Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1871-5257
  • E-ISSN: 1875-6182

Abstract

Introduction

Hypoglycemia and anemia are associated with diabetes mellitus. Medicinal plants and orthodox drugs have been used for the management of this disease. This study aimed to validate the ethnomedical claims of Linn. leaf extract in reducing hyperglycemia and hematological potentials in alloxan-induced diabetic rats and to identify likely antidiabetic compounds.

Materials and Methods

Ultra-high-performance liquid chromatography was used to identify the various phytochemical constituents. Male Wistar rats were randomly divided into five groups containing 6 rats per group. Group 1 (control) received 0.2 ml/kg of distilled water, group 2 received 130 mg/kg of aqueous extract, groups 3-5 were diabetic and received 0.2 ml/g distilled water, 130 mg/kg extract and 0.75 IU/kg insulin respectively for 14 days. Hematological parameters were measured and an oral glucose tolerance test was carried out using 2 g/kg body weight glucose. A histological analysis of the pancreas was done.

Results

Twenty-five compounds identified as flavonoids, phenolic acids, tannins, and triterpenoids were detected. The blood glucose levels were significantly ( <0.05) elevated in DM groups but were significantly ( <0.05) reduced following leaves extract to DM groups. There was s significant ( <0.05) increase in insulin levels improved hematological parameters (RBC, WBC, and platelets), and increased islet population.

Conclusion

These results suggest that extract has hypoglycemic, insulinogenic, and hematopoietic potentials in diabetic condition and offer protection to the pancreas which could be attributed to the phytochemical constituents thereby justifying its use in traditional therapy.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/1871525721666230526152917
2024-06-01
2025-05-22
Loading full text...

Full text loading...

References

  1. CerfM.E. Beta cell dysfunction and insulin resistance.Front. Endocrinol.201343710.3389/fendo.2013.0003723542897
    [Google Scholar]
  2. ForouhiN.G. MisraA. MohanV. TaylorR. YancyW. Dietary and nutritional approaches for prevention and management of type 2 diabetes.BMJ2018361k223410.1136/bmj.k223429898883
    [Google Scholar]
  3. Ansari-MoghaddamA. SetoodehzadehF. KhammarniaM. AdinehH.A. Economic cost of diabetes in the Eastern Mediterranean region countries: A meta-analysis.Diabetes Metab. Syndr.20201451101110810.1016/j.dsx.2020.06.04432653635
    [Google Scholar]
  4. ChoN.H. ShawJ.E. KarurangaS. HuangY. da Rocha FernandesJ.D. OhlroggeA.W. MalandaB. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045.Diabetes Res. Clin. Pract.201813827128110.1016/j.diabres.2018.02.02329496507
    [Google Scholar]
  5. CastellanoJ.M. GuindaA. DelgadoT. RadaM. CayuelaJ.A. Biochemical basis of the antidiabetic activity of oleanolic acid and related pentacyclic triterpenes.Diabetes20136261791179910.2337/db12‑121523704520
    [Google Scholar]
  6. AdefeghaS.A. ObohG. OyeleyeS.I. EjakpoviI. Erectogenic, antihypertensive, antidiabetic, anti-oxidative properties and phenolic compositions of almond fruit (Terminalia catappa L.) parts (hull and drupe) - in vitro.J. Food Biochem.2017412e1230910.1111/jfbc.12309
    [Google Scholar]
  7. AnandA. DivyaN. KottiP. An updated review of Terminalia catappa.Pharmacogn. Rev.2015918939810.4103/0973‑7847.16210326392705
    [Google Scholar]
  8. IheagwamF.N. IsraelE.N. KayodeK.O. De CamposO.C. OgunlanaO.O. ChineduS.N. GC-MS analysis and inhibitory evaluation of Terminalia catappa leaf extracts on major enzymes linked to diabetes.Evid. Based Complement. Alternat. Med.201920196316231
    [Google Scholar]
  9. BenE.E. AsuquoA.E. OwuD.U. The role of serum alpha-amylase and glycogen synthase in the anti-diabetic potential of Terminalia catappa aqueous leaf extract in diabetic Wistar rats.Asian J Res. Med. Pharmaceut. Sci.20196211110.9734/ajrimps/2019/v6i230096
    [Google Scholar]
  10. FanY.M. XuL.Z. GaoJ. WangY. TangX.H. ZhaoX.N. ZhangZ.X. Phytochemical and antiinflammatory studies on Terminalia catappa.Fitoterapia2004753-425326010.1016/j.fitote.2003.11.00715158981
    [Google Scholar]
  11. AbiodunO.O. Rodríguez-NogalesA. AlgieriF. Gomez-CaravacaA.M. Segura-CarreteroA. UtrillaM.P. Rodriguez-CabezasM.E. GalvezJ. Antiinflammatory and immunomodulatory activity of an ethanolic extract from the stem bark of Terminalia catappa L. (Combretaceae): In vitro and in vivo evidences.J. Ethnopharmacol.201619230931910.1016/j.jep.2016.07.05627452660
    [Google Scholar]
  12. IheagwamF.N. IheagwamO.T. OnuohaM.K. OgunlanaO.O. ChineduS.N. Terminalia catappa aqueous leaf extract reverses insulin resistance, improves glucose transport and activates PI3K/AKT signalling in high fat/streptozotocin-induced diabetic rats.Sci. Rep.20221211071110.1038/s41598‑022‑15114‑935739183
    [Google Scholar]
  13. SimirgiotisM. QuispeC. ArecheC. SepúlvedaB. Phenolic compounds in Chilean mistletoe (Quintral, tristerix tetrandus) analyzed by UHPLC-Q/Orbitrap/MS/MS and its antioxidant properties.Molecules201621324510.3390/molecules2103024526907248
    [Google Scholar]
  14. GarneauF.X. CollinG.J. JeanF.I. GagnonH. ArzeJ.B.L. Essential oils from Bolivia. XII. Asteraceae: Ophryosporus piquerioides (D.C.) Benth. ex Baker.J. Essent. Oil Res.201325538839410.1080/10412905.2013.827478
    [Google Scholar]
  15. JosephS. KumarL. BaiV.N. Evaluation of anti-diabetic activity of Strobilanthes cuspidate in alloxan induced diabetic rats and the effect of bioactive compounds on inhibition of [alpha]-amylase enzyme.J. Pharmacogn. Phytochem.201653169175
    [Google Scholar]
  16. OkonI.O. UfotU.F. OnoyerayeU.G. NwachukwuE.O. OwuD.U. Effect of Gongronema latifolium on lipid profile, oral glucose tolerance test and some hematological parameters in fructose induced hyperglycemia in rats.Pharm Biomed Res.2019512531
    [Google Scholar]
  17. SakaguchiK. TakedaK. MaedaM. OgawaW. SatoT. OkadaS. OhnishiY. NakajimaH. KashiwagiA. Glucose area under the curve during oral glucose tolerance test as an index of glucose intolerance.Diabetol. Int.201671535810.1007/s13340‑015‑0212‑430603243
    [Google Scholar]
  18. KozłowskaA. Szostak-WegierekD. Flavonoids--food sources and health benefits.Rocz. Panstw. Zakl. Hig.2014652798525272572
    [Google Scholar]
  19. BallardC.R. JuniorM.R.M. Health benefits of flavonoids.Bioactive compounds health benefits and potential applicationsWoodhead publishingSawston201918520110.1016/B978‑0‑12‑814774‑0.00010‑4
    [Google Scholar]
  20. WuX. ZhengD. QinY. LiuZ. ZhangG. ZhuX. ZengL. LiangZ. Nobiletin attenuates adverse cardiac remodeling after acute myocardial infarction in rats via restoring autophagy flux.Biochem. Biophys. Res. Commun.2017492226226810.1016/j.bbrc.2017.08.06428830813
    [Google Scholar]
  21. LeeJ. OhJ.G. KimJ.S. LeeK.W. Effects of chebulic acid on advanced glycation endproducts-induced collagen cross-links.Biol. Pharm. Bull.20143771162116710.1248/bpb.b14‑0003424759763
    [Google Scholar]
  22. ChenY. LiQ. ZhaoT. ZhangZ. MaoG. FengW. WuX. YangL. Biotransformation and metabolism of three mulberry anthocyanin monomers by rat gut microflora.Food Chem.201723788789410.1016/j.foodchem.2017.06.05428764082
    [Google Scholar]
  23. Galarraga MontesE. Amaro-LuisJ.M. Icosandrin, a novel peltogynoid from the fruits of Phytolacca icosandra (Phytolaccaceae).Nat. Prod. Res.2016301899410.1080/14786419.2015.103853725942389
    [Google Scholar]
  24. Jiménez-SánchezC. Lozano-SánchezJ. Rodríguez-PérezC. Segura-CarreteroA. Fernández-GutiérrezA. Comprehensive, untargeted, and qualitative RP-HPLC-ESI-QTOF/MS2 metabolite profiling of green asparagus (Asparagus officinalis).J. Food Compos. Anal.201646788710.1016/j.jfca.2015.11.004
    [Google Scholar]
  25. XuX. WangY. WeiZ. WeiW. ZhaoP. TongB. XiaY. DaiY. Madecassic acid, the contributor to the anti-colitis effect of madecassoside, enhances the shift of Th17 toward Treg cells via the PPARγ/AMPK/ACC1 pathway.Cell Death Dis.201783e272310.1038/cddis.2017.15028358365
    [Google Scholar]
  26. Al-AboudiA.M.F. Abu ZargaM.H. Abu-IrmailehB.E. AwwadiF.F. KhanfarM.A. Three new seco-ursadiene triterpenoids from Salvia syriaca.Nat. Prod. Res.201529210210810.1080/14786419.2014.95951825226348
    [Google Scholar]
  27. TerçasA.G. MonteiroA.S. MoffaE.B. SantosJ.R.A. SousaE.M. PintoA.R.B. CostaP.C.S. BorgesA.C.R. TorresL.M.B. Barros FilhoA.K.D. FernandesE.S. MonteiroC.A. Phytochemical characterization of Terminalia catappa Linn. extracts and their antifungal activities against Candida spp.Front. Microbiol.2017859510.3389/fmicb.2017.0059528443078
    [Google Scholar]
  28. OguroD. WatanabeH. Asymmetric synthesis and sensory evaluation of sedanenolide.Biosci. Biotechnol. Biochem.20117581502150510.1271/bbb.11020621821949
    [Google Scholar]
  29. HayazaS. IstiqomahS. SusiloR.J.K. InayatillahB. AnsoriA.N.M. WinarniD. Antidiabetic activity of ketapang (Terminalia catappa L.) leaves extract in streptozotocin-induced diabetic mice.Indian Vet. J.201996121113
    [Google Scholar]
  30. JagannathanR. NevesJ.S. DorcelyB. ChungS.T. TamuraK. RheeM. BergmanM. The oral glucose tolerance test: 100 years later. Diabetes.Diabetes Metab. Syndr. Obes.2020133787380510.2147/DMSO.S24606233116727
    [Google Scholar]
  31. AhmedS.M. VrushabendraS.B. GopkumarP. DhanapalR. ChandrashekaraV.M. Antidiabetic activity of Terminalia catappa Linn. leaf extracts in alloxan-induced diabetic rats.Iranian J. Pharmacol Ther.2005413639
    [Google Scholar]
  32. VedasreeN. PeddannaK. RajasekharA. ParthaSarathiC. MunirajeswariP. SireeshaY. ChippadaA.R. Efficacy of Cyanotis tuberosa (Roxb.) Schult. &Schult. f. root tubers’ active fraction as anti-diabetic, antihyperlipidemic and antioxidant in Streptozotocin-induced diabetic rats.J. Ethnopharmacol.202228511485610.1016/j.jep.2021.11485634808300
    [Google Scholar]
  33. RussoB. PicconiF. MalandruccoI. FrontoniS. Flavonoids and insulin-resistance: From molecular evidences to clinical trials.Int. J. Mol. Sci.2019209206110.3390/ijms2009206131027340
    [Google Scholar]
  34. MahmoudA.M. Hematological alterations in diabetic rats - Role of adipocytokines and effect of citrus flavonoids.EXCLI J.20131264765726966427
    [Google Scholar]
  35. ZhangH. YangZ. ZhangW. NiuY. LiX. QinL. SuQ. White blood cell subtypes and risk of type 2 diabetes.J. Diabetes Complications2017311313710.1016/j.jdiacomp.2016.10.02927863973
    [Google Scholar]
  36. ZaruwaM.Z. IbokN.I. IbokI.U. OnyenonachiE.C. DanchalC. AhmedA.G. Effects of Sterculia setigera Del. Stem bark extract on hematological and biochemical parameters of wistar rats.Biochem. Insights201691922
    [Google Scholar]
  37. ObakiroS.B. KipropA. KigonduE. K’owinoI. KiyimbaK. Drago KatoC. GavamukulyaY. Sub-acute toxicity effects of methanolic stem bark extract of Entada abyssinica on biochemical, haematological and histopathological parameters in Wistar albino rats.Front. Pharmacol.20211274030574031310.3389/fphar.2021.74030534557104
    [Google Scholar]
  38. AtangwhoI.J. EbongP.E. EyongE.U. EtengM.U. ObiA.U. Effect of Vernonia amygdalina Del. leaf on kidney function of diabetic rats.Int. J. Pharm.20073142148
    [Google Scholar]
  39. OkokonJ.E. DaviesK. JohnL. IwaraK. LiW.W. ThomasP.S. Phytochemical characterization, antihyperglycaemic and antihyperlipidemic activities of Setaria megaphylla in alloxan-induced diabetic rats.Phytomedicine Plus20222110018210.1016/j.phyplu.2021.100182
    [Google Scholar]
  40. MukherjeeP.K. MaitiK. MukherjeeK. HoughtonP.J. Leads from Indian medicinal plants with hypoglycemic potentials.J. Ethnopharmacol.2006106112810.1016/j.jep.2006.03.02116678368
    [Google Scholar]
  41. ZangY. SatoH. IgarashiK. Anti-diabetic effects of a kaempferol glycoside-rich fraction from unripe soybean (Edamame, Glycine max L. Merrill. ‘Jindai’) leaves on KK-A(y) mice.Biosci. Biotechnol. Biochem.20117591677168410.1271/bbb.11016821897048
    [Google Scholar]
  42. DivyaN. RengarajanR.L. RadhakrishnanR. Fathi Abd AllahE. AlqarawiA.A. HashemA. ManikandanR. Vijaya AnandA. Phytotherapeutic efficacy of the medicinal plant Terminalia catappa L.Saudi J. Biol. Sci.201926598598810.1016/j.sjbs.2018.12.01031303829
    [Google Scholar]
  43. ZhangY. LiuD. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function.Eur. J. Pharmacol.2011670132533210.1016/j.ejphar.2011.08.01121914439
    [Google Scholar]
  44. RaoA.V. GurfinkelD.M. The bioactivity of saponins: Triterpenoid and steroidal glycosides.Drug Metabol. Drug Interact.2000171-421123510.1515/DMDI.2000.17.1‑4.21111201296
    [Google Scholar]
  45. NazarukJ. Borzym-KluczykM. The role of triterpenes in the management of diabetes mellitus and its complications.Phytochem. Rev.201514467569010.1007/s11101‑014‑9369‑x26213526
    [Google Scholar]
  46. WangJ. HaT.K.Q. ShiY.P. OhW.K. YangJ.L. Hypoglycemic triterpenes from Gynostemma pentaphyllum.Phytochemistry201815517118110.1016/j.phytochem.2018.08.00830130690
    [Google Scholar]
  47. LiuJ. HeT. LuQ. ShangJ. SunH. ZhangL. Asiatic acid preserves beta cell mass and mitigates hyperglycemia in streptozocin-induced diabetic rats.Diabetes Metab. Res. Rev.201026644845410.1002/dmrr.110120809533
    [Google Scholar]
  48. RamachandranV. SaravananR. Efficacy of asiatic acid, a pentacyclic triterpene on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin-induced diabetic rats.Phytomedicine2013203-423023610.1016/j.phymed.2012.09.02323102509
    [Google Scholar]
  49. BrásN.F. NevesR.P.P. LopesF.A.A. CorreiaM.A.S. PalmaA.S. SousaS.F. RamosM.J. Combined in silico and in vitro studies to identify novel antidiabetic flavonoids targeting glycogen phosphorylase.Bioorg. Chem.202110810455210.1016/j.bioorg.2020.10455233357981
    [Google Scholar]
  50. SinghS. BansalA. SinghV. ChopraT. PoddarJ. Flavonoids, alkaloids and terpenoids: A new hope for the treatment of diabetes mellitus.J. Diabetes Metab. Disord.202221194195010.1007/s40200‑021‑00943‑835673446
    [Google Scholar]
  51. JainD. AryaR. Anomalies in alloxan-induced diabetic model: It is better to standardize it first.Indian J. Pharmacol.20114319110.4103/0253‑7613.7568421455436
    [Google Scholar]
/content/journals/chamc/10.2174/1871525721666230526152917
Loading
/content/journals/chamc/10.2174/1871525721666230526152917
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Glucose; hematology; insulin; pancreas; phytochemistry; Terminalia catappa
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test