- Home
- A-Z Publications
- Current Genomics
- Previous Issues
- Volume 25, Issue 5, 2024
Current Genomics - Volume 25, Issue 5, 2024
Volume 25, Issue 5, 2024
-
-
Bioinformatics Approaches in the Development of Antifungal Therapeutics and Vaccines
Authors: Vaishali Ahlawat, Kiran Sura, Bharat Singh, Mehak Dangi and Anil Kumar ChhillarFungal infections are considered a great threat to human life and are associated with high mortality and morbidity, especially in immunocompromised individuals. Fungal pathogens employ various defense mechanisms to evade the host immune system, which causes severe infections. The available repertoire of drugs for the treatment of fungal infections includes azoles, allylamines, polyenes, echinocandins, and antimetabolites. However, the development of multidrug and pandrug resistance to available antimycotic drugs increases the need to develop better treatment approaches. In this new era of -omics, bioinformatics has expanded options for treating fungal infections. This review emphasizes how bioinformatics complements the emerging strategies, including advancements in drug delivery systems, combination therapies, drug repurposing, epitope-based vaccine design, RNA-based therapeutics, and the role of gut-microbiome interactions to combat anti-fungal resistance. In particular, we focused on computational methods that can be useful to obtain potent hits, and that too in a short period.
-
-
-
Deciphering the Genetic Complexity of Classical Hodgkin Lymphoma: Insights and Effective Strategies
Authors: Chaeyoung Lee and Yeeun AnUnderstanding the genetics of susceptibility to classical Hodgkin lymphoma (cHL) is considerably limited compared to other cancers due to the rare Hodgkin and Reed-Sternberg (HRS) tumor cells, which coexist with the predominant non-malignant microenvironment. This article offers insights into genetic abnormalities in cHL, as well as nucleotide variants and their associated target genes, elucidated through recent technological advancements. Oncogenomes in HRS cells highlight the survival and proliferation of these cells through hyperactive signaling in specific pathways (e.g., NF-kB) and their interplay with microenvironmental cells (e.g., CD4+ T cells). In contrast, the susceptibility genes identified from genome-wide association studies and expression quantitative trait locus analyses only vaguely implicate their potential roles in susceptibility to more general cancers. To pave the way for the era of precision oncology, more intensive efforts are imperative, employing the following strategies: exploring genetic heterogeneity by gender and cHL subtype, investigating colocalization with various types of expression quantitative trait loci, and leveraging single-cell analysis. These approaches provide valuable perspectives for unraveling the genetic complexities of cHL.
-
-
-
Beyond the Genome: Deciphering the Role of MALAT1 in Breast Cancer Progression
The MALAT1, a huge non-coding RNA, recently came to light as a multifaceted regulator in the intricate landscape of breast cancer (BC) progression. This review explores the multifaceted functions and molecular interactions of MALAT1, shedding light on its profound implications for understanding BC pathogenesis and advancing therapeutic strategies. The article commences by acknowledging the global impact of BC and the pressing need for insights into its molecular underpinnings. It is stated that the core lncRNA MALAT1 has a range of roles in both healthy and diseased cell functions. The core of this review unravels MALAT1's multifaceted role in BC progression, elucidating its participation in critical processes like resistance, invasion, relocation, and proliferating cells to therapy. It explores the intricate mechanisms through which MALAT1 modulates gene expression, interacts with other molecules, and influences signalling pathways. Furthermore, the paper emphasizes MALAT1's clinical significance as a possible prognostic and diagnostic biomarker. Concluding on a forward-looking note, the review highlights the broader implications of MALAT1 in BC biology, such as its connections to therapy resistance and metastasis. It underscores the significance of deeper investigations into these intricate molecular interactions to pave the way for precision medicine approaches. This review highlights the pivotal role of MALAT1 in BC progression by deciphering its multifaceted functions beyond the genome, offering profound insights into its implications for disease understanding and the potential for targeted therapeutic interventions.
-
-
-
Emerging Multi-omic Approaches to the Molecular Diagnosis of Mitochondrial Disease and Available Strategies for Treatment and Prevention
Authors: Faeze Khaghani, Mahboobeh Hemmati, Masoumeh Ebrahimi and Arash SalmaninejadMitochondria are semi-autonomous organelles present in several copies within most cells in the human body that are controlled by the precise collaboration of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) encoding mitochondrial proteins. They play important roles in numerous metabolic pathways, such as the synthesis of adenosine triphosphate (ATP), the predominant energy substrate of the cell generated through oxidative phosphorylation (OXPHOS), intracellular calcium homeostasis, metabolite biosynthesis, aging, cell cycles, and so forth. Previous studies revealed that dysfunction of these multi-functional organelles, which may arise due to mutations in either the nuclear or mitochondrial genome, leads to a diverse group of clinically and genetically heterogeneous disorders. These diseases include neurodegenerative and metabolic disorders as well as cardiac and skeletal myopathies in both adults and newborns. The plethora of phenotypes and defects displayed leads to challenges in the diagnosis and treatment of mitochondrial diseases. In this regard, the related literature proposed several diagnostic options, such as high throughput mitochondrial genomics and omics technologies, as well as numerous therapeutic options, such as pharmacological approaches, manipulating the mitochondrial genome, increasing the mitochondria content of the affected cells, and recently mitochondrial diseases transmission prevention. Therefore, the present article attempted to review the latest advances and challenges in diagnostic and therapeutic options for mitochondrial diseases.
-
-
-
FAT4 Mutation is Related to Tumor Mutation Burden and Favorable Prognosis in Gastric Cancer
Authors: Qingqing Li, Yuxin Chu, Yi Yao and Qibin SongObjectiveThis study aimed to investigate the frequently mutated genes in Gastric Cancer (GC), assess their association with Tumor Mutation Burden (TMB) and the patients’ survival, and identify the potential biomarkers for tailored therapy.
MethodsSimple somatic mutation data of GC were collected from the TCGA and ICGC databases. The high-frequency mutated genes were identified from both datasets. The samples were initially dichotomized into wild-type and mutation groups based on the status of overlapping genes. TMB difference between the two groups was evaluated by the Mann-Whitney U-test. Survival difference between the two groups was compared by the Kaplan-Meier method with a log-rank test. The prognostic value of the target gene was assessed by the Cox proportional hazards model. The signaling pathways involved in FAT4 mutation were identified by Gene Set Enrichment Analysis (GSEA). The fractions of different tumor-infiltrating immune cells were calculated by the CIBERSORT algorithm.
Results21 overlapping genes with frequent mutation were identified in both datasets. Mutation of these genes was significantly associated with higher TMB (P<0.05) in GC. The survival of the FAT4 mutation group was superior to the wild-type group. FAT4 mutation was also identified as an independent favorable prognostic factor for the GC patients. GSEA indicated that FAT4 mutation activated the signaling pathways involved in energy metabolism. Finally, CD4 memory-activated T cells, follicular helper T cells, and gamma delta T cells were significantly more enriched, while naïve B cells and regulatory T cells (Tregs) were significantly less enriched in the FAT4 mutation group (P<0.05).
ConclusionFAT4 mutation is relevant to TMB and favorable prognosis in GC, which may become a useful biomarker for immunotherapy of GC patients.
-
-
-
Crosstalk Between Cancer-associated Fibroblasts and Myeloid Cells Shapes the Heterogeneous Microenvironment of Gastric Cancer
Authors: Zhiwei Peng, Can Fang, Zhiwei Tong, Qiufan Rao, Zihao Ren and Kongwang HuBackgroundTargeted therapies have improved the clinical outcomes of most patients with cancer. However, the heterogeneity of gastric cancer remains a major hurdle for precision treatment. Further investigations into tumor microenvironment heterogeneity are required to resolve these problems.
MethodsIn this study, bioinformatic analyses, including metabolism analysis, pathway enrichment, differentiation trajectory inference, regulatory network construction, and survival analysis, were applied to gain a comprehensive understanding of tumor microenvironment biology within gastric cancer using single-cell RNA-seq and public datasets and experiments were carried out to confirm the conclusions of these analyses.
ResultsWe profiled heterogeneous single-cell atlases and identified eight cell populations with differential expression patterns. We identified two cancer-associated fibroblasts (CAFs) subtypes, with particular emphasis on the role of inflammatory cancer-associated fibroblasts (iCAFs) in EMT and lipid metabolic crosstalk within the tumor microenvironment. Notably, we detected two differentiation states of iCAFs that existed in different tissues with discrepant expression of genes involved in immuno-inflammation or ECM remodeling. Moreover, investigation of tumor-infiltrating myeloid cells has revealed the functional diversity of myeloid cell lineages in gastric cancer. Of which a proliferative cell lineage named C1QC+MKI67+TAMs was recognized with high immunosuppressive capacities, suggesting it has immune suppression and cell proliferation functions in the tumor niche. Finally, we explored regulatory networks based on ligand-receptor pairs and found crucial pro-tumor crosstalk between CAFs and myeloid cells in the tumor microenvironment (TME).
ConclusionThese findings provide insights for future cancer treatments and drug discovery.
-
Volumes & issues
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)