Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Understanding the genetics of susceptibility to classical Hodgkin lymphoma (cHL) is considerably limited compared to other cancers due to the rare Hodgkin and Reed-Sternberg (HRS) tumor cells, which coexist with the predominant non-malignant microenvironment. This article offers insights into genetic abnormalities in cHL, as well as nucleotide variants and their associated target genes, elucidated through recent technological advancements. Oncogenomes in HRS cells highlight the survival and proliferation of these cells through hyperactive signaling in specific pathways (., NF-kB) and their interplay with microenvironmental cells (., CD4+ T cells). In contrast, the susceptibility genes identified from genome-wide association studies and expression quantitative trait locus analyses only vaguely implicate their potential roles in susceptibility to more general cancers. To pave the way for the era of precision oncology, more intensive efforts are imperative, employing the following strategies: exploring genetic heterogeneity by gender and cHL subtype, investigating colocalization with various types of expression quantitative trait loci, and leveraging single-cell analysis. These approaches provide valuable perspectives for unraveling the genetic complexities of cHL.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029301904240513045755
2024-10-01
2025-01-27
Loading full text...

Full text loading...

References

  1. KüppersR. RajewskyK. ZhaoM. SimonsG. LaumannR. FischerR. HansmannM.L. Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development.Proc. Natl. Acad. Sci.19949123109621096610.1073/pnas.91.23.109627971992
    [Google Scholar]
  2. MarafiotiT. HummelM. FossH.D. LaumenH. KorbjuhnP. AnagnostopoulosI. LammertH. DemelG. TheilJ. WirthT. SteinH. Hodgkin and Reed-Sternberg cells represent an expansion of a single clone originating from a germinal center B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription.Blood20009541443145010.1182/blood.V95.4.1443.004k55_1443_145010666223
    [Google Scholar]
  3. MackT.M. CozenW. ShibataD.K. WeissL.M. NathwaniB.N. HernandezA.M. TaylorC.R. HamiltonA.S. DeapenD.M. RappaportE.B. Concordance for Hodgkin’s disease in identical twins suggesting genetic susceptibility to the young-adult form of the disease.N. Engl. J. Med.1995332741341910.1056/NEJM1995021633207017824015
    [Google Scholar]
  4. KharazmiE. FallahM. PukkalaE. OlsenJ.H. TryggvadottirL. SundquistK. TretliS. HemminkiK. Risk of familial classical Hodgkin lymphoma by relationship, histology, age, and sex: A joint study from five Nordic countries.Blood2015126171990199510.1182/blood‑2015‑04‑63978126311361
    [Google Scholar]
  5. RudantJ. MenegauxF. LevergerG. BaruchelA. NelkenB. BertrandY. HartmannO. PacquementH. VéritéC. RobertA. MichelG. MargueritteG. GandemerV. HémonD. ClavelJ. Family history of cancer in children with acute leukemia, Hodgkin’s lymphoma or non-Hodgkin’s lymphoma: The ESCALE study (SFCE).Int. J. Cancer2007121111912610.1002/ijc.2262417330239
    [Google Scholar]
  6. WenigerM.A. KüppersR. Molecular biology of Hodgkin lymphoma.Leukemia202135496898110.1038/s41375‑021‑01204‑633686198
    [Google Scholar]
  7. TiacciE. LadewigE. SchiavoniG. PensonA. FortiniE. PettirossiV. WangY. RossetoA. VenanziA. VlasevskaS. PaciniR. PiattoniS. TabarriniA. PucciariniA. BigernaB. SantiA. GianniA.M. VivianiS. CabrasA. AscaniS. CrescenziB. MecucciC. PasqualucciL. RabadanR. FaliniB. Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma.Blood2018131222454246510.1182/blood‑2017‑11‑81491329650799
    [Google Scholar]
  8. ReichelJ. ChadburnA. RubinsteinP.G. RothG.L. TamW. LiuY. GaiollaR. EngK. BrodyJ. InghiramiG. StellaC.C. SantoroA. RahalD. TotonchyJ. ElementoO. CesarmanE. RoshalM. Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells.Blood201512571061107210.1182/blood‑2014‑11‑61043625488972
    [Google Scholar]
  9. SteidlC. DiepstraA. LeeT. ChanF.C. FarinhaP. TanK. TeleniusA. BarclayL. ShahS.P. ConnorsJ.M. van den BergA. GascoyneR.D. Gene expression profiling of microdissected Hodgkin Reed-Sternberg cells correlates with treatment outcome in classical Hodgkin lymphoma.Blood2012120173530354010.1182/blood‑2012‑06‑43957022955918
    [Google Scholar]
  10. KüppersR. The biology of Hodgkin’s lymphoma.Nat. Rev. Cancer200991152710.1038/nrc254219078975
    [Google Scholar]
  11. BruneMM JuskeviciusD HaslbauerJ DirnhoferS TzankovA Genomic Landscape of Hodgkin Lymphoma.Cancers.202113468210.3390/cancers13040682
    [Google Scholar]
  12. KüppersR. KleinU. SchweringI. DistlerV. BräuningerA. CattorettiG. TuY. StolovitzkyG.A. CalifanoA. HansmannM.L. FaveraD.R. Identification of Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling.J. Clin. Invest.2003111452953710.1172/JCI20031662412588891
    [Google Scholar]
  13. BuchanS.L. ShamkhaniA.A. Distinct motifs in the intracellular domain of human CD30 differentially activate canonical and alternative transcription factor NF-κB signaling.PLoS One201279e4524410.1371/journal.pone.004524423028875
    [Google Scholar]
  14. CarboneA. GloghiniA. GatteiV. AldinucciD. DeganM. De PaoliP. ZagonelV. PintoA. Expression of functional CD40 antigen on Reed-Sternberg cells and Hodgkin’s disease cell lines.Blood199585378078910.1182/blood.V85.3.780.bloodjournal8537807530508
    [Google Scholar]
  15. LeeS.P. ConstandinouC.M. ThomasW.A. CarterC.D. BlakeN.W. MurrayP.G. CrockerJ. RickinsonA.B. Antigen presenting phenotype of Hodgkin Reed-Sternberg cells: Analysis of the HLA class I processing pathway and the effects of interleukin-10 on epstein-barr virus-specific cytotoxic T-cell recognition.Blood19989231020103010.1182/blood.V92.3.10209680372
    [Google Scholar]
  16. WienandK. ChapuyB. StewartC. DunfordA.J. WuD. KimJ. KamburovA. WoodT.R. CaderF.Z. DucarM.D. ThornerA.R. NagA. HeubeckA.T. BuonopaneM.J. ReddR.A. BojarczukK. LawtonL.N. ArmandP. RodigS.J. FrommJ.R. GetzG. ShippM.A. Genomic analyses of flow- sorted Hodgkin Reed-Sternberg cells reveal complementary mechanisms of immune evasion.Blood Adv.20193234065408010.1182/bloodadvances.201900101231816062
    [Google Scholar]
  17. WeinF. KüppersR. The role of T cells in the microenvironment of Hodgkin lymphoma.J. Leukoc. Biol.2016991455010.1189/jlb.3MR0315‑136R26320264
    [Google Scholar]
  18. VariF. ArponD. KeaneC. HertzbergM.S. TalaulikarD. JainS. CuiQ. HanE. TobinJ. BirdR. CrossD. HernandezA. GouldC. BirchS. GandhiM.K. Immune evasion via PD-1/PD-L1 on NK cells and monocyte/macrophages is more prominent in Hodgkin lymphoma than DLBCL.Blood2018131161809181910.1182/blood‑2017‑07‑79634229449276
    [Google Scholar]
  19. Genetic Analysis of Psoriasis Consortium & the Wellcome Trust Case Control Consortium 2, Strange A, Capon F, et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1.Nat Genet.2010421198599010.1038/ng.694
    [Google Scholar]
  20. FramptonM. FilhoS.M.I. BroderickP. ThomsenH. FörstiA. VijayakrishnanJ. CookeR. MoraE.V. HoffmannP. NöthenM.M. LloydA. HolroydA. EiseleL. JöckelK.H. PonaderS. von StrandmannE.P. LightfootT. RomanE. LakeA. MontgomeryD. JarrettR.F. SwerdlowA.J. EngertA. HemminkiK. HoulstonR.S. Variation at 3p24.1 and 6q23.3 influences the risk of Hodgkin’s lymphoma.Nat. Commun.201341254910.1038/ncomms354924149102
    [Google Scholar]
  21. PonJ.R. MarraM.A. Driver and passenger mutations in cancer.Annu. Rev. Pathol.2015101255010.1146/annurev‑pathol‑012414‑04031225340638
    [Google Scholar]
  22. SalipanteS.J. MealiffeM.E. WechslerJ. KremM.M. LiuY. NamkoongS. BhagatG. KirchhoffT. OffitK. LynchH. WiernikP.H. RoshalM. McMasterM.L. TuckerM. FrommJ.R. GoldinL.R. HorwitzM.S. Mutations in a gene encoding a midbody kelch protein in familial and sporadic classical Hodgkin lymphoma lead to binucleated cells.Proc. Natl. Acad. Sci.200910635149201492510.1073/pnas.090423110619706467
    [Google Scholar]
  23. RotunnoM. McMasterM.L. BolandJ. BassS. ZhangX. BurdettL. HicksB. RavichandranS. LukeB.T. YeagerM. FontaineL. HylandP.L. GoldsteinA.M. ChanockS.J. CaporasoN.E. TuckerM.A. GoldinL.R. Whole exome sequencing in families at high risk for Hodgkin lymphoma: Identification of a predisposing mutation in the KDR gene.Haematologica2016101785386010.3324/haematol.2015.13547527365461
    [Google Scholar]
  24. McTigueM.A. WickershamJ.A. PinkoC. ShowalterR.E. ParastC.V. RussellT.A. GehringM.R. MroczkowskiB. KanC.C. VillafrancaJ.E. AppeltK. Crystal structure of the kinase domain of human vascular endothelial growth factor receptor 2: A key enzyme in angiogenesis.Structure19997331933010.1016/S0969‑2126(99)80042‑210368301
    [Google Scholar]
  25. CooperP.S. LipshultzD. MattenW.T. McGinnisS.D. PechousS. RomitiM.L. TaoT. GratianV.M. SayersE.W. Education resources of the National Center for Biotechnology Information.Brief. Bioinform.201011656356910.1093/bib/bbq02220570844
    [Google Scholar]
  26. AnY LeeC. Identification and Interpretation of eQTL and eGenes for Hodgkin Lymphoma Susceptibility.Genes.2023146114210.3390/genes14061142
    [Google Scholar]
  27. CaiH.H. SunY.M. MiaoY. GaoW.T. PengQ. YaoJ. ZhaoH.L. Aberrant methylation frequency of TNFRSF10C Promoter in pancreatic cancer cell lines.Hepatobiliary Pancreat. Dis. Int.20111019510010.1016/S1499‑3872(11)60014‑321269942
    [Google Scholar]
  28. ChengY. KimJ.W. LiuW. DunnT.A. LuoJ. LozaM.J. KimS.T. ZhengS.L. XuJ. IsaacsW.B. ChangB.L. Genetic and epigenetic inactivation of TNFRSF10C in human prostate cancer.Prostate200969332733510.1002/pros.2088219035483
    [Google Scholar]
  29. ChughtaiS.A. CrundwellM.C. CruickshankN.R.J. AffieE. ArmstrongS. KnowlesM.A. TakleL.A. KuoM. KhanN. PhillipsS.M.A. NeoptolemosJ.P. MortonD.G. Two novel regions of interstitial deletion on chromosome 8p in colorectal cancer.Oncogene199918365766510.1038/sj.onc.12023409989816
    [Google Scholar]
  30. WistubaI.I. BehrensC. VirmaniA.K. MilchgrubS. SyedS. LamS. MackayB. MinnaJ.D. GazdarA.F. Allelic losses at chromosome 8p21-23 are early and frequent events in the pathogenesis of lung cancer.Cancer Res.19995981973197910213509
    [Google Scholar]
  31. JauffretC.E. MoulinJ.F. GinestierC. BechlianD. ConteN. GeneixJ. AdélaïdeJ. NoguchiT. HassounJ. JacquemierJ. BirnbaumD. Loss of heterozygosity at microsatellite markers from region p11-21 of chromosome 8 in microdissected breast tumor but not in peritumoral cells.Int. J. Oncol.200221598999610.3892/ijo.21.5.98912370745
    [Google Scholar]
  32. AdamsJ. WilliamsS.V. AveyardJ.S. KnowlesM.A. Loss of heterozygosity analysis and DNA copy number measurement on 8p in bladder cancer reveals two mechanisms of allelic loss.Cancer Res.2005651667510.1158/0008‑5472.66.65.115665280
    [Google Scholar]
  33. XueA. ChangJ.W. ChungL. SamraJ. HughT. GillA. ButturiniG. BaxterR.C. SmithR.C. Serum apolipoprotein C-II is prognostic for survival after pancreatic resection for adenocarcinoma.Br. J. Cancer2012107111883189110.1038/bjc.2012.45823169340
    [Google Scholar]
  34. HarimaY ArigaT KaneyasuY Clinical value of serum biomarkers, squamous cell carcinoma antigen and apolipoprotein C-II in follow-up of patients with locally advanced cervical squamous cell carcinoma treated with radiation: A multicenter prospective cohort study.PLoS One20211611e025923510.1371/journal.pone.0259235
    [Google Scholar]
  35. KasebH. BabikerH.M. Hodgkin lymphoma.Available from: https://www.ncbi.nlm.nih.gov/books/NBK499969 (Accessed on: 21 Feb 2022).2021
  36. LeeC. Genome-wide expression quantitative trait loci analysis using mixed models.Front Genet.2018934110.3389/fgene.2018.00341
    [Google Scholar]
  37. LeeC. Towards the genetic architecture of complex gene expression traits: Challenges and prospects for eQTL mapping in humans.Genes202213223510.3390/genes1302023535205280
    [Google Scholar]
  38. YazarS. HernandezS.J. WingK. SenabouthA. GordonM.G. AndersenS. LuQ. RowsonA. TaylorT.R.P. ClarkeL. MaccoraK. ChenC. CookA.L. YeC.J. FairfaxK.A. HewittA.W. PowellJ.E. Single-cell eQTL mapping identifies cell type–specific genetic control of autoimmune disease.Science20223766589eabf304110.1126/science.abf304135389779
    [Google Scholar]
  39. McAulayK.A. JarrettR.F. Human leukocyte antigens and genetic susceptibility to lymphoma.Tissue Antigens20158629811310.1111/tan.1260426189878
    [Google Scholar]
  40. HjalgrimH. RostgaardK. JohnsonP.C.D. LakeA. ShieldL. LittleA.M. SmedbyE.K. AdamiH.O. GlimeliusB. DutoitH.S. KaneE. TaylorG.M. McConnachieA. RyderL.P. SundstromC. AndersenP.S. ChangE.T. AlexanderF.E. MelbyeM. JarrettR.F. HLA-A alleles and infectious mononucleosis suggest a critical role for cytotoxic T-cell response in EBV-related Hodgkin lymphoma.Proc. Natl. Acad. Sci.2010107146400640510.1073/pnas.091505410720308568
    [Google Scholar]
  41. CozenW. TimofeevaM.N. LiD. DiepstraA. HazelettD. SourdeixD.M. EdlundC.K. FrankeL. RostgaardK. Van Den BergD.J. CortessisV.K. SmedbyK.E. GlaserS.L. WestraH.J. RobisonL.L. MackT.M. GhesquieresH. HwangA.E. NietersA. de SanjoseS. LightfootT. BeckerN. MaynadieM. ForetovaL. RomanE. BenaventeY. RandK.A. NathwaniB.N. GlimeliusB. StainesA. BoffettaP. LinkB.K. KiemeneyL. AnsellS.M. BhatiaS. StrongL.C. GalanP. VattenL. HabermannT.M. DuellE.J. LakeA. VeenstraR.N. VisserL. LiuY. UrayamaK.Y. MontgomeryD. GaborieauV. WeissL.M. ByrnesG. LathropM. CoccoP. BestT. SkolA.D. AdamiH.O. MelbyeM. CerhanJ.R. GallagherA. TaylorG.M. SlagerS.L. BrennanP. CoetzeeG.A. ContiD.V. OnelK. JarrettR.F. HjalgrimH. van den BergA. McKayJ.D. A meta-analysis of Hodgkin lymphoma reveals 19p13.3 TCF3 as a novel susceptibility locus.Nat. Commun.201451385610.1038/ncomms485624920014
    [Google Scholar]
  42. ConnorsJ.M. CozenW. SteidlC. CarboneA. HoppeR.T. FlechtnerH.H. BartlettN.L. Hodgkin lymphoma.Nat. Rev. Dis. Primers2020616110.1038/s41572‑020‑0189‑632703953
    [Google Scholar]
  43. ShinJ. LeeC. A mixed model reduces spurious genetic associations produced by population stratification in genome-wide association studies.Genomics2015105419119610.1016/j.ygeno.2015.01.00625640449
    [Google Scholar]
  44. EdwardsT.L. GaoX. Methods for detecting and correcting for population stratification.Curr Protoc Hum Genet201211410.1002/0471142905.hg0122s73
    [Google Scholar]
  45. LeeC. Analytical models for genetics of human traits influenced by sex.Curr. Genomics201617543944310.2174/138920291766616042014260128217000
    [Google Scholar]
  46. LeeC. Heterogeneous genetic architecture by gender for precision medicine of cardiovascular disease.J. Geriatr. Cardiol.201815532532710.11909/j.issn.1671‑5411.2018.05.00130083184
    [Google Scholar]
  47. LeeC. Bayesian inference for mixed model-based genome-wide analysis of expression quantitative trait loci by Gibbs sampling.Front Genet.20191019910.3389/fgene.2019.00199
    [Google Scholar]
  48. LeeC. Best linear unbiased prediction of individual polygenic susceptibility to sporadic vascular dementia.J. Alzheimers Dis.20165331115111910.3233/JAD‑16039127258425
    [Google Scholar]
  49. ZouJ. HussM. AbidA. MohammadiP. TorkamaniA. TelentiA. A primer on deep learning in genomics.Nat. Genet.2019511121810.1038/s41588‑018‑0295‑530478442
    [Google Scholar]
  50. ZuberV. GrinbergN.F. GillD. ManipurI. SlobE.A.W. PatelA. WallaceC. BurgessS. Combining evidence from Mendelian randomization and colocalization: Review and comparison of approaches.Am. J. Hum. Genet.2022109576778210.1016/j.ajhg.2022.04.00135452592
    [Google Scholar]
  51. HanJ. LeeC. Antagonistic regulatory effects of a single cis-acting expression quantitative trait locus between transcription and translation of the MRPL43 gene.BMC Genomic Data20222314210.1186/s12863‑022‑01057‑735659240
    [Google Scholar]
  52. AligS.K. EsfahaniS.M. GarofaloA. LiM.Y. RossiC. FlerlageT. FlerlageJ.E. AdamsR. BinkleyM.S. ShuklaN. JinM.C. OlsenM. TeleniusA. MutterJ.A. MartinS.J.G. SworderB.J. RaiS. KingD.A. SchultzA. BögeholzJ. SuS. KathuriaK.R. LiuC.L. KangX. StrohbandM.J. LangfittD. PizaP.K.F. SurmanS. TianF. SpinaV. TousseynT. BuedtsL. HoppeR. NatkunamY. ForneckerL.M. CastellinoS.M. AdvaniR. RossiD. LynchR. GhesquièresH. CasasnovasO. KurtzD.M. MarksL.J. LinkM.P. AndréM. VandenbergheP. SteidlC. DiehnM. AlizadehA.A. Distinct Hodgkin lymphoma subtypes defined by noninvasive genomic profiling.Nature2024625799677878710.1038/s41586‑023‑06903‑x38081297
    [Google Scholar]
/content/journals/cg/10.2174/0113892029301904240513045755
Loading
/content/journals/cg/10.2174/0113892029301904240513045755
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test