbidity and mortality rates. As traditional antibiotics diminish in efficacy, phytochemicals are capturing interest due to their varied antibacterial characteristics and decreased susceptibility to developing antibiotic resistance. Phytochemicals, such as alkaloids, terpenes, phenolics, flavonoids, and organosulfur compounds, have multi-target processes that might provide innovative strategies for addressing infections caused by ESKAPE pathogens.

Objective

The investigation sought to evaluate the effectiveness and mechanisms which different phytochemicals could hinder and destroy the resistance pathways of ESKAPE bacteria, emphasizing their potential to serve as therapeutic agents in combating antimicrobial resistance.

Results

Investigation demonstrates that some phytochemicals may disrupt many bacterial functions, such as cell wall production, membrane integrity, quorum sensing, and biofilm development in ESKAPE pathogens. For example, carvacrol from essential oils has shown efficacy against . by reducing staphyloxanthin synthesis and altering regulatory proteins, including SarA. Furthermore, conessine has altered resistance in . by inhibiting the AdeIJK efflux pump. Flavonoids like resveratrol and curcumin have shown synergistic benefits with conventional antibiotics by improving their effectiveness while minimizing toxicity. These chemicals address several resistance pathways, impairing the ability of infections to build resistance.

Conclusion

Phytochemicals provide an opportunity to facilitate the development of novel therapies targeting antimicrobial resistance in ESKAPE bacteria. Extensive efficacy and distinctive multi-target mechanisms of phytochemicals provide them promising candidates for combination therapy, possibly reinstating antibiotic effectiveness and decelerating the development of resistance. Additional investigation into the increase of bioavailability and clinical usage is essential to fully exploring the medicinal potential of phytochemicals.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X354280241211030749
2024-12-18
2025-07-08
The full text of this item is not currently available.

References

  1. SarkarP. YarlagaddaV. GhoshC. HaldarJ. A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics.MedChemComm20178351653310.1039/C6MD00585C30108769
    [Google Scholar]
  2. YilanciogluK. Antimicrobial drug interactions: Systematic evaluation of protein and nucleic acid synthesis inhibitors.Antibiotics20198311410.3390/antibiotics803011431405069
    [Google Scholar]
  3. ArenzS. WilsonD.N. Bacterial protein synthesis as a target for antibiotic inhibition.Cold Spring Harb. Perspect. Med.201669a02536110.1101/cshperspect.a02536127481773
    [Google Scholar]
  4. DeLandF.H. CohenM. Metabolic inhibition as an index of bacterial susceptibility to drugs.Antimicrob. Agents Chemother.19722540541210.1128/AAC.2.5.4054670510
    [Google Scholar]
  5. HurdleJ.G. O’NeillA.J. ChopraI. LeeR.E. Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections.Nat. Rev. Microbiol.201191627510.1038/nrmicro247421164535
    [Google Scholar]
  6. AhmadZ. LaughlinT.F. Medicinal chemistry of ATP synthase: a potential drug target of dietary polyphenols and amphibian antimicrobial peptides.Curr. Med. Chem.201017252822283610.2174/09298671079185927020586714
    [Google Scholar]
  7. MoiketsiB.N. MakaleK.P.P. RantongG. RahubeT.O. MakhzoumA. Potential of selected African medicinal plants as alternative therapeutics against multi-drug-resistant bacteria.Biomedicines20231110260510.3390/biomedicines1110260537892979
    [Google Scholar]
  8. GiedraitienėA. VitkauskienėA. NaginienėR. PavilonisA. Antibiotic resistance mechanisms of clinically important bacteria.Medicina (Kaunas)20114731910.3390/medicina4703001921822035
    [Google Scholar]
  9. JadimurthyR. MayegowdaS.B. NayakS.C. MohanC.D. RangappaK.S. Escaping mechanisms of ESKAPE pathogens from antibiotics and their targeting by natural compounds.Biotechnol. Rep. (Amst.)202234e0072810.1016/j.btre.2022.e0072835686013
    [Google Scholar]
  10. MunitaJ. M. AriasC. A. Mechanisms of antibiotic resistance.Microbiol. Spectr.20164210.1128/9781555819286.ch17
    [Google Scholar]
  11. NavidiniaM. The clinical importance of emerging ESKAPE pathogens in nosocomial infections.Arch. Adv. Biosci.201673435710.22037/jps.v7i3.12584
    [Google Scholar]
  12. RiceL.B. Progress and challenges in implementing the research on ESKAPE pathogens.Infect. Control Hosp. Epidemiol.201031S1Suppl. 1S7S1010.1086/65599520929376
    [Google Scholar]
  13. PendletonJ.N. GormanS.P. GilmoreB.F. Clinical relevance of the ESKAPE pathogens.Expert Rev. Anti Infect. Ther.201311329730810.1586/eri.13.1223458769
    [Google Scholar]
  14. SantajitS. IndrawattanaN. Mechanisms of antimicrobial resistance in ESKAPE pathogens.BioMed Res. Int.201620161810.1155/2016/247506727274985
    [Google Scholar]
  15. FranceyT. GaschenF. NicoletJ. BurnensA.P. The role of Acinetobacter baumannii as a nosocomial pathogen for dogs and cats in an intensive care unit.J. Vet. Intern. Med.200014217718310.1111/j.1939‑1676.2000.tb02233.x10772490
    [Google Scholar]
  16. GurungR.R. MaharjanP. ChhetriG.G. Antibiotic resistance pattern of Staphylococcus aureus with reference to MRSA isolates from pediatric patients.Future Sci. OA202064FSO46410.2144/fsoa‑2019‑012232257376
    [Google Scholar]
  17. AntoniadouA. KontopidouF. PoulakouG. KoratzanisE. GalaniI. PapadomichelakisE. KopteridesP. SouliM. ArmaganidisA. GiamarellouH. Colistin-resistant isolates of Klebsiella pneumoniae emerging in intensive care unit patients: first report of a multiclonal cluster.J. Antimicrob. Chemother.200759478679010.1093/jac/dkl56217307769
    [Google Scholar]
  18. ElfadadnyA. RagabR.F. AlHarbiM. BadshahF. Ibáñez-ArancibiaE. FaragA. HendawyA.O. De los Ríos-EscalanteP.R. AboubakrM. ZakaiS.A. NageebW.M. Antimicrobial resistance of Pseudomonas aeruginosa : navigating clinical impacts, current resistance trends, and innovations in breaking therapies.Front. Microbiol.202415137446610.3389/fmicb.2024.137446638646632
    [Google Scholar]
  19. Davin-RegliA. PagèsJ-M. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment.Front. Microbiol.2015639210.3389/fmicb.2015.0039226042091
    [Google Scholar]
  20. KhanM.F. TangH. LylesJ.T. PineauR. MashwaniZ.R. QuaveC.L. Antibacterial properties of medicinal plants from Pakistan against multidrug-resistant ESKAPE pathogens.Front. Pharmacol.2018981510.3389/fphar.2018.0081530116190
    [Google Scholar]
  21. VeereshamC. Natural products derived from plants as a source of drugs.J. Adv. Pharm. Technol. Res.20123420020110.4103/2231‑4040.10470923378939
    [Google Scholar]
  22. PandaS.K. BuroniS. SwainS.S. BonacorsiA. da Fonseca AmorimE.A. KulshresthaM. da SilvaL.C.N. TiwariV. Recent advances to combat ESKAPE pathogens with special reference to essential oils.Front. Microbiol.202213102909810.3389/fmicb.2022.102909836560948
    [Google Scholar]
  23. MessiP. GuerrieriE. de NiederhäusernS. SabiaC. BondiM. Vancomycin-resistant enterococci (VRE) in meat and environmental samples.Int. J. Food Microbiol.2006107221822210.1016/j.ijfoodmicro.2005.08.02616280183
    [Google Scholar]
  24. OgierJ. SerrorP. Safety assessment of dairy microorganisms: The Enterococcus genus.Int. J. Food Microbiol.2008126329130110.1016/j.ijfoodmicro.2007.08.01717889954
    [Google Scholar]
  25. CattoirV. LeclercqR. Twenty-five years of shared life with vancomycin-resistant enterococci: is it time to divorce?J. Antimicrob. Chemother.201368473174210.1093/jac/dks46923208830
    [Google Scholar]
  26. ZhouX. WillemsR.J.L. FriedrichA.W. RossenJ.W.A. BathoornE. Enterococcus faecium: from microbiological insights to practical recommendations for infection control and diagnostics.Antimicrob. Resist. Infect. Control20209113010.1186/s13756‑020‑00770‑132778149
    [Google Scholar]
  27. Agudelo HiguitaN.I. HuyckeM.M. Enterococcal Disease, Epidemiology, and Implications for Treatment.Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. GilmoreM.S. ClewellD.B. IkeY. ShankarN. BostonMassachusetts Eye and Ear Infirmary2014
    [Google Scholar]
  28. CattoirV. GiardJ.C. Antibiotic resistance in Enterococcus faecium clinical isolates.Expert Rev. Anti Infect. Ther.201412223924810.1586/14787210.2014.87088624392717
    [Google Scholar]
  29. HooperD.C. Fluoroquinolone resistance among Gram-positive cocci.Lancet Infect. Dis.20022953053810.1016/S1473‑3099(02)00369‑912206969
    [Google Scholar]
  30. SarkarA. SahaR. SahaS. BhowmikR. ChatterjeeA. PaulA. MajiA. ShaharyarM.A. KarmakarS. SarkarB. MaityT.K. Transesterification, GC-MS profiling, and in vitro antimicrobial potential of oil obtained from seeds of Citrus maxima (Burm.) Merr.Ind. Crops Prod.202218911576410.1016/j.indcrop.2022.115764
    [Google Scholar]
  31. PandeyR. MishraS.K. ShresthaA. Characterisation of ESKAPE pathogens with special reference to multidrug resistance and biofilm production in a Nepalese Hospital.Infect. Drug Resist.2021142201221210.2147/IDR.S30668834163185
    [Google Scholar]
  32. ChakrabortyS. AfaqN. SinghN. MajumdarS. Antimicrobial activity of Cannabis sativa, Thuja orientalis and Psidium guajava leaf extracts against methicillin-resistant Staphylococcus aureus.J. Integr. Med.201816535035710.1016/j.joim.2018.07.00530120078
    [Google Scholar]
  33. ReygaertC. An overview of the antimicrobial resistance mechanisms of bacteria.AIMS Microbiol.20184348250110.3934/microbiol.2018.3.48231294229
    [Google Scholar]
  34. FudaC.C.S. FisherJ.F. MobasheryS. β-Lactam resistance in Staphylococcus aureus: the adaptive resistance of a plastic genome.Cell. Mol. Life Sci.200562222617263310.1007/s00018‑005‑5148‑616143832
    [Google Scholar]
  35. PeacockS.J. PatersonG.K. Mechanisms of methicillin resistance in Staphylococcus aureus.Annu. Rev. Biochem.201584157760110.1146/annurev‑biochem‑060614‑03451626034890
    [Google Scholar]
  36. JensenS.O. LyonB.R. Genetics of antimicrobial resistance in Staphylococcus aureus. Future Microbiol.20094556558210.2217/fmb.09.3019492967
    [Google Scholar]
  37. SiddiquiA.H. KoiralaJ. Methicillin-Resistant Staphylococcus Aureus.StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  38. EffahC.Y. SunT. LiuS. WuY. Klebsiella pneumoniae: an increasing threat to public health.Ann. Clin. Microbiol. Antimicrob.2020191110.1186/s12941‑019‑0343‑831918737
    [Google Scholar]
  39. HafizT.A. AlanaziS. AlghamdiS.S. MubarakiM.A. AljabrW. MadkhaliN. AlharbiS.R. BinkhamisK. AlotaibiF. Klebsiella pneumoniae bacteraemia epidemiology: resistance profiles and clinical outcome of King Fahad Medical City isolates, Riyadh, Saudi Arabia.BMC Infect. Dis.202323157910.1186/s12879‑023‑08563‑837670240
    [Google Scholar]
  40. MoyaC. MaicasS. Antimicrobial Resistance in Klebsiella Pneumoniae Strains: Mechanisms and Outbreaks.The 1st International Electronic Conference on Microbiology202011110.3390/proceedings2020066011
    [Google Scholar]
  41. PadillaE. LlobetE. Doménech-SánchezA. Martínez-MartínezL. BengoecheaJ.A. AlbertíS. Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence.Antimicrob. Agents Chemother.201054117718310.1128/AAC.00715‑0919858254
    [Google Scholar]
  42. VelebaM. HigginsP.G. GonzalezG. SeifertH. SchneidersT. Characterization of RarA, a novel AraC family multidrug resistance regulator in Klebsiella pneumoniae.Antimicrob. Agents Chemother.20125684450445810.1128/AAC.00456‑1222644028
    [Google Scholar]
  43. HardingC.M. HennonS.W. FeldmanM.F. Uncovering the mechanisms of Acinetobacter baumannii virulence.Nat. Rev. Microbiol.20181629110210.1038/nrmicro.2017.14829249812
    [Google Scholar]
  44. HowardA. O’DonoghueM. FeeneyA. SleatorR.D. Acinetobacter baumannii.Virulence20123324325010.4161/viru.1970022546906
    [Google Scholar]
  45. McConnellM.J. ActisL. PachónJ. Acinetobacter baumannii : human infections, factors contributing to pathogenesis and animal models.FEMS Microbiol. Rev.201337213015510.1111/j.1574‑6976.2012.00344.x22568581
    [Google Scholar]
  46. AL-KadmyI.M.S. AliA.N.M. SalmanI.M.A. KhazaalS.S. Molecular characterization of Acinetobacter baumannii isolated from Iraqi hospital environment.New Microbes New Infect.201821515710.1016/j.nmni.2017.10.01029204285
    [Google Scholar]
  47. GallegoL. Acinetobacter baumannii: Factors involved in its high adaptability to adverse environmental conditions.J. Microbiol. Exp.20163210.15406/jmen.2016.03.00085
    [Google Scholar]
  48. MagnetS. CourvalinP. LambertT. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454.Antimicrob. Agents Chemother.200145123375338010.1128/AAC.45.12.3375‑3380.200111709311
    [Google Scholar]
  49. FournierP.E. VallenetD. BarbeV. AudicS. OgataH. PoirelL. RichetH. RobertC. MangenotS. AbergelC. NordmannP. WeissenbachJ. RaoultD. ClaverieJ.M. Comparative genomics of multidrug resistance in Acinetobacter baumannii.PLoS Genet.200621e710.1371/journal.pgen.002000716415984
    [Google Scholar]
  50. RiberaA. RuizJ. VilaJ. Presence of the Tet M determinant in a clinical isolate of Acinetobacter baumannii. Antimicrob. Agents Chemother.20034772310231210.1128/AAC.47.7.2310‑2312.200312821485
    [Google Scholar]
  51. QualeJ. BratuS. LandmanD. HeddurshettiR. Molecular epidemiology and mechanisms of carbapenem resistance in Acinetobacter baumannii endemic in New York City.Clin. Infect. Dis.200337221422010.1086/37582112856214
    [Google Scholar]
  52. JeongH.W. CheongH.J. KimW.J. KimM.J. SongK.J. SongJ.W. KimH.S. RohK.H. Loss of the 29-kilodalton outer membrane protein in the presence of OXA-51-like enzymes in Acinetobacter baumannii is associated with decreased imipenem susceptibility.Microb. Drug Resist.200915315115810.1089/mdr.2009.082819728771
    [Google Scholar]
  53. SmaniY. FàbregaA. RocaI. Sánchez-EncinalesV. VilaJ. PachónJ. Role of OmpA in the multidrug resistance phenotype of Acinetobacter baumannii.Antimicrob. Agents Chemother.20145831806180810.1128/AAC.02101‑1324379205
    [Google Scholar]
  54. MoffattJ.H. HarperM. HarrisonP. HaleJ.D.F. VinogradovE. SeemannT. HenryR. CraneB. St MichaelF. CoxA.D. AdlerB. NationR.L. LiJ. BoyceJ.D. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production.Antimicrob. Agents Chemother.201054124971497710.1128/AAC.00834‑1020855724
    [Google Scholar]
  55. LinM.F. LanC.Y. Antimicrobial resistance in Acinetobacter baumannii : From bench to bedside.World J. Clin. Cases201421278781410.12998/wjcc.v2.i12.78725516853
    [Google Scholar]
  56. LeeC.R. LeeJ.H. ParkM. ParkK.S. BaeI.K. KimY.B. ChaC.J. JeongB.C. LeeS.H. Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options.Front. Cell. Infect. Microbiol.201775510.3389/fcimb.2017.0005528348979
    [Google Scholar]
  57. ChevalierS. BouffartiguesE. BodilisJ. MaillotO. LesouhaitierO. FeuilloleyM.G.J. OrangeN. DufourA. CornelisP. Structure, function and regulation of Pseudomonas aeruginosa porins.FEMS Microbiol. Rev.201741569872210.1093/femsre/fux02028981745
    [Google Scholar]
  58. PangZ. RaudonisR. GlickB.R. LinT.J. ChengZ. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies.Biotechnol. Adv.201937117719210.1016/j.biotechadv.2018.11.01330500353
    [Google Scholar]
  59. LiH. LuoY.F. WilliamsB.J. BlackwellT.S. XieC.M. Structure and function of OprD protein in Pseudomonas aeruginosa: From antibiotic resistance to novel therapies.Int. J. Med. Microbiol.20123022636810.1016/j.ijmm.2011.10.00122226846
    [Google Scholar]
  60. DreierJ. RuggeroneP. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa.Front. Microbiol.2015666010.3389/fmicb.2015.0066026217310
    [Google Scholar]
  61. BruchmannS. DötschA. NouriB. ChabernyI.F. HäusslerS. Quantitative contributions of target alteration and decreased drug accumulation to Pseudomonas aeruginosa fluoroquinolone resistance.Antimicrob. Agents Chemother.20135731361136810.1128/AAC.01581‑1223274661
    [Google Scholar]
  62. ReynoldsD. KollefM. The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: An update.Drugs202181182117213110.1007/s40265‑021‑01635‑634743315
    [Google Scholar]
  63. RezaA. SuttonJ.M. RahmanK.M. Effectiveness of efflux pump inhibitors as biofilm disruptors and resistance breakers in gram-negative (ESKAPEE) bacteria.Antibiotics (Basel)20198422910.3390/antibiotics804022931752382
    [Google Scholar]
  64. SandersW.E.Jr SandersC.C. Enterobacter spp.: pathogens poised to flourish at the turn of the century.Clin. Microbiol. Rev.199710222024110.1128/CMR.10.2.2209105752
    [Google Scholar]
  65. RamirezD. GironM. Enterobacter Infections.StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  66. NordmannP. DortetL. PoirelL. Carbapenem resistance in Enterobacteriaceae: here is the storm!Trends Mol. Med.201218526327210.1016/j.molmed.2012.03.00322480775
    [Google Scholar]
  67. KongH.K. PanQ. LoW.U. LiuX. LawC.O.K. ChanT. HoP.L. LauT.C.K. Fine-tuning carbapenem resistance by reducing porin permeability of bacteria activated in the selection process of conjugation.Sci. Rep.2018811524810.1038/s41598‑018‑33568‑830323356
    [Google Scholar]
  68. GhoshS. LahiriD. NagM. DeyA. PanditS. SarkarT. PatiS. Abdul KariZ. IshakA.R. EdinurH.A. RayR.R. Phytocompound mediated blockage of quorum sensing cascade in ESKAPE pathogens.Antibiotics (Basel)20221116110.3390/antibiotics1101006135052938
    [Google Scholar]
  69. WagnerH. Ulrich-MerzenichG. Synergy research: Approaching a new generation of phytopharmaceuticals.Phytomedicine2009162-39711010.1016/j.phymed.2008.12.01819211237
    [Google Scholar]
  70. ShankarS.R. RangarajanR. SaradaD.V.L. KumarC.S. Evaluation of antibacterial activity and phytochemical screening of Wrightia tinctoria L.Pharmacogn. J.2010214192210.1016/S0975‑3575(10)80066‑5
    [Google Scholar]
  71. DenissenJ. ReynekeB. Waso-ReynekeM. HavengaB. BarnardT. KhanS. KhanW. Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health.Int. J. Hyg. Environ. Health202224411400610.1016/j.ijheh.2022.11400635841823
    [Google Scholar]
  72. SuganyaT. PackiavathyI.A.S.V. AseervathamG.S.B. CarmonaA. RashmiV. MariappanS. DeviN.R. AnanthD.A. Tackling multiple-drug-resistant bacteria with conventional and complex phytochemicals.Front. Cell. Infect. Microbiol.20221288383910.3389/fcimb.2022.88383935846771
    [Google Scholar]
  73. VaouN. StavropoulouE. VoidarouC. TsigalouC. BezirtzoglouE. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives.Microorganisms2021910204110.3390/microorganisms910204134683362
    [Google Scholar]
  74. BarbieriR. CoppoE. MarcheseA. DagliaM. Sobarzo-SánchezE. NabaviS.F. NabaviS.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity.Microbiol. Res.2017196446810.1016/j.micres.2016.12.00328164790
    [Google Scholar]
  75. RekerD. PernaA.M. RodriguesT. SchneiderP. ReutlingerM. MönchB. KoeberleA. LamersC. GablerM. SteinmetzH. MüllerR. Schubert-ZsilaveczM. WerzO. SchneiderG. Revealing the macromolecular targets of complex natural products.Nat. Chem.20146121072107810.1038/nchem.209525411885
    [Google Scholar]
  76. BanerjeeT. SarS. SahaS. BaidyaA. SarkarA. KarmakarS. HalderA.K. GhoshN. Herbal Medicines for the Treatment of Liver Cirrhosis.Role of Herbal Medicines. DharaA.K. MandalS.C. SingaporeSpringer Nature Singapore202318520910.1007/978‑981‑99‑7703‑1_10
    [Google Scholar]
  77. ThawabtehA. JumaS. BaderM. KaramanD. ScranoL. BufoS. KaramanR. The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens.Toxins (Basel)2019111165610.3390/toxins1111065631717922
    [Google Scholar]
  78. W Obiang-ObounouB. KangO.H. ChoiJ.G. KeumJ.H. KimS.B. MunS.H. ShinD.W. Woo KimK. ParkC.B. KimY.G. HanS.H. KwonD.Y. The mechanism of action of sanguinarine against methicillin-resistant Staphylococcus aureus.J. Toxicol. Sci.201136327728310.2131/jts.36.27721628956
    [Google Scholar]
  79. GuY. DongJ. LiJ. LuoQ. DongX. TangG. ZhangJ. DuX. PuQ. HeL. ZhaoK. HanD. XinJ. Antibacterial activity and mechanism of sanguinarine against Staphylococcus aureus by interfering with the permeability of the cell wall and membrane and inducing bacterial ROS production.Front. Vet. Sci.202310112108210.3389/fvets.2023.112108237065245
    [Google Scholar]
  80. SulaimanM. JannatK. NissapatornV. RahmatullahM. PaulA.K. de Lourdes PereiraM. RajagopalM. SuleimanM. ButlerM.S. BreakM.K.B. WeberJ.F. WilairatanaP. WiartC. Antibacterial and antifungal alkaloids from Asian angiosperms: Distribution, mechanisms of action, structure-activity, and clinical potentials.Antibiotics (Basel)2022119114610.3390/antibiotics1109114636139926
    [Google Scholar]
  81. CushnieT.P.T. CushnieB. LambA.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities.Int. J. Antimicrob. Agents201444537738610.1016/j.ijantimicag.2014.06.00125130096
    [Google Scholar]
  82. SiriyongT. SrimanoteP. ChusriS. YingyongnarongkulB. SuaisomC. TipmaneeV. VoravuthikunchaiS.P. Conessine as a novel inhibitor of multidrug efflux pump systems in Pseudomonas aeruginosa.BMC Complement. Altern. Med.201717140510.1186/s12906‑017‑1913‑y28806947
    [Google Scholar]
  83. SiriyongT. ChusriS. SrimanoteP. TipmaneeV. VoravuthikunchaiS.P. Holarrhena antidysenterica extract and its steroidal alkaloid, conessine, as resistance-modifying agents against extensively drug-resistant Acinetobacter baumannii.Microb. Drug Resist.201622427328210.1089/mdr.2015.019426745443
    [Google Scholar]
  84. KhamenehB. IranshahyM. SoheiliV. Fazly BazzazB.S. Review on plant antimicrobials: a mechanistic viewpoint.Antimicrob. Resist. Infect. Control20198111810.1186/s13756‑019‑0559‑631346459
    [Google Scholar]
  85. LangloisJ.P. MilletteG. GuayI. Dubé-DuquetteA. ChamberlandS. JacquesP.É. RodrigueS. BouarabK. MarsaultÉ. MalouinF. Bactericidal activity of the bacterial ATP synthase inhibitor tomatidine and the combination of tomatidine and aminoglycoside against persistent and virulent forms of Staphylococcus aureus. Front. Microbiol.20201180510.3389/fmicb.2020.0080532431678
    [Google Scholar]
  86. KhanI.A. MirzaZ.M. KumarA. VermaV. QaziG.N. Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrob. Agents Chemother.200650281081210.1128/AAC.50.2.810‑812.200616436753
    [Google Scholar]
  87. KhamenehB. IranshahyM. GhandadiM. Ghoochi AtashbeykD. Fazly BazzazB.S. IranshahiM. Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus.Drug Dev. Ind. Pharm.201541698999410.3109/03639045.2014.92002524842547
    [Google Scholar]
  88. KumarA. KhanI.A. KoulS. KoulJ.L. TanejaS.C. AliI. AliF. SharmaS. MirzaZ.M. KumarM. SangwanP.L. GuptaP. ThotaN. QaziG.N. Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus.J. Antimicrob. Chemother.20086161270127610.1093/jac/dkn08818334493
    [Google Scholar]
  89. DasS. MalikM. DastidarD.G. RoyR. PaulP. SarkarS. ChakrabortyP. MaityA. DasguptaM. GuptaA.D. ChatterjeeS. SarkerR.K. MaitiD. TribediP. Piperine, a phytochemical prevents the biofilm city of methicillin-resistant Staphylococcus aureus: A biochemical approach to understand the underlying mechanism.Microb. Pathog.202418910660110.1016/j.micpath.2024.10660138423404
    [Google Scholar]
  90. GaoW.W. GopalaL. BheemanaboinaR.R.Y. ZhangG.B. LiS. ZhouC.H. Discovery of 2-aminothiazolyl berberine derivatives as effectively antibacterial agents toward clinically drug-resistant Gram-negative Acinetobacter baumanii.Eur. J. Med. Chem.2018146153710.1016/j.ejmech.2018.01.03829396362
    [Google Scholar]
  91. YuH.H. KimK.J. ChaJ.D. KimH.K. LeeY.E. ChoiN.Y. YouY.O. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J. Med. Food20058445446110.1089/jmf.2005.8.45416379555
    [Google Scholar]
  92. ChuM. ZhangM. LiuY. KangJ. ChuZ. YinK. DingL. DingR. XiaoR. YinY. LiuX. WangY. Role of berberine in the treatment of methicillin-resistant Staphylococcus aureus infections.Sci. Rep.2016612474810.1038/srep2474827103062
    [Google Scholar]
  93. CasciaroB. MangiardiL. CappielloF. RomeoI. LoffredoM.R. IazzettiA. CalcaterraA. GoggiamaniA. GhirgaF. MangoniM.L. BottaB. QuaglioD. Naturally-occurring alkaloids of plant origin as potential antimicrobials against antibiotic-resistant infections.Molecules20202516361910.3390/molecules2516361932784887
    [Google Scholar]
  94. TaC. ArnasonJ. Mini review of phytochemicals and plant taxa with activity as microbial biofilm and quorum sensing inhibitors.Molecules20152112910.3390/molecules2101002926712734
    [Google Scholar]
  95. MageshH. KumarA. AlamA. Identification of natural compounds which inhibit biofilm formation in clinical isolates of Klebsiella Pneumoniae.Indian J. Exp. Biol.201351976477224377137
    [Google Scholar]
  96. FarzandR. RajakumarK. BarerM.R. FreestoneP.P.E. MukamolovaG.V. OggioniM.R. O’HareH.M. A virulence associated siderophore importer reduces antimicrobial susceptibility of Klebsiella pneumoniae. Front. Microbiol.20211260751210.3389/fmicb.2021.60751233584611
    [Google Scholar]
  97. ParaiD. BanerjeeM. DeyP. MukherjeeS.K. Reserpine attenuates biofilm formation and virulence of Staphylococcus aureus.Microb. Pathog.202013810379010.1016/j.micpath.2019.10379031605761
    [Google Scholar]
  98. SrideviD. ShankarC. PrakashP. ParkJ.H. KaliannanT. Inhibitory effects of reserpine against efflux pump activity of antibiotic resistance bacteria.Chem. Biol. Lett.201746972
    [Google Scholar]
  99. AshrafM.V. PantS. KhanM.A.H. ShahA.A. SiddiquiS. JeridiM. AlhamdiH.W.S. AhmadS. Phytochemicals as antimicrobials: Prospecting Himalayan medicinal plants as source of alternate medicine to combat antimicrobial resistance.Pharmaceuticals (Basel)202316688110.3390/ph1606088137375828
    [Google Scholar]
  100. LimaM.C. Paiva de SousaC. Fernandez-PradaC. HarelJ. DubreuilJ.D. de SouzaE.L. A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria.Microb. Pathog.201913025927010.1016/j.micpath.2019.03.02530917922
    [Google Scholar]
  101. SarkarA. PaulA. BanerjeeT. MajiA. SahaS. BishayeeA. MaityT.K. Therapeutic advancements in targeting BCL-2 family proteins by epigenetic regulators, natural, and synthetic agents in cancer.Eur. J. Pharmacol.202394417558810.1016/j.ejphar.2023.17558836791843
    [Google Scholar]
  102. EcevitK. BarrosA.A. SilvaJ.M. ReisR.L. Preventing microbial infections with natural phenolic compounds.Future Pharmacology20222446049810.3390/futurepharmacol2040030
    [Google Scholar]
  103. ChenC.C. HuangC.Y. Inhibition of Klebsiella pneumoniae DnaB helicase by the flavonol galangin.Protein J.2011301596510.1007/s10930‑010‑9302‑021210194
    [Google Scholar]
  104. LobiucA. PavălN.E. MangalagiuI.I. GheorghițăR. TelibanG.C. Amăriucăi-MantuD. StoleruV. Future antimicrobials: natural and functionalized phenolics.Molecules2023283111410.3390/molecules2803111436770780
    [Google Scholar]
  105. HuangY.H. HuangC.C. ChenC.C. YangK.J. HuangC.Y. Inhibition of Staphylococcus aureus PriA Helicase by Flavonol Kaempferol.Protein J.201534316917210.1007/s10930‑015‑9609‑y25894858
    [Google Scholar]
  106. HollerJ.G. ChristensenS.B. SlotvedH.C. RasmussenH.B. GúzmanA. OlsenC.E. PetersenB. MølgaardP. Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a kaempferol rhamnoside isolated from Persea lingue Nees.J. Antimicrob. Chemother.20126751138114410.1093/jac/dks00522311936
    [Google Scholar]
  107. ChanB.C.L. IpM. LauC.B.S. LuiS.L. JolivaltC. Ganem-ElbazC. LitaudonM. ReinerN.E. GongH. SeeR.H. FungK.P. LeungP.C. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase.J. Ethnopharmacol.2011137176777310.1016/j.jep.2011.06.03921782012
    [Google Scholar]
  108. LuoJ. DongB. WangK. CaiS. LiuT. ChengX. LeiD. ChenY. LiY. KongJ. ChenY. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model.PLoS One2017124e017688310.1371/journal.pone.017688328453568
    [Google Scholar]
  109. LuoJ. KongJ. DongB. HuangH. WangK. HouC. LiangY. LiB. ChenY. WuL. Baicalein attenuates the quorum sensing-controlled virulence factors of Pseudomonas aeruginosa and relieves the inflammatory response in P. aeruginosa-infected macrophages by downregulating the MAPK and NFκB signal-transduction pathways.Drug Des. Devel. Ther.20161018320310.2147/DDDT.S9722126792984
    [Google Scholar]
  110. GibbonsS. MoserE. KaatzG.W. Catechin gallates inhibit multidrug resistance (MDR) in Staphylococcus aureus. Planta Med.200470121240124210.1055/s‑2004‑83586015643566
    [Google Scholar]
  111. ZhaoY. QuY. TangJ. ChenJ. LiuJ. Tea catechin inhibits biofilm formation of methicillin-resistant s. aureus.J. Food Qual.202120211710.1155/2021/8873091
    [Google Scholar]
  112. VandeputteO.M. KiendrebeogoM. RasamiravakaT. StévignyC. DuezP. RajaonsonS. DialloB. MolA. BaucherM. El JaziriM. The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1.Microbiology (Reading)201115772120213210.1099/mic.0.049338‑021546585
    [Google Scholar]
  113. HusainF.M. PerveenK. QaisF.A. AhmadI. AlfarhanA.H. El-SheikhM.A. Naringin inhibits the biofilms of metallo-β-lactamases (MβLs) producing Pseudomonas species isolated from camel meat.Saudi J. Biol. Sci.202128133334110.1016/j.sjbs.2020.10.00933424314
    [Google Scholar]
  114. BorgesA. FerreiraC. SaavedraM.J. SimõesM. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria.Microb. Drug Resist.201319425626510.1089/mdr.2012.024423480526
    [Google Scholar]
  115. TyagiP. SinghM. KumariH. KumariA. MukhopadhyayK. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane.PLoS One2015103e012131310.1371/journal.pone.012131325811596
    [Google Scholar]
  116. WangJ. ZhouX. LiW. DengX. DengY. NiuX. Curcumin protects mice from Staphylococcus aureus pneumonia by interfering with the self-assembly process of α-hemolysin.Sci. Rep.2016612825410.1038/srep2825427345357
    [Google Scholar]
  117. HettiarachchiS.S. PereraY. DunuweeraS.P. DunuweeraA.N. RajapakseS. RajapakseR.M.G. Comparison of antibacterial activity of nanocurcumin with bulk curcumin.ACS Omega2022750464944650010.1021/acsomega.2c0529336570282
    [Google Scholar]
  118. TiwariV. RoyR. TiwariM. Antimicrobial active herbal compounds against Acinetobacter baumannii and other pathogens.Front. Microbiol.2015661810.3389/fmicb.2015.0061826150810
    [Google Scholar]
  119. RaoraneC.J. LeeJ.H. KimY.G. RajasekharanS.K. García-ContrerasR. LeeJ. Antibiofilm and antivirulence efficacies of flavonoids and curcumin against Acinetobacter baumannii. Front. Microbiol.20191099010.3389/fmicb.2019.0099031134028
    [Google Scholar]
  120. BettsJ.W. KellyS.M. HaswellS.J. Antibacterial effects of theaflavin and synergy with epicatechin against clinical isolates of Acinetobacter baumannii and Stenotrophomonas maltophilia.Int. J. Antimicrob. Agents201138542142510.1016/j.ijantimicag.2011.07.00621885260
    [Google Scholar]
  121. LiuT. PanY. LaiR. New mechanism of Magnolol and Honokiol from Magnolia officinalis against Staphylococcus aureus.Nat. Prod. Commun.2014991934578X140090092210.1177/1934578X140090092225918799
    [Google Scholar]
  122. ChiuK.C. ShihY.H. WangT.H. LanW.C. LiP.J. JhuangH.S. HsiaS.M. ShenY.W. Yuan-Chien ChenM. ShiehT.M. In vitro antimicrobial and antipro-inflammation potential of honokiol and magnolol against oral pathogens and macrophages.J. Formos. Med. Assoc.2021120282783710.1016/j.jfma.2020.09.00232978046
    [Google Scholar]
  123. XuZ. LiK. PanT. LiuJ. LiB. LiC. WangS. DiaoY. LiuX. Lonicerin, an anti-algE flavonoid against Pseudomonas aeruginosa virulence screened from Shuanghuanglian formula by molecule docking based strategy.J. Ethnopharmacol.201923911190910.1016/j.jep.2019.11190931026553
    [Google Scholar]
  124. XuY. ShiC. WuQ. ZhengZ. LiuP. LiG. PengX. XiaX. Antimicrobial activity of punicalagin against Staphylococcus aureus and its effect on biofilm formation.Foodborne Pathog. Dis.201714528228710.1089/fpd.2016.222628128637
    [Google Scholar]
  125. SongW. WangL. JinM. GuoX. WangX. GuanJ. ZhaoY. Punicalagin, an inhibitor of Sortase A, is a promising therapeutic drug to combat methicillin-resistant Staphylococcus aureus infections.Antimicrob. Agents Chemother.2022666e00224-2210.1128/aac.00224‑2235652646
    [Google Scholar]
  126. LiT. LuY. ZhangH. WangL. BeierR.C. JinY. WangW. LiH. HouX. Antibacterial activity and membrane-targeting mechanism of aloe-emodin against Staphylococcus epidermidis. Front. Microbiol.20211262186610.3389/fmicb.2021.62186634484130
    [Google Scholar]
  127. LiuL. YuJ. ShenX. CaoX. ZhanQ. GuoY. YuF. Resveratrol enhances the antimicrobial effect of polymyxin B on Klebsiella pneumoniae and Escherichia coli isolates with polymyxin B resistance.BMC Microbiol.202020130610.1186/s12866‑020‑01995‑133045992
    [Google Scholar]
  128. SantosM. SantosR. SoeiroP. SilvestreS. FerreiraS. Resveratrol as an inhibitor of the NorA efflux pump and resistance modulator in Staphylococcus aureus. Antibiotics (Basel)2023127116810.3390/antibiotics1207116837508264
    [Google Scholar]
  129. BanerjeeT. SarkarA. AliS.Z. BhowmikR. KarmakarS. HalderA.K. GhoshN. Bioprotective role of phytocompounds against the pathogenesis of non-alcoholic fatty liver disease to non-alcoholic steatohepatitis: unravelling underlying molecular mechanisms.Planta Med.202490967570710.1055/a‑2277‑480538458248
    [Google Scholar]
  130. OldfieldE. LinF.Y. Terpene biosynthesis: modularity rules.Angew. Chem. Int. Ed.20125151124113710.1002/anie.20110311022105807
    [Google Scholar]
  131. BoncanD.A.T. TsangS.S.K. LiC. LeeI.H.T. LamH.M. ChanT.F. HuiJ.H.L. Terpenes and terpenoids in plants: interactions with environment and insects.Int. J. Mol. Sci.20202119738210.3390/ijms2119738233036280
    [Google Scholar]
  132. PaduchR. Kandefer-SzerszeńM. TrytekM. FiedurekJ. Terpenes: substances useful in human healthcare.Arch. Immunol. Ther. Exp. (Warsz.)200755531532710.1007/s00005‑007‑0039‑118219762
    [Google Scholar]
  133. KnowlesJ.R. RollerS. MurrayD.B. NaiduA.S. Antimicrobial action of carvacrol at different stages of dual-species biofilm development by Staphylococcus aureus and Salmonella enterica serovar Typhimurium.Appl. Environ. Microbiol.200571279780310.1128/AEM.71.2.797‑803.200515691933
    [Google Scholar]
  134. SelvarajA. ValliammaiA. MuthuramalingamP. PriyaA. SubaM. RameshM. Karutha PandianS. Carvacrol targets SarA and CrtM of methicillin-resistant Staphylococcus aureus to mitigate biofilm formation and staphyloxanthin synthesis: an in vitro and in vivo approach.ACS Omega2020548311003111410.1021/acsomega.0c0425233324819
    [Google Scholar]
  135. Tapia-RodriguezM.R. Bernal-MercadoA.T. Gutierrez-PachecoM.M. Vazquez-ArmentaF.J. Hernandez-MendozaA. Gonzalez-AguilarG.A. Martinez-TellezM.A. NazzaroF. Ayala-ZavalaJ.F. Virulence of Pseudomonas aeruginosa exposed to carvacrol: alterations of the Quorum sensing at enzymatic and gene levels.J. Cell Commun. Signal.201913453153710.1007/s12079‑019‑00516‑830903602
    [Google Scholar]
  136. Tapia-RodriguezM.R. Hernandez-MendozaA. Gonzalez-AguilarG.A. Martinez-TellezM.A. MartinsC.M. Ayala-ZavalaJ.F. Carvacrol as potential quorum sensing inhibitor of Pseudomonas aeruginosa and biofilm production on stainless steel surfaces.Food Control20177525526110.1016/j.foodcont.2016.12.014
    [Google Scholar]
  137. Tapia-RodriguezM.R. Cantu-SotoE.U. Vazquez-ArmentaF.J. Bernal-MercadoA.T. Ayala-ZavalaJ.F. Inhibition of Acinetobacter baumannii biofilm formation by terpenes from oregano (Lippia graveolens) essential oil.Antibiotics (Basel)20231210153910.3390/antibiotics1210153937887240
    [Google Scholar]
  138. Bisso NdezoB. Tokam KuatéC.R. DzoyemJ.P. Synergistic antibiofilm efficacy of thymol and piperine in combination with three aminoglycoside antibiotics against Klebsiella pneumoniae biofilms.Can. J. Infect. Dis. Med. Microbiol.202120211810.1155/2021/702994434790281
    [Google Scholar]
  139. Abdel-HalimM.S. AskouraM. MansourB. YahyaG. El-GaninyA.M. In vitro activity of celastrol in combination with thymol against carbapenem-resistant Klebsiella pneumoniae isolates.J. Antibiot. (Tokyo)2022751267969010.1038/s41429‑022‑00566‑y36167781
    [Google Scholar]
  140. Sousa SilveiraZ. MacêdoN.S. Sampaio dos SantosJ.F. Sampaio de FreitasT. Rodrigues dos Santos BarbosaC. JúniorD.L.S. MunizD.F. Castro de OliveiraL.C. JúniorJ.P.S. CunhaF.A.B. Melo CoutinhoH.D. BalbinoV.Q. MartinsN. Evaluation of the antibacterial activity and efflux pump reversal of thymol and carvacrol against Staphylococcus aureus and their toxicity in Drosophila melanogaster. Molecules2020259210310.3390/molecules2509210332365898
    [Google Scholar]
  141. LiQ. HuangK.X. PanS. SuC. BiJ. LuX. Thymol disrupts cell homeostasis and inhibits the growth of Staphylococcus aureus.Contrast Media Mol. Imaging202220221874309610.1155/2022/874309636034206
    [Google Scholar]
  142. YuanZ. DaiY. OuyangP. RehmanT. HussainS. ZhangT. YinZ. FuH. LinJ. HeC. LvC. LiangX. ShuG. SongX. LiL. ZouY. YinL. Thymol inhibits biofilm formation, eliminates pre-existing biofilms, and enhances clearance of methicillin-resistant Staphylococcus aureus (MRSA) in a mouse peritoneal implant infection model.Microorganisms2020819910.3390/microorganisms801009931936809
    [Google Scholar]
  143. LahiriD. NagM. DuttaB. DeyS. MukherjeeD. JoshiS.J. RayR.R. Antibiofilm and anti‐quorum sensing activities of eugenol and linalool from Ocimum tenuiflorum against Pseudomonas aeruginosa biofilm.J. Appl. Microbiol.202113162821283710.1111/jam.1517134077580
    [Google Scholar]
  144. LiH. LiC. ShiC. AlharbiM. CuiH. LinL. Phosphoproteomics analysis reveals the anti-bacterial and anti-virulence mechanism of eugenol against Staphylococcus aureus and its application in meat products.Int. J. Food Microbiol.202441411062110.1016/j.ijfoodmicro.2024.11062138341904
    [Google Scholar]
  145. PichikaM.R. MakK-K. KamalM.B. AyubaS.B. SakirollaR. KangY-B. MohandasK. BalijepalliM.K. AhmadS.H. A comprehensive review on eugenol’s antimicrobial properties and industry applications: A transformation from ethnomedicine to industry.Pharmacogn. Rev.20191325110.4103/phrev.phrev_46_18
    [Google Scholar]
  146. QianW. WangW. ZhangJ. WangT. LiuM. YangM. SunZ. LiX. LiY. Antimicrobial and antibiofilm activities of ursolic acid against carbapenem-resistant Klebsiella pneumoniae.J. Antibiot. (Tokyo)202073638239110.1038/s41429‑020‑0285‑632051569
    [Google Scholar]
  147. OloyedeH.O.B. AjiboyeH.O. SalawuM.O. AjiboyeT.O. Influence of oxidative stress on the antibacterial activity of betulin, betulinic acid and ursolic acid.Microb. Pathog.201711133834410.1016/j.micpath.2017.08.01228807773
    [Google Scholar]
  148. TogashiN. HamashimaH. ShiraishiA. InoueY. TakanoA. Antibacterial activities against Staphylococcus aureus of terpene alcohols with aliphatic carbon chains.J. Essent. Oil Res.201022326326910.1080/10412905.2010.9700321
    [Google Scholar]
  149. OlivaA. CostantiniS. De AngelisM. GarzoliS. BožovićM. MascellinoM. VulloV. RagnoR. High potency of Melaleuca alternifolia essential oil against multi-drug resistant gram-negative bacteria and Methicillin-Resistant Staphylococcus aureus. Molecules20182310258410.3390/molecules2310258430304862
    [Google Scholar]
  150. YangS.K. YusoffK. AjatM. YapW.S. LimS.H.E. LaiK.S. Antimicrobial activity and mode of action of terpene linalyl anthranilate against carbapenemase-producing Klebsiella pneumoniae. J. Pharm. Anal.202111221021910.1016/j.jpha.2020.05.01434012697
    [Google Scholar]
  151. SaviucC. GheorgheI. ÇobanŞ. DrumeaV. ChifiriucM. BanuO. BezirtzoglouE. LazărV. Rosmarinus officinalis essential oil and eucalyptol act as efflux pumps inhibitors and increase ciprofloxacin efficiency against Pseudomonas aeruginosa and acinetobacter baumannii MDR strains.2016
    [Google Scholar]
  152. MorenoS. GalvánE. VázquezN. FiorilliG. Caceres GuidoP. Antibacterial Efficacy of Rosmarinus Officinalis Phytochemicals against Nosocomial Multidrug-Resistant Bacteria Grown in Planktonic Culture and Biofilm.The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs201538
    [Google Scholar]
  153. GoncharovN.V. BelinskaiaD.A. UkolovA.I. JenkinsR.O. AvdoninP.V. Organosulfur compounds as nutraceuticals.Nutraceuticals.Elsevier202191192410.1016/B978‑0‑12‑821038‑3.00054‑9
    [Google Scholar]
  154. AbuajahC.I. OgbonnaA.C. OsujiC.M. Functional components and medicinal properties of food: a review.J. Food Sci. Technol.20155252522252910.1007/s13197‑014‑1396‑525892752
    [Google Scholar]
  155. SimY.Y. NyamK.L. Cold pressed onion (Allium Cepa L.) seed oil.Cold Pressed Oils.Elsevier202029530710.1016/B978‑0‑12‑818188‑1.00026‑8
    [Google Scholar]
  156. BorlinghausJ. Foerster Née ReiterJ. KapplerU. AntelmannH. NollU. GruhlkeM.C.H. SlusarenkoA.J. Allicin, the odor of freshly crushed garlic: A review of recent progress in understanding allicin’s effects on cells.Molecules2021266150510.3390/molecules2606150533801955
    [Google Scholar]
  157. LanzottiV. BonanomiG. ScalaF. What makes Allium species effective against pathogenic microbes?Phytochem. Rev.201312475177210.1007/s11101‑013‑9295‑3
    [Google Scholar]
  158. CutlerR.R. WilsonP. Antibacterial activity of a new, stable, aqueous extract of allicin against methicillin-resistant Staphylococcus aureus.Br. J. Biomed. Sci.2004612717410.1080/09674845.2004.1173264615250668
    [Google Scholar]
  159. LoiV.V. HuyenN.T.T. BuscheT. TungQ.N. GruhlkeM.C.H. KalinowskiJ. BernhardtJ. SlusarenkoA.J. AntelmannH. Staphylococcus aureus responds to allicin by global S-thioallylation – Role of the Brx/BSH/YpdA pathway and the disulfide reductase MerA to overcome allicin stress.Free Radic. Biol. Med.2019139556910.1016/j.freeradbiomed.2019.05.01831121222
    [Google Scholar]
  160. Nikpour MoghadamS. Nikpour MoghadamS. The antibacterial effect of aqueous extract of garlic against resistant Enterococci.Medical Laboratory Journal201610171210.18869/acadpub.mlj.10.1.7
    [Google Scholar]
  161. IciekM. KwiecieńI. WłodekL. Biological properties of garlic and garlic‐derived organosulfur compounds.Environ. Mol. Mutagen.200950324726510.1002/em.2047419253339
    [Google Scholar]
  162. FongJ. YuanM. JakobsenT.H. MortensenK.T. Delos SantosM.M.S. ChuaS.L. YangL. TanC.H. NielsenT.E. GivskovM. Disulfide bond-containing ajoene analogues as novel quorum sensing inhibitors of Pseudomonas aeruginosa .J. Med. Chem.201760121522710.1021/acs.jmedchem.6b0102527977197
    [Google Scholar]
  163. KyungK.H. LeeY.C. Antimicrobial activities of sulfur compounds derived from S-alk (en)yl-l-cysteine sulfoxides in Allium and Brassica.Food Rev. Int.200117218319810.1081/FRI‑100000268
    [Google Scholar]
  164. VanduchovaA. AnzenbacherP. AnzenbacherovaE. Isothiocyanate from broccoli, sulforaphane, and its properties.J. Med. Food201922212112610.1089/jmf.2018.002430372361
    [Google Scholar]
  165. GaninH. RayoJ. AmaraN. LevyN. KriefP. MeijlerM.M. Sulforaphane and erucin, natural isothiocyanates from broccoli, inhibit bacterial quorum sensing.MedChemComm20134117517910.1039/C2MD20196H
    [Google Scholar]
  166. JubairN. RajagopalM. ChinnappanS. AbdullahN.B. FatimaA. Review on the antibacterial mechanism of plant-derived compounds against Multidrug-Resistant Bacteria (MDR).Evid. Based Complement. Alternat. Med.2021202113010.1155/2021/366331534447454
    [Google Scholar]
  167. AlibiS. CrespoD. NavasJ. Plant-derivatives small molecules with antibacterial activity.Antibiotics (Basel)202110323110.3390/antibiotics1003023133668943
    [Google Scholar]
  168. ShriramV. JahagirdarS. LathaC. KumarV. PuranikV. RojatkarS. DhakephalkarP.K. ShitoleM.G. A potential plasmid-curing agent, 8-epidiosbulbin E acetate, from Dioscorea bulbifera L. against multidrug-resistant bacteria.Int. J. Antimicrob. Agents200832540541010.1016/j.ijantimicag.2008.05.01318718743
    [Google Scholar]
  169. DuanF. LiX. CaiS. XinG. WangY. DuD. HeS. HuangB. GuoX. ZhaoH. ZhangR. MaL. LiuY. DuQ. WeiZ. XingZ. LiangY. WuX. FanC. JiC. ZengD. ChenQ. HeY. LiuX. HuangW. Haloemodin as novel antibacterial agent inhibiting DNA gyrase and bacterial topoisomerase I.J. Med. Chem.20145793707371410.1021/jm401685f24588790
    [Google Scholar]
  170. GopuV. KothandapaniS. ShettyP.H. Quorum quenching activity of Syzygium cumini (L.) Skeels and its anthocyanin malvidin against Klebsiella pneumoniae.Microb. Pathog.201579616910.1016/j.micpath.2015.01.01025637095
    [Google Scholar]
  171. TrentinD.S. SilvaD.B. AmaralM.W. ZimmerK.R. SilvaM.V. LopesN.P. GiordaniR.B. MacedoA.J. Tannins possessing bacteriostatic effect impair Pseudomonas aeruginosa adhesion and biofilm formation.PLoS One201386e6625710.1371/journal.pone.006625723776646
    [Google Scholar]
  172. ChristenaL.R. SubramaniamS. VidhyalakshmiM. MahadevanV. SivasubramanianA. NagarajanS. Dual role of pinostrobin-a flavonoid nutraceutical as an efflux pump inhibitor and antibiofilm agent to mitigate food borne pathogens.RSC Advances2015576618816188710.1039/C5RA07165H
    [Google Scholar]
  173. LopesL.A.A. dos Santos RodriguesJ.B. MagnaniM. de SouzaE.L. de Siqueira-JúniorJ.P. Inhibitory effects of flavonoids on biofilm formation by Staphylococcus aureus that overexpresses efflux protein genes.Microb. Pathog.201710719319710.1016/j.micpath.2017.03.03328365326
    [Google Scholar]
  174. OuyangJ. SunF. FengW. SunY. QiuX. XiongL. LiuY. ChenY. Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa .J. Appl. Microbiol.2016120496697410.1111/jam.1307326808465
    [Google Scholar]
  175. MunS.H. JoungD.K. KimS.B. ParkS.J. SeoY.S. GongR. ChoiJ.G. ShinD.W. RhoJ.R. KangO.H. KwonD.Y. The mechanism of antimicrobial activity of sophoraflavanone B against methicillin-resistant Staphylococcus aureus. Foodborne Pathog. Dis.201411323423910.1089/fpd.2013.162724601672
    [Google Scholar]
  176. DasM.C. SandhuP. GuptaP. RudrapaulP. DeU.C. TribediP. AkhterY. BhattacharjeeS. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: A combinatorial study with azithromycin and gentamicin.Sci. Rep.2016612334710.1038/srep2334727000525
    [Google Scholar]
  177. WangS. FengY. HanX. CaiX. YangL. LiuC. ShenL. Inhibition of virulence factors and biofilm formation by wogonin attenuates pathogenicity of Pseudomonas aeruginosa PAO1 via Targeting pqs quorum-sensing system.Int. J. Mol. Sci.202122231269910.3390/ijms22231269934884499
    [Google Scholar]
  178. PangD. LiaoS. WangW. MuL. LiE. ShenW. LiuF. ZouY. Destruction of the cell membrane and inhibition of cell phosphatidic acid biosynthesis in Staphylococcus aureus : an explanation for the antibacterial mechanism of morusin.Food Funct.201910106438644610.1039/C9FO01233H31524213
    [Google Scholar]
  179. MiyasakiY. RabensteinJ.D. RheaJ. CrouchM.L. MocekU.M. KittellP.E. MorganM.A. NicholsW.S. Van BenschotenM.M. HardyW.D. LiuG.Y. Isolation and characterization of antimicrobial compounds in plant extracts against multidrug-resistant Acinetobacter baumannii.PLoS One201384e6159410.1371/journal.pone.006159423630600
    [Google Scholar]
  180. ChenB.C. DingZ.S. DaiJ.S. ChenN.P. GongX.W. MaL.F. QianC.D. New insights into the antibacterial mechanism of cryptotanshinone, a representative diterpenoid quinone From Salvia miltiorrhiza Bunge.Front. Microbiol.20211264728910.3389/fmicb.2021.64728933717044
    [Google Scholar]
  181. YuanZ. OuyangP. GuK. RehmanT. ZhangT. YinZ. FuH. LinJ. HeC. ShuG. LiangX. YuanZ. SongX. LiL. ZouY. YinL. The antibacterial mechanism of oridonin against methicillin-resistant Staphylococcus aureus (MRSA).Pharm. Biol.201957171071610.1080/13880209.2019.167434231622118
    [Google Scholar]
  182. ZhangL. BaoM. LiuB. ZhaoH. ZhangY. JiX. ZhaoN. ZhangC. HeX. YiJ. TanY. LiL. LuC. Effect of andrographolide and its analogs on bacterial infection: a review.Pharmacology20201053-412313410.1159/00050341031694037
    [Google Scholar]
  183. GoelS. MishraP. Thymoquinone inhibits biofilm formation and has selective antibacterial activity due to ROS generation.Appl. Microbiol. Biotechnol.201810241955196710.1007/s00253‑018‑8736‑829356869
    [Google Scholar]
  184. ChangC.Y. KrishnanT. WangH. ChenY. YinW.F. ChongY.M. TanL.Y. ChongT.M. ChanK.G. Non-antibiotic quorum sensing inhibitors acting against N-acyl homoserine lactone synthase as druggable target.Sci. Rep.201441724510.1038/srep0724525430794
    [Google Scholar]
  185. DecarvalhoC. DafonsecaM. Carvone: Why and how should one bother to produce this terpene.Food Chem.200695341342210.1016/j.foodchem.2005.01.003
    [Google Scholar]
  186. LimaverdeP.W. CampinaF.F. da CunhaF.A.B. CrispimF.D. FigueredoF.G. LimaL.F. Datiane de M Oliveira-TintinoC. de MatosY.M.L.S. Morais-BragaM.F.B. MenezesI.R.A. BalbinoV.Q. CoutinhoH.D.M. Siqueira-JúniorJ.P. AlmeidaJ.R.G.S. TintinoS.R. Inhibition of the TetK efflux-pump by the essential oil of Chenopodium ambrosioides L. and α-terpinene against Staphylococcus aureus IS-58.Food Chem. Toxicol.2017109Pt 295796110.1016/j.fct.2017.02.03128238773
    [Google Scholar]
  187. KimH.S. LeeS.H. ByunY. ParkH.D. 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition.Sci. Rep.201551865610.1038/srep0865625728862
    [Google Scholar]
  188. TsaoS.M. LiuW.H. YinM.C. Two diallyl sulphides derived from garlic inhibit meticillin-resistant Staphylococcus aureus infection in diabetic mice.J. Med. Microbiol.200756680380810.1099/jmm.0.46998‑017510266
    [Google Scholar]
  189. LiW.R. MaY.K. XieX.B. ShiQ.S. WenX. SunT.L. PengH. Diallyl disulfide from garlic oil inhibits Pseudomonas aeruginosa quorum sensing systems and corresponding virulence factors.Front. Microbiol.20199322210.3389/fmicb.2018.0322230666240
    [Google Scholar]
  190. BeeviS.S. MangamooriL.N. DhandV. RamakrishnaD.S. Isothiocyanate profile and selective antibacterial activity of root, stem, and leaf extracts derived from Raphanus sativus L.Foodborne Pathog. Dis.20096112913610.1089/fpd.2008.016619182965
    [Google Scholar]
  191. MisraA.K. GoudaP. Phamacological study of alkaloid Hirsutine-3-o-Glycopyranoside isolated from roots of Cocullus Hirsutus.Int. J. Pharmacogn. Phytochem. Res.20146317319
    [Google Scholar]
  192. Determination of Minimum Inhibitory Concentrations (MICs) of antibacterial agents by agar dilution.Clin. Microbiol. Infect.20006950951510.1046/j.1469‑0691.2000.00142.x11168187
    [Google Scholar]
  193. RiosJ.L. RecioM.C. VillarA. Screening methods for natural products with antimicrobial activity: A review of the literature.J. Ethnopharmacol.1988232-312714910.1016/0378‑8741(88)90001‑33057288
    [Google Scholar]
  194. RossZ.M. O’GaraE.A. HillD.J. SleightholmeH.V. MaslinD.J. Antimicrobial properties of garlic oil against human enteric bacteria: evaluation of methodologies and comparisons with garlic oil sulfides and garlic powder.Appl. Environ. Microbiol.200167147548010.1128/AEM.67.1.475‑480.200111133485
    [Google Scholar]
  195. BalouiriM. SadikiM. IbnsoudaS.K. Methods for in vitro evaluating antimicrobial activity: A review.J. Pharm. Anal.201662717910.1016/j.jpha.2015.11.00529403965
    [Google Scholar]
  196. HammerK.A. CarsonC.F. RileyT.V. Antimicrobial activity of essential oils and other plant extracts.J. Appl. Microbiol.199986698599010.1046/j.1365‑2672.1999.00780.x10438227
    [Google Scholar]
  197. NcubeN.S. AfolayanA.J. OkohA.I. Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends.Afr. J. Biotechnol.20087121797180610.5897/AJB07.613
    [Google Scholar]
  198. ValgasC. SouzaS.M. SmâniaE.F.A. SmâniaA.Jr Screening methods to determine antibacterial activity of natural products.Braz. J. Microbiol.200738236938010.1590/S1517‑83822007000200034
    [Google Scholar]
  199. WiegandI. HilpertK. HancockR.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances.Nat. Protoc.20083216317510.1038/nprot.2007.52118274517
    [Google Scholar]
  200. LangfieldR.D. ScaranoF.J. HeitzmanM.E. KondoM. HammondG.B. NetoC.C. Use of a modified microplate bioassay method to investigate antibacterial activity in the Peruvian medicinal plant Peperomia galioides.J. Ethnopharmacol.2004942-327928110.1016/j.jep.2004.06.01315325731
    [Google Scholar]
  201. SchwalbeR. Antimicrobial Susceptibility Testing ProtocolsCRC Press: Boca Raton200710.1201/9781420014495
    [Google Scholar]
/content/journals/cis/10.2174/012210299X354280241211030749
Loading
/content/journals/cis/10.2174/012210299X354280241211030749
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test