Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Fungal infections are considered a great threat to human life and are associated with high mortality and morbidity, especially in immunocompromised individuals. Fungal pathogens employ various defense mechanisms to evade the host immune system, which causes severe infections. The available repertoire of drugs for the treatment of fungal infections includes azoles, allylamines, polyenes, echinocandins, and antimetabolites. However, the development of multidrug and pandrug resistance to available antimycotic drugs increases the need to develop better treatment approaches. In this new era of -omics, bioinformatics has expanded options for treating fungal infections. This review emphasizes how bioinformatics complements the emerging strategies, including advancements in drug delivery systems, combination therapies, drug repurposing, epitope-based vaccine design, RNA-based therapeutics, and the role of gut-microbiome interactions to combat anti-fungal resistance. In particular, we focused on computational methods that can be useful to obtain potent hits, and that too in a short period.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029281602240422052210
2024-10-01
2025-01-28
Loading full text...

Full text loading...

References

  1. León-BuitimeaA. Garza-CervantesJ.A. Gallegos-AlvaradoD.Y. Osorio-ConcepciónM. Morones-RamírezJ.R. Nanomaterial-based antifungal therapies to combat fungal diseases aspergillosis, Coccidioidomycosis, Mucormycosis, and candidiasis.Pathogens20211010130310.3390/pathogens1010130334684252
    [Google Scholar]
  2. HeardS.C. WuG. WinterJ.M. Antifungal natural products.Curr. Opin. Biotechnol.20216923224110.1016/j.copbio.2021.02.00133640596
    [Google Scholar]
  3. ChenN. ZhouM. DongX. QuJ. GongF. HanY. QiuY. WangJ. LiuY. WeiY. XiaJ. YuT. ZhangX. ZhangL. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study.Lancet20203951022350751310.1016/S0140‑6736(20)30211‑732007143
    [Google Scholar]
  4. GintjeeT.J. DonnelleyM.A. ThompsonG.R.III Aspiring antifungals: review of current antifungal pipeline developments.J. Fungi2020612810.3390/jof601002832106450
    [Google Scholar]
  5. FisherM.C. HawkinsN.J. SanglardD. GurrS.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security.Science2018360639073974210.1126/science.aap799929773744
    [Google Scholar]
  6. Hernández-ChávezM. Pérez-GarcíaL. Niño-VegaG. Mora-MontesH. Fungal strategies to evade the host immune recognition.J. Fungi2017345110.3390/jof304005129371567
    [Google Scholar]
  7. MarcosC.M. de OliveiraH.C. de MeloW.C.M.A. da SilvaJ.F. AssatoP.A. ScorzoniL. RossiS.A. de Paula e SilvaA.C.A. Mendes-GianniniM.J.S. Fusco-AlmeidaA.M. Anti-immune strategies of pathogenic fungi.Front. Cell. Infect. Microbiol.2016614210.3389/fcimb.2016.0014227896220
    [Google Scholar]
  8. RevieN.M. IyerK.R. RobbinsN. CowenL.E. Antifungal drug resistance: evolution, mechanisms and impact.Curr. Opin. Microbiol.201845707610.1016/j.mib.2018.02.00529547801
    [Google Scholar]
  9. ImchenM. MoopantakathJ. KumavathR. BarhD. TiwariS. GhoshP. AzevedoV. Current trends in experimental and computational approaches to combat antimicrobial resistance.Front. Genet.20201156397510.3389/fgene.2020.56397533240317
    [Google Scholar]
  10. YangY.L. XiangZ.J. YangJ.H. WangW.J. XuZ.C. XiangR.L. Adverse effects associated with currently commonly used antifungal agents: a network meta-analysis and systematic review.Front. Pharmacol.20211269733010.3389/fphar.2021.69733034776941
    [Google Scholar]
  11. WallG. Lopez-RibotJ.L. Current antimycotics, new prospects, and future approaches to antifungal therapy.Antibiotics20209844510.3390/antibiotics908044532722455
    [Google Scholar]
  12. AqibA.I. AnjumA.A. IslamM.A. MurtazaA. RehmanA. Recent global trends in vaccinology, advances and challenges.Vaccines202311352010.3390/vaccines1103052036992104
    [Google Scholar]
  13. HeinsonA.I. WoelkC.H. NewellM.L. The promise of reverse vaccinology.Int. Health201572858910.1093/inthealth/ihv00225733557
    [Google Scholar]
  14. ParvizpourS. PourseifM.M. RazmaraJ. RafiM.A. OmidiY. Epitope-based vaccine design: a comprehensive overview of bioinformatics approaches.Drug Discov. Today20202561034104210.1016/j.drudis.2020.03.00632205198
    [Google Scholar]
  15. GhannoumM.A. RiceL.B. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance.Clin. Microbiol. Rev.199912450151710.1128/CMR.12.4.50110515900
    [Google Scholar]
  16. WhaleyS.G. BerkowE.L. RybakJ.M. NishimotoA.T. BarkerK.S. RogersP.D. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species.Front. Microbiol.20177217310.3389/fmicb.2016.0217328127295
    [Google Scholar]
  17. CarolusH. PiersonS. LagrouK. Van DijckP. Amphotericin B and other polyenes—Discovery, clinical use, mode of action and drug resistance.J. Fungi20206432110.3390/jof604032133261213
    [Google Scholar]
  18. VivianiM.A. Flucytosine—what is its future?J. Antimicrob. Chemother.199535224124410.1093/jac/35.2.2417759388
    [Google Scholar]
  19. Mota FernandesC. DasilvaD. HaranahalliK. McCarthyJ.B. MallamoJ. OjimaI. Del PoetaM. The future of antifungal drug therapy: novel compounds and targets.Antimicrob. Agents Chemother.2021652e01719-2010.1128/AAC.01719‑2033229427
    [Google Scholar]
  20. ScorzoniL. de Paula e SilvaA.C. MarcosC.M. AssatoP.A. de MeloW.C. de OliveiraH.C. Costa-OrlandiC.B Mendes-GianniniM.J. Fusco-AlmeidaA.M. Antifungal therapy: new advances in the understanding and treatment of mycosis.Front. Microbiol.20178242257
    [Google Scholar]
  21. AndrioleV.T. Current and future antifungal therapy: new targets for antifungal therapy.Int. J. Antimicrob. Agents200016331732110.1016/S0924‑8579(00)00258‑211091055
    [Google Scholar]
  22. JiangZ. ZhouY. Using gene networks to drug target identification.J. Integr. Bioinform.200521485710.1515/jib‑2005‑14
    [Google Scholar]
  23. ZhangX. WuF. YangN. ZhanX. LiaoJ. MaiS. HuangZ. In silico methods for identification of potential therapeutic targets.Interdiscip. Sci.202214228531010.1007/s12539‑021‑00491‑y34826045
    [Google Scholar]
  24. PaoliniG.V. ShaplandR.H. van HoornW.P. MasonJ.S. HopkinsA.L. Global mapping of pharmacological space.Nat. Biotechnol.200624780581510.1038/nbt122816841068
    [Google Scholar]
  25. SmootM.E. OnoK. RuscheinskiJ. WangP.L. IdekerT. Cytoscape 2.8: new features for data integration and network visualization.Bioinformatics201127343143210.1093/bioinformatics/btq67521149340
    [Google Scholar]
  26. BastianM. HeymannS. JacomyM. Gephi: an open source software for exploring and manipulating networks.Proceedings of the third international AAAI conference on web and social mediavol. 3, no. 1, pp. 361-362, Mar. 2009.10.1609/icwsm.v3i1.13937
    [Google Scholar]
  27. MostafaviS. RayD. Warde-FarleyD. GrouiosC. MorrisQ. GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function.Genome Biol.20089Suppl 1Suppl. 1S410.1186/gb‑2008‑9‑s1‑s418613948
    [Google Scholar]
  28. ZhuX. GersteinM. SnyderM. Getting connected: analysis and principles of biological networks.Genes Dev.20072191010102410.1101/gad.152870717473168
    [Google Scholar]
  29. AgamahF.E. MazanduG.K. HassanR. BopeC.D. ThomfordN.E. GhansahA. ChimusaE.R. Computational/in silico methods in drug target and lead prediction.Brief. Bioinform.20202151663167510.1093/bib/bbz10331711157
    [Google Scholar]
  30. RobinT.B. RaniN.A. AhmedN. PromeA.A. BappyM.N.I. AhmedF. Identification of novel drug targets and screening potential drugs against Cryptococcus gattii: An in silico approach.Inform. Med. Unlocked20233810122210.1016/j.imu.2023.101222
    [Google Scholar]
  31. AliA. WakhardeA. KaruppayilS.M. Rrp9 as a potential novel antifungal target in candida albicans: Evidences from in silico studies.Med. Mycol. Open Access2017321510.21767/2471‑8521.100026
    [Google Scholar]
  32. GuptaR. RaiC.S. Identification of novel drug targets in pathogenic aspergillus fumigatus: An in Silico approach.Commun. Comput. Inf. Sci.2020122915116010.1007/978‑981‑15‑5827‑6_13
    [Google Scholar]
  33. VandeputteP. FerrariS. CosteA.T. Antifungal resistance and new strategies to control fungal infections.Int. J. Microbiol.2012201212610.1155/2012/71368722187560
    [Google Scholar]
  34. PradhanD. BiswasroyP. GoyalA. GhoshG. RathG. Recent advancement in nanotechnology-based drug delivery system against viral infections.AAPS Pharm Sci Tech20212214710.1208/s12249‑020‑01908‑533447909
    [Google Scholar]
  35. SousaF. FerreiraD. ReisS. CostaP. Current insights on antifungal therapy: Novel nanotechnology approaches for drug delivery systems and new drugs from natural sources.Pharmaceuticals202013924810.3390/ph1309024832942693
    [Google Scholar]
  36. PachecoC. BaiãoA. DingT. CuiW. SarmentoB. Recent advances in long-acting drug delivery systems for anticancer drug.Adv. Drug Deliv. Rev.202319411472410.1016/j.addr.2023.11472436746307
    [Google Scholar]
  37. CasaliniT. Not only in silico drug discovery: Molecular modeling towards in silico drug delivery formulations.J. Control. Release202133239041710.1016/j.jconrel.2021.03.00533675875
    [Google Scholar]
  38. KontoyiannisD.P. LewisR.E. Toward more effective antifungal therapy: the prospects of combination therapy.Br. J. Haematol.2004126216517510.1111/j.1365‑2141.2004.05007.x15238137
    [Google Scholar]
  39. ShabanS. PatelM. AhmadA. Improved efficacy of antifungal drugs in combination with monoterpene phenols against Candida auris.Sci. Rep.2020101116210.1038/s41598‑020‑58203‑331980703
    [Google Scholar]
  40. CampitelliM. ZeineddineN. SamahaG. MaslakS. Combination antifungal therapy: a review of current data.J. Clin. Med. Res.20179645145610.14740/jocmr2992w28496543
    [Google Scholar]
  41. PippiB. LanaA.J.D. MoraesR.C. GüezC.M. MachadoM. de OliveiraL.F.S. Lino von PoserG. FuentefriaA.M. In vitro evaluation of the acquisition of resistance, antifungal activity and synergism of Brazilian red propolis with antifungal drugs on Candida spp.J. Appl. Microbiol.2015118483985010.1111/jam.1274625565139
    [Google Scholar]
  42. WangY. YanH. LiJ. ZhangY. WangZ. SunS. Antifungal activity and potential mechanism of action of caspofungin in combination with ribavirin against Candida albicans.Int. J. Antimicrob. Agents202361310670910.1016/j.ijantimicag.2023.10670936640848
    [Google Scholar]
  43. Güvenç PaltunB. KaskiS. MamitsukaH. Machine learning approaches for drug combination therapies.Brief. Bioinform.2021226bbab29310.1093/bib/bbab29334368832
    [Google Scholar]
  44. ChengF. KovácsI.A. BarabásiA.L. Network-based prediction of drug combinations.Nat. Commun.2019101119710.1038/s41467‑019‑09186‑x30867426
    [Google Scholar]
  45. PearsonR.A. WichaS.G. OkourM. Drug combination modeling: methods and applications in drug development.J. Clin. Pharmacol.202363215116510.1002/jcph.212836088583
    [Google Scholar]
  46. VakilV. TrappeW. Drug combinations: mathematical modeling and networking methods.Pharmaceutics201911520810.3390/pharmaceutics1105020831052580
    [Google Scholar]
  47. Abdel-HalimH. HajarM. HasounehL.Jnr AbdelmalekS.M.A. Identification of drug combination therapies for sars-cov-2: A molecular dynamics simulations approach.Drug Des. Devel. Ther.2022162995301310.2147/DDDT.S36642336110398
    [Google Scholar]
  48. LiuY. HuB. FuC. ChenX. DCDB: Drug combination database.Bioinformatics201026458758810.1093/bioinformatics/btp69720031966
    [Google Scholar]
  49. Niazi-AliS. AthertonG.T. WalczakM. DenningD.W. Drug– drug interaction database for safe prescribing of systemic antifungal agents.Ther. Adv. Infect. Dis.2021810.1177/2049936121101060533996073
    [Google Scholar]
  50. ChenX. RenB. ChenM. LiuM.X. RenW. WangQ.X. ZhangL.X. YanG.Y. ASDCD: antifungal synergistic drug combination database.PLoS One201491e8649910.1371/journal.pone.008649924475134
    [Google Scholar]
  51. ZagidullinB. AldahdoohJ. ZhengS. WangW. WangY. SaadJ. MalyutinaA. JafariM. TanoliZ. PessiaA. TangJ. DrugComb: an integrative cancer drug combination data portal.Nucleic Acids Res.201947W1W43W5110.1093/nar/gkz33731066443
    [Google Scholar]
  52. Di VeroliG.Y. FornariC. WangD. MollardS. BramhallJ.L. RichardsF.M. JodrellD.I. Combenefit: an interactive platform for the analysis and visualization of drug combinations.Bioinformatics201632182866286810.1093/bioinformatics/btw23027153664
    [Google Scholar]
  53. IanevskiA. HeL. AittokallioT. TangJ. SynergyFinder: a web application for analyzing drug combination dose–response matrix data.Bioinformatics201733152413241510.1093/bioinformatics/btx16228379339
    [Google Scholar]
  54. WootenD.J. AlbertR. Synergy: a Python library for calculating, analyzing and visualizing drug combination synergy.Bioinformatics202137101473147410.1093/bioinformatics/btaa82632960970
    [Google Scholar]
  55. IanevskiA. TimonenS. KononovA. AittokallioT. GiriA.K. SynToxProfiler: An interactive analysis of drug combination synergy, toxicity and efficacy.PLOS Comput. Biol.2020162e100760410.1371/journal.pcbi.100760432012154
    [Google Scholar]
  56. MouchlisV.D. AfantitisA. SerraA. FratelloM. PapadiamantisA.G. AidinisV. LynchI. GrecoD. MelagrakiG. Advances in de novo drug design: from conventional to machine learning methods.Int. J. Mol. Sci.2021224167610.3390/ijms2204167633562347
    [Google Scholar]
  57. SchmidtT. BergnerA. SchwedeT. Modelling three-dimensional protein structures for applications in drug design.Drug Discov. Today201419789089710.1016/j.drudis.2013.10.02724216321
    [Google Scholar]
  58. JisnaV.A. JayarajP.B. Protein structure prediction: conventional and deep learning perspectives.Protein J.202140452254410.1007/s10930‑021‑10003‑y34050498
    [Google Scholar]
  59. PinziL. RastelliG. Molecular docking: shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms2018433131487867
    [Google Scholar]
  60. PagadalaN.S. SyedK. TuszynskiJ. Software for molecular docking: a review.Biophys. Rev.2017929110210.1007/s12551‑016‑0247‑128510083
    [Google Scholar]
  61. Salo-AhenO.M.H. AlankoI. BhadaneR. BonvinA.M.J.J. HonoratoR.V. HossainS. JufferA.H. KabedevA. Lahtela-KakkonenM. LarsenA.S. LescrinierE. MarimuthuP. MirzaM.U. MustafaG. Nunes-AlvesA. PantsarT. SaadabadiA. SingaraveluK. VanmeertM. Molecular dynamics simulations in drug discovery and pharmaceutical development.Processes2020917110.3390/pr9010071
    [Google Scholar]
  62. Ou-YangS. LuJ. KongX. LiangZ. LuoC. JiangH. Computational drug discovery.Acta Pharmacol. Sin.20123391131114010.1038/aps.2012.10922922346
    [Google Scholar]
  63. ShimJ. MacKerellA.D.Jr Computational ligand-based rational design: role of conformational sampling and force fields in model development.MedChemComm20112535637010.1039/c1md00044f21716805
    [Google Scholar]
  64. AparoyP. Kumar ReddyK. ReddannaP. Structure and ligand based drug design strategies in the development of novel 5- LOX inhibitors.Curr. Med. Chem.201219223763377810.2174/09298671280166111222680930
    [Google Scholar]
  65. GanJ. LiuJ. LiuY. ChenS. DaiW. XiaoZ.X. CaoY. DrugRep: an automatic virtual screening server for drug repurposing.Acta Pharmacol. Sin.202344488889610.1038/s41401‑022‑00996‑236216900
    [Google Scholar]
  66. ChaY. ErezT. ReynoldsI.J. KumarD. RossJ. KoytigerG. KuskoR. ZeskindB. RissoS. KaganE. PapapetropoulosS. GrossmanI. LaifenfeldD. Drug repurposing from the perspective of pharmaceutical companies.Br. J. Pharmacol.2018175216818010.1111/bph.1379828369768
    [Google Scholar]
  67. ZhangQ. LiuF. ZengM. MaoY. SongZ. Drug repurposing strategies in the development of potential antifungal agents.Appl. Microbiol. Biotechnol.2021105135259527910.1007/s00253‑021‑11407‑734151414
    [Google Scholar]
  68. NourE.M. El-HabashyS.E. ShehatM.G. EssawyM.M. El-MoslemanyR.M. KhalafallahN.M. Atorvastatin liposomes in a 3D-printed polymer film: a repurposing approach for local treatment of oral candidiasis.Drug Deliv. Transl. Res.202313112847286810.1007/s13346‑023‑01353‑437184748
    [Google Scholar]
  69. LiuZ. FangH. ReaganK. XuX. MendrickD.L. SlikkerW.Jr TongW. In silico drug repositioning – what we need to know.Drug Discov. Today2013183-411011510.1016/j.drudis.2012.08.00522935104
    [Google Scholar]
  70. ParvathaneniV. KulkarniN.S. MuthA. GuptaV. Drug repurposing: a promising tool to accelerate the drug discovery process.Drug Discov. Today201924102076208510.1016/j.drudis.2019.06.01431238113
    [Google Scholar]
  71. ParkK. A review of computational drug repurposing.Transl. Clin. Pharmacol.2019272596310.12793/tcp.2019.27.2.5932055582
    [Google Scholar]
  72. ChengF. LuW. LiuC. FangJ. HouY. HandyD.E. WangR. ZhaoY. YangY. HuangJ. HillD.E. VidalM. EngC. LoscalzoJ. A genome-wide positioning systems network algorithm for in silico drug repurposing.Nat. Commun.2019101347610.1038/s41467‑019‑10744‑631375661
    [Google Scholar]
  73. WeersmaR.K. ZhernakovaA. FuJ. Interaction between drugs and the gut microbiome.Gut20206981510151910.1136/gutjnl‑2019‑32020432409589
    [Google Scholar]
  74. McCoubreyL.E. ElbadawiM. OrluM. GaisfordS. BasitA.W. Harnessing machine learning for development of microbiome therapeutics.Gut Microbes2021131187232310.1080/19490976.2021.187232333522391
    [Google Scholar]
  75. GilbertJ.A. Our unique microbial identity.Genome Biol.20151619710.1186/s13059‑015‑0664‑725971745
    [Google Scholar]
  76. DoestzadaM. VilaA.V. ZhernakovaA. KoonenD.P.Y. WeersmaR.K. TouwD.J. Pharmacomicrobiomics: a novel route towards personalized medicineProtein cell20189543244510.1007/s13238‑018‑0547‑229705929
    [Google Scholar]
  77. HengX. JiangY. ChuW. Influence of fluconazole administration on gut microbiome, intestinal barrier, and immune response in mice.Antimicrob. Agents Chemother.2021656e02552-2010.1128/AAC.02552‑2033722893
    [Google Scholar]
  78. SharmaA.K. JaiswalS.K. ChaudharyN. SharmaV.K. A novel approach for the prediction of species-specific biotransformation of xenobiotic/drug molecules by the human gut microbiota.Sci. Rep.201771975110.1038/s41598‑017‑10203‑628852076
    [Google Scholar]
  79. McCoubreyL.E. GaisfordS. OrluM. BasitA.W. Predicting drug-microbiome interactions with machine learning.Biotechnol. Adv.20225410779710.1016/j.biotechadv.2021.10779734260950
    [Google Scholar]
  80. SunY.Z. ZhangD.H. CaiS.B. MingZ. LiJ.Q. ChenX. MDAD: a special resource for microbe-drug associations.Front. Cell. Infect. Microbiol.2018842410.3389/fcimb.2018.0042430581775
    [Google Scholar]
  81. RizkallahR. RizkallahR.M. Gamal-EldinS. SaadR. K AzizR. The pharmacomicrobiomics portal: a database for drug-microbiome interactions.Curr. Pharmacogenomics Person. Med.201210319520310.2174/187569212802510030
    [Google Scholar]
  82. ZengX. YangX. FanJ. TanY. JuL. ShenW. WangY. WangX. ChenW. JuD. ChenY.Z. MASI: microbiota—active substance interactions database.Nucleic Acids Res.202149D1D776D78210.1093/nar/gkaa92433125077
    [Google Scholar]
  83. CurreriA. SankholkarD. MitragotriS. ZhaoZ. RNA therapeutics in the clinic.Bioeng. Transl. Med.202381e1037410.1002/btm2.1037436684099
    [Google Scholar]
  84. BruchA. KelaniA.A. BlangoM.G. RNA-based therapeutics to treat human fungal infections.Trends Microbiol.202230541142010.1016/j.tim.2021.09.00734635448
    [Google Scholar]
  85. DammesN. PeerD. Paving the road for RNA therapeutics.Trends Pharmacol. Sci.2020411075577510.1016/j.tips.2020.08.00432893005
    [Google Scholar]
  86. SelvamC. MutisyaD. PrakashS. RangannaK. ThilagavathiR. Therapeutic potential of chemically modified si RNA : Recent trends.Chem. Biol. Drug Des.201790566567810.1111/cbdd.1299328378934
    [Google Scholar]
  87. EspositoC. CatuognoS. CondorelliG. UngaroP. de FranciscisV. Aptamer chimeras for therapeutic delivery: the challenging perspectives.Genes (Basel)201891152910.3390/genes911052930384431
    [Google Scholar]
  88. KhatriM. RajamM.V. Targeting polyamines of Aspergillus nidulans by siRNA specific to fungal ornithine decarboxylase gene.Med. Mycol.200745321122010.1080/1369378060115877917464842
    [Google Scholar]
  89. MouynaI. HenryC. DoeringT.L. LatgéJ.P. Gene silencing with RNA interference in the human pathogenic fungus Aspergillus fumigatus.FEMS Microbiol. Lett.2004237231732410.1111/j.1574‑6968.2004.tb09713.x15321679
    [Google Scholar]
  90. NagpalG. ChaudharyK. DhandaS.K. RaghavaG.P.S. Computational prediction of the immunomodulatory potential of RNA sequences.RNA Nanostruct.: Meth. Proto.20171632759010.1007/978‑1‑4939‑7138‑1_528730433
    [Google Scholar]
  91. HoinkaJ. WangY. PrzytyckaT.M. AptaBlocks online: A web-based toolkit for the in silico design of oligonucleotide sticky bridges.J. Comput. Biol.202027335636010.1089/cmb.2019.047032160038
    [Google Scholar]
  92. SciabolaS. XiH. CruzD. CaoQ. LawrenceC. ZhangT. RotsteinS. HughesJ.D. CaffreyD.R. StantonR.V. PFRED: A computational platform for siRNA and antisense oligonucleotides design.PLoS One2021161e023875310.1371/journal.pone.023875333481821
    [Google Scholar]
  93. LückS. KresziesT. StrickertM. SchweizerP. KuhlmannM. DouchkovD. siRNA-Finder (si-Fi) software for RNAi-target design and off-target prediction.Front. Plant Sci.201910102310.3389/fpls.2019.0102331475020
    [Google Scholar]
  94. WongL. WangL. YouZ.H. YuanC.A. HuangY.A. CaoM.Y. GKLOMLI: a link prediction model for inferring miRNA–lncRNA interactions by using Gaussian kernel-based method on network profile and linear optimization algorithm.BMC Bioinformatics202324118810.1186/s12859‑023‑05309‑w37158823
    [Google Scholar]
  95. ZhengK. ZhangX.L. WangL. YouZ.H. JiB.Y. LiangX. LiZ.W. SPRDA: a link prediction approach based on the structural perturbation to infer disease-associated Piwi-interacting RNAs.Brief. Bioinform.2023241bbac49810.1093/bib/bbac49836445194
    [Google Scholar]
  96. WangL. WongL. YouZ.H. HuangD.S. AMDECDA: attention mechanism combined with data ensemble strategy for predicting CircRNA-disease association.IEEE Trans. Big Data2023
    [Google Scholar]
  97. DhandaS.K. UsmaniS.S. AgrawalP. NagpalG. GautamA. RaghavaG.P. Novel in silico tools for designing peptide-based subunit vaccines and immunotherapeutics.Brief Bioinform201718346746810.1093/bib/bbw02527016393
    [Google Scholar]
  98. ThomasS. AbrahamA. BaldwinJ. PiplaniS. PetrovskyN. Artificial intelligence in vaccine and drug design.Methods Mol Biol2022241013114610.1007/978‑1‑0716‑1884‑4_634914045
    [Google Scholar]
  99. SolankiV. TiwariV. Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of chimeric vaccine against Acinetobacter baumannii.Sci. Rep.201881904410.1038/s41598‑018‑26689‑729899345
    [Google Scholar]
  100. JalalK. Abu-IzneidT. KhanK. AbbasM. HayatA. BawazeerS. UddinR. Identification of vaccine and drug targets in Shigella dysenteriae sd197 using reverse vaccinology approach.Sci. Rep.202212125110.1038/s41598‑021‑03988‑034997046
    [Google Scholar]
  101. LathwalA. KumarR. RaghavaG.P.S. In-silico identification of subunit vaccine candidates against lung cancer-associated oncogenic viruses.Comput. Biol. Med.202113010421510.1016/j.compbiomed.2021.10421533465550
    [Google Scholar]
/content/journals/cg/10.2174/0113892029281602240422052210
Loading
/content/journals/cg/10.2174/0113892029281602240422052210
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test