Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Mitochondria are semi-autonomous organelles present in several copies within most cells in the human body that are controlled by the precise collaboration of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) encoding mitochondrial proteins. They play important roles in numerous metabolic pathways, such as the synthesis of adenosine triphosphate (ATP), the predominant energy substrate of the cell generated through oxidative phosphorylation (OXPHOS), intracellular calcium homeostasis, metabolite biosynthesis, aging, cell cycles, and so forth. Previous studies revealed that dysfunction of these multi-functional organelles, which may arise due to mutations in either the nuclear or mitochondrial genome, leads to a diverse group of clinically and genetically heterogeneous disorders. These diseases include neurodegenerative and metabolic disorders as well as cardiac and skeletal myopathies in both adults and newborns. The plethora of phenotypes and defects displayed leads to challenges in the diagnosis and treatment of mitochondrial diseases. In this regard, the related literature proposed several diagnostic options, such as high throughput mitochondrial genomics and omics technologies, as well as numerous therapeutic options, such as pharmacological approaches, manipulating the mitochondrial genome, increasing the mitochondria content of the affected cells, and recently mitochondrial diseases transmission prevention. Therefore, the present article attempted to review the latest advances and challenges in diagnostic and therapeutic options for mitochondrial diseases.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029308327240612110334
2024-10-01
2024-11-14
Loading full text...

Full text loading...

References

  1. AlshialE.E. AbdulghaneyM.I. WadanA.H.S. AbdellatifM.A. RamadanN.E. SuleimanA.M. WaheedN. AbdellatifM. MohammedH.S. Mitochondrial dysfunction and neurological disorders: A narrative review and treatment overview.Life Sci.202333412225710.1016/j.lfs.2023.12225737949207
    [Google Scholar]
  2. San-MillánI. The key role of mitochondrial function in health and disease.Antioxidants202312478210.3390/antiox1204078237107158
    [Google Scholar]
  3. ChinneryP.F. Primary mitochondrial disorders overview.GeneReviews2021
    [Google Scholar]
  4. AldossaryA.M. TawfikE.A. AlomaryM.N. AlsudirS.A. AlfahadA.J. AlshehriA.A. AlmughemF.A. MohammedR.Y. AlzaydiM.M. Recent advances in mitochondrial diseases: From molecular insights to therapeutic perspectives.Saudi Pharm. J.20223081065107810.1016/j.jsps.2022.05.01136164575
    [Google Scholar]
  5. StentonS.L. ProkischH. Advancing genomic approaches to the molecular diagnosis of mitochondrial disease.Essays Biochem.201862339940810.1042/EBC2017011029950319
    [Google Scholar]
  6. GradyJ.P. PickettS.J. NgY.S. AlstonC.L. BlakelyE.L. HardyS.A. FeeneyC.L. BrightA.A. SchaeferA.M. GormanG.S. McNallyR.J.Q. TaylorR.W. TurnbullD.M. McFarlandR. mt DNA heteroplasmy level and copy number indicate disease burden in m.3243A>G mitochondrial disease.EMBO Mol. Med.2018106e826210.15252/emmm.20170826229735722
    [Google Scholar]
  7. KorchivaiaE. SilaevaY. MazuninI. VolodyaevI. The mitochondrial challenge: Disorders and prevention strategies.Biosystems202322310481910.1016/j.biosystems.2022.10481936450320
    [Google Scholar]
  8. El-HattabA.W. ScagliaF. Mitochondrial cytopathies.Cell Calcium201660319920610.1016/j.ceca.2016.03.00326996063
    [Google Scholar]
  9. LakeN.J. BirdM.J. IsohanniP. PaetauA. Leigh syndrome.J. Neuropathol. Exp. Neurol.201574648249210.1097/NEN.000000000000019525978847
    [Google Scholar]
  10. Schubert BaldoM. VilarinhoL. Molecular basis of Leigh syndrome: A current look.Orphanet J. Rare Dis.20201513110.1186/s13023‑020‑1297‑931996241
    [Google Scholar]
  11. AvulaS. ParikhS. DemarestS. KurzJ. GropmanA. Treatment of mitochondrial disorders.Curr. Treat. Options Neurol.201416629210.1007/s11940‑014‑0292‑724700433
    [Google Scholar]
  12. QuinziiC.M. EmmanueleV. HiranoM. Clinical presentations of coenzyme q10 deficiency syndrome.Mol. Syndromol.201453-414114610.1159/00036049025126046
    [Google Scholar]
  13. PfefferG. HorvathR. KlopstockT. MoothaV.K. SuomalainenA. KoeneS. HiranoM. ZevianiM. BindoffL.A. Yu-Wai-ManP. HannaM. CarelliV. McFarlandR. MajamaaK. TurnbullD.M. SmeitinkJ. ChinneryP.F. New treatments for mitochondrial disease—no time to drop our standards.Nat. Rev. Neurol.20139847448110.1038/nrneurol.2013.12923817350
    [Google Scholar]
  14. GormanG.S. ChinneryP.F. DiMauroS. HiranoM. KogaY. McFarlandR. SuomalainenA. ThorburnD.R. ZevianiM. TurnbullD.M. Mitochondrial diseases.Nat. Rev. Dis. Primers2016211608010.1038/nrdp.2016.8027775730
    [Google Scholar]
  15. McCormickE. PlaceE. FalkM.J. Molecular genetic testing for mitochondrial disease: From one generation to the next.Neurotherapeutics201310225126110.1007/s13311‑012‑0174‑123269497
    [Google Scholar]
  16. McCormickE.M. Zolkipli-CunninghamZ. FalkM.J. Mitochondrial disease genetics update: Recent insights into the molecular diagnosis and expanding phenotype of primary mitochondrial disease.Curr. Opin. Pediatr.201830671472410.1097/MOP.000000000000068630199403
    [Google Scholar]
  17. ThompsonK. CollierJ.J. GlasgowR.I.C. RobertsonF.M. PyleA. BlakelyE.L. AlstonC.L. OláhováM. McFarlandR. TaylorR.W. Recent advances in understanding the molecular genetic basis of mitochondrial disease.J. Inherit. Metab. Dis.2020431365010.1002/jimd.1210431021000
    [Google Scholar]
  18. SerreV. RozanskaA. BeinatM. ChretienD. BoddaertN. MunnichA. RötigA. Chrzanowska-LightowlersZ.M. Mutations in mitochondrial ribosomal protein MRPL12 leads to growth retardation, neurological deterioration and mitochondrial translation deficiency.Biochim. Biophys. Acta Mol. Basis Dis.2013183281304131210.1016/j.bbadis.2013.04.01423603806
    [Google Scholar]
  19. MeienbergJ. BruggmannR. OexleK. MatyasG. Clinical sequencing: Is WGS the better WES?Hum. Genet.2016135335936210.1007/s00439‑015‑1631‑926742503
    [Google Scholar]
  20. ValentiD. VaccaR. Primary and secondary mitochondrial diseases: Etiologies and therapeutic strategies.J. Clin. Med.20221114420910.3390/jcm1114420935887983
    [Google Scholar]
  21. TinkerR.J. LimA.Z. StefanettiR.J. McFarlandR. Current and emerging clinical treatment in mitochondrial disease.Mol. Diagn. Ther.202125218120610.1007/s40291‑020‑00510‑633646563
    [Google Scholar]
  22. BraunE. Mitochondrial replacement techniques for treating infertility.J. Med. Ethics2024jme-2023-10966010.1136/jme‑2023‑10966038383152
    [Google Scholar]
  23. WatsonE. DavisR. SueC.M. New diagnostic pathways for mitochondrial disease.J. Transl. Genet. Genom.20204188202
    [Google Scholar]
  24. LightowlersR.N. TaylorR.W. TurnbullD.M. Mutations causing mitochondrial disease: What is new and what challenges remain?Science201534962551494149910.1126/science.aac751626404827
    [Google Scholar]
  25. NgY.S. TurnbullD.M. Mitochondrial disease: Genetics and management.J. Neurol.2016263117919110.1007/s00415‑015‑7884‑326315846
    [Google Scholar]
  26. LegatiA. ReyesA. NascaA. InvernizziF. LamanteaE. TirantiV. GaravagliaB. LampertiC. ArdissoneA. MoroniI. RobinsonA. GhezziD. ZevianiM. New genes and pathomechanisms in mitochondrial disorders unraveled by NGS technologies.Biochim. Biophys. Acta Bioenerg.2016185781326133510.1016/j.bbabio.2016.02.02226968897
    [Google Scholar]
  27. StentonS.L. ProkischH. Genetics of mitochondrial diseases: Identifying mutations to help diagnosis.EBioMedicine20205610278410.1016/j.ebiom.2020.10278432454403
    [Google Scholar]
  28. WuT.H. PengJ. YangL. ChenY.H. LuX.L. HuangJ.T. YouJ.Y. Ou-YangW.X. SunY.Y. XueY.N. MaoX. YanH.M. RenR.N. XieJ. ChenZ.H. ZhangV.W. LyuG.Z. HeF. Use of dual genomic sequencing to screen mitochondrial diseases in pediatrics: A retrospective analysis.Sci. Rep.2023131419310.1038/s41598‑023‑31134‑536918699
    [Google Scholar]
  29. AhmadR. HasanM.Y. Next-generation sequencing technology in the diagnosis of mitochondrial disorders.Int. J. Health Sci.20211511233456435
    [Google Scholar]
  30. StendelC. NeuhoferC. FlorideE. YuqingS. GanetzkyR.D. ParkJ. FreisingerP. KornblumC. KleinleS. SchölsL. DistelmaierF. StettnerG.M. BüchnerB. FalkM.J. MayrJ.A. SynofzikM. AbichtA. HaackT.B. ProkischH. WortmannS.B. MurayamaK. FangF. KlopstockT. ATP6 Study Group Delineating MT-ATP6 -associated disease.Neurol. Genet.202061e39310.1212/NXG.000000000000039332042921
    [Google Scholar]
  31. HerbersE. KekäläinenN.J. HangasA. PohjoismäkiJ.L. GoffartS. Tissue specific differences in mitochondrial DNA maintenance and expression.Mitochondrion201944859210.1016/j.mito.2018.01.00429339192
    [Google Scholar]
  32. BelkadiA. BolzeA. ItanY. CobatA. VincentQ.B. AntipenkoA. ShangL. BoissonB. CasanovaJ.L. AbelL. Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants.Proc. Natl. Acad. Sci. USA2015112175473547810.1073/pnas.141863111225827230
    [Google Scholar]
  33. FrazierA. E. ComptonA. G. KishitaY. HockD. H. WelchA. E. AmarasekeraS. S. RiusR. FormosaL. E. Imai-OkazakiA. FrancisD. Fatal perinatal mitochondrial cardiac failure caused by recurrent de novo duplications in the ATAD3 locus.Med202124973
    [Google Scholar]
  34. AlstonC.L. StentonS.L. HudsonG. ProkischH. TaylorR.W. The genetics of mitochondrial disease: Dissecting mitochondrial pathology using multi-omic pipelines.J. Pathol.2021254443044210.1002/path.564133586140
    [Google Scholar]
  35. BourchanyA. Thauvin-RobinetC. LehalleD. BruelA.L. Masurel-PauletA. JeanN. NambotS. WillemsM. LambertL. El Chehadeh-DjebbarS. SchaeferE. JaquetteA. St-OngeJ. PoeC. JouanT. ChevarinM. CallierP. Mosca-BoidronA.L. LaurentN. LefebvreM. HuetF. HoucinatN. MouttonS. PhilippeC. Tran-Mau-ThemF. VitobelloA. KuentzP. DuffourdY. RivièreJ.B. ThevenonJ. FaivreL. Reducing diagnostic turnaround times of exome sequencing for families requiring timely diagnoses.Eur. J. Med. Genet.2017601159560410.1016/j.ejmg.2017.08.01128807864
    [Google Scholar]
  36. SchonK.R. RatnaikeT. van den AmeeleJ. HorvathR. ChinneryP.F. Mitochondrial diseases: A diagnostic revolution.Trends Genet.202036970271710.1016/j.tig.2020.06.00932674947
    [Google Scholar]
  37. SimonM.T. EftekharianS.S. StoverA.E. OsborneA.F. BraffmanB.H. ChangR.C. WangR.Y. SteenariM.R. TangS. HwuP.W.L. TaftR.J. BenkeP.J. AbdenurJ.E. Novel mutations in the mitochondrial complex I assembly gene NDUFAF5 reveal heterogeneous phenotypes.Mol. Genet. Metab.20191261536310.1016/j.ymgme.2018.11.00130473481
    [Google Scholar]
  38. AlstonC.L. VelingM.T. HeidlerJ. TaylorL.S. AlaimoJ.T. SungA.Y. HeL. HoptonS. BroomfieldA. PavaineJ. DiazJ. LeonE. WolfP. McFarlandR. ProkischH. WortmannS.B. BonnenP.E. WittigI. PagliariniD.J. TaylorR.W. Pathogenic bi-allelic mutations in NDUFAF8 cause Leigh syndrome with an isolated complex I deficiency.Am. J. Hum. Genet.202010619210110.1016/j.ajhg.2019.12.00131866046
    [Google Scholar]
  39. MackenW.L. FalabellaM. PizzamiglioC. WoodwardC.E. ScotchmanE. ChittyL.S. PolkeJ.M. BugiardiniE. HannaM.G. VandrovcovaJ. ChandlerN. LabrumR. PitceathlyR.D.S. Enhanced mitochondrial genome analysis: Bioinformatic and long-read sequencing advances and their diagnostic implications.Expert Rev. Mol. Diagn.202323979781410.1080/14737159.2023.224136537642407
    [Google Scholar]
  40. MuW. LiB. WuS. ChenJ. SainD. XuD. BlackM.H. KaramR. GillespieK. Farwell HagmanK.D. GuidugliL. PronoldM. ElliottA. LuH.M. Detection of structural variation using target captured next-generation sequencing data for genetic diagnostic testing.Genet. Med.20192171603161010.1038/s41436‑018‑0397‑630563988
    [Google Scholar]
  41. GusicM. ProkischH. Genetic basis of mitochondrial diseases.FEBS Lett.202159581132115810.1002/1873‑3468.1406833655490
    [Google Scholar]
  42. MizuguchiT. SuzukiT. AbeC. UmemuraA. TokunagaK. KawaiY. NakamuraM. NagasakiM. KinoshitaK. OkamuraY. MiyatakeS. MiyakeN. MatsumotoN. A 12-kb structural variation in progressive myoclonic epilepsy was newly identified by long-read whole-genome sequencing.J. Hum. Genet.201964535936810.1038/s10038‑019‑0569‑530760880
    [Google Scholar]
  43. ClarkM.M. HildrethA. BatalovS. DingY. ChowdhuryS. WatkinsK. EllsworthK. CampB. KintC.I. YacoubianC. FarnaesL. BainbridgeM.N. BeebeC. BraunJ.J.A. BrayM. CarrollJ. CakiciJ.A. CaylorS.A. ClarkeC. CreedM.P. FriedmanJ. FrithA. GainR. GaughranM. GeorgeS. GilmerS. GleesonJ. GoreJ. GrunenwaldH. HoveyR.L. JanesM.L. LinK. McDonaghP.D. McBrideK. MulrooneyP. NahasS. OhD. OriolA. PuckettL. RadyZ. ReeseM.G. RyuJ. SalzL. SanfordE. StewartL. SweeneyN. TokitaM. Van Der KraanL. WhiteS. WigbyK. WilliamsB. WongT. WrightM.S. YamadaC. ScholsP. ReyndersJ. HallK. DimmockD. VeeraraghavanN. DefayT. KingsmoreS.F. Diagnosis of genetic diseases in seriously ill children by rapid whole-genome sequencing and automated phenotyping and interpretation.Sci. Transl. Med.201911489eaat617710.1126/scitranslmed.aat617731019026
    [Google Scholar]
  44. FerriL. Dionisi-ViciC. TaurisanoR. VazF.M. GuerriniR. MorroneA. When silence is noise: Infantile-onset Barth syndrome caused by a synonymous substitution affecting TAZ gene transcription.Clin. Genet.201690546146510.1111/cge.1275626853223
    [Google Scholar]
  45. MertesC. SchellerI. YépezV.A. ÇelikM.H. LiangY. KremerL.S. GusicM. ProkischH. GagneurJ. Detection of aberrant splicing events in RNA-seq data with FRASER.bioRxiv201910.1101/2019.12.18.866830
    [Google Scholar]
  46. KremerL.S. BaderD.M. MertesC. KopajtichR. PichlerG. IusoA. HaackT.B. GrafE. SchwarzmayrT. TerrileC. KoňaříkováE. ReppB. KastenmüllerG. AdamskiJ. LichtnerP. LeonhardtC. FunalotB. DonatiA. TirantiV. LombesA. JardelC. GläserD. TaylorR.W. GhezziD. MayrJ.A. RötigA. FreisingerP. DistelmaierF. StromT.M. MeitingerT. GagneurJ. ProkischH. Genetic diagnosis of Mendelian disorders via RNA sequencing.Nat. Commun.2017811582410.1038/ncomms1582428604674
    [Google Scholar]
  47. LiM. ZhaoL. Page-McCawP.S. ChenW. Zebrafish genome engineering using the CRISPR–Cas9 system.Trends Genet.2016321281582710.1016/j.tig.2016.10.00527836208
    [Google Scholar]
  48. CummingsB.B. MarshallJ.L. TukiainenT. LekM. DonkervoortS. FoleyA.R. BolducV. WaddellL.B. SandaraduraS.A. O’GradyG.L. EstrellaE. ReddyH.M. ZhaoF. WeisburdB. KarczewskiK.J. O’Donnell-LuriaA.H. BirnbaumD. SarkozyA. HuY. GonorazkyH. ClaeysK. JoshiH. BournazosA. OatesE.C. GhaouiR. DavisM.R. LaingN.G. TopfA. KangP.B. BeggsA.H. NorthK.N. StraubV. DowlingJ.J. MuntoniF. ClarkeN.F. CooperS.T. BönnemannC.G. MacArthurD.G. Genotype-Tissue Expression Consortium Improving genetic diagnosis in Mendelian disease with transcriptome sequencing.Sci. Transl. Med.20179386eaal520910.1126/scitranslmed.aal520928424332
    [Google Scholar]
  49. WilmerM.J. KluijtmansL.A.J. van der VeldenT.J. WillemsP.H. SchefferP.G. MasereeuwR. MonnensL.A. van den HeuvelL.P. LevtchenkoE.N. Cysteamine restores glutathione redox status in cultured cystinotic proximal tubular epithelial cells.Biochim. Biophys. Acta Mol. Basis Dis.20111812664365110.1016/j.bbadis.2011.02.01021371554
    [Google Scholar]
  50. FerraroN.M. StroberB.J. EinsonJ. AbellN.S. AguetF. BarbeiraA.N. BrandtM. BucanM. CastelS.E. DavisJ.R. GreenwaldE. HessG.T. HilliardA.T. KemberR.L. KotisB. ParkY. PelosoG. RamdasS. ScottA.J. SmailC. TsangE.K. ZekavatS.M. ZiosiM. Aradhana ArdlieK.G. AssimesT.L. BassikM.C. BrownC.D. CorreaA. HallI. ImH.K. LiX. NatarajanP. LappalainenT. MohammadiP. MontgomeryS.B. BattleA. AguetF. AnandS. ArdlieK.G. GabrielS. GetzG.A. GraubertA. HadleyK. HandsakerR.E. HuangK.H. KashinS. LiX. MacArthurD.G. MeierS.R. NedzelJ.L. NguyenD.T. SegrèA.V. TodresE. BalliuB. BarbeiraA.N. BattleA. BonazzolaR. BrownA. BrownC.D. CastelS.E. ConradD.F. CotterD.J. CoxN. DasS. de GoedeO.M. DermitzakisE.T. EinsonJ. EngelhardtB.E. EskinE. EulalioT.Y. FerraroN.M. FlynnE.D. FresardL. GamazonE.R. Garrido-MartínD. GayN.R. GloudemansM.J. GuigóR. HameA.R. HeY. HoffmanP.J. HormozdiariF. HouL. ImH.K. JoB. KaselaS. KellisM. Kim-HellmuthS. KwongA. LappalainenT. LiX. LiangY. MangulS. MohammadiP. MontgomeryS.B. Muñoz-AguirreM. NachunD.C. NobelA.B. OlivaM. ParkY.S. ParkY. ParsanaP. RaoA.S. ReverterF. RouhanaJ.M. SabattiC. SahaA. StephensM. StrangerB.E. StroberB.J. TeranN.A. ViñuelaA. WangG. WenX. WrightF. WucherV. ZouY. FerreiraP.G. LiG. MeléM. Yeger-LotemE. BarcusM.E. BradburyD. KrubitT. McLeanJ.A. QiL. RobinsonK. RocheN.V. SmithA.M. SobinL. TaborD.E. UndaleA. BridgeJ. BrighamL.E. FosterB.A. GillardB.M. HaszR. HunterM. JohnsC. JohnsonM. KarasikE. KopenG. LeinweberW.F. McDonaldA. MoserM.T. MyerK. RamseyK.D. RoeB. ShadS. ThomasJ.A. WaltersG. WashingtonM. WheelerJ. JewellS.D. RohrerD.C. ValleyD.R. DavisD.A. MashD.C. BrantonP.A. BarkerL.K. GardinerH.M. MosavelM. SiminoffL.A. FlicekP. HaeusslerM. JuettemannT. KentW.J. LeeC.M. PowellC.C. RosenbloomK.R. RuffierM. SheppardD. TaylorK. TrevanionS.J. ZerbinoD.R. AbellN.S. AkeyJ. ChenL. DemanelisK. DohertyJ.A. FeinbergA.P. HansenK.D. HickeyP.F. JasmineF. JiangL. KaulR. KibriyaM.G. LiJ.B. LiQ. LinS. LinderS.E. PierceB.L. RizzardiL.F. SkolA.D. SmithK.S. SnyderM. StamatoyannopoulosJ. TangH. WangM. CarithersL.J. GuanP. KoesterS.E. LittleA.R. MooreH.M. NierrasC.R. RaoA.K. VaughtJ.B. VolpiS. TOPMed Lipids Working Group GTEx Consortium Transcriptomic signatures across human tissues identify functional rare genetic variation.Science20203696509eaaz590010.1126/science.aaz590032913073
    [Google Scholar]
  51. AguetF. AnandS. ArdlieK.G. GabrielS. GetzG.A. GraubertA. HadleyK. HandsakerR.E. HuangK.H. KashinS. LiX. MacArthurD.G. MeierS.R. NedzelJ.L. NguyenD.T. SegrèA.V. TodresE. BalliuB. BarbeiraA.N. BattleA. BonazzolaR. BrownA. BrownC.D. CastelS.E. ConradD.F. CotterD.J. CoxN. DasS. de GoedeO.M. DermitzakisE.T. EinsonJ. EngelhardtB.E. EskinE. EulalioT.Y. FerraroN.M. FlynnE.D. FresardL. GamazonE.R. Garrido-MartínD. GayN.R. GloudemansM.J. GuigóR. HameA.R. HeY. HoffmanP.J. HormozdiariF. HouL. ImH.K. JoB. KaselaS. KellisM. Kim-HellmuthS. KwongA. LappalainenT. LiX. LiangY. MangulS. MohammadiP. MontgomeryS.B. Muñoz-AguirreM. NachunD.C. NobelA.B. OlivaM. ParkY.S. ParkY. ParsanaP. RaoA.S. ReverterF. RouhanaJ.M. SabattiC. SahaA. StephensM. StrangerB.E. StroberB.J. TeranN.A. ViñuelaA. WangG. WenX. WrightF. WucherV. ZouY. FerreiraP.G. LiG. MeléM. Yeger-LotemE. BarcusM.E. BradburyD. KrubitT. McLeanJ.A. QiL. RobinsonK. RocheN.V. SmithA.M. SobinL. TaborD.E. UndaleA. BridgeJ. BrighamL.E. FosterB.A. GillardB.M. HaszR. HunterM. JohnsC. JohnsonM. KarasikE. KopenG. LeinweberW.F. McDonaldA. MoserM.T. MyerK. RamseyK.D. RoeB. ShadS. ThomasJ.A. WaltersG. WashingtonM. WheelerJ. JewellS.D. RohrerD.C. ValleyD.R. DavisD.A. MashD.C. BrantonP.A. BarkerL.K. GardinerH.M. MosavelM. SiminoffL.A. FlicekP. HaeusslerM. JuettemannT. KentW.J. LeeC.M. PowellC.C. RosenbloomK.R. RuffierM. SheppardD. TaylorK. TrevanionS.J. ZerbinoD.R. AbellN.S. AkeyJ. ChenL. DemanelisK. DohertyJ.A. FeinbergA.P. HansenK.D. HickeyP.F. JasmineF. JiangL. KaulR. KibriyaM.G. LiJ.B. LiQ. LinS. LinderS.E. PierceB.L. RizzardiL.F. SkolA.D. SmithK.S. SnyderM. StamatoyannopoulosJ. TangH. WangM. CarithersL.J. GuanP. KoesterS.E. LittleA.R. MooreH.M. NierrasC.R. RaoA.K. VaughtJ.B. VolpiS. GTEx Consortium The GTEx Consortium atlas of genetic regulatory effects across human tissues.Science202036965091318133010.1126/science.aaz177632913098
    [Google Scholar]
  52. PapatheodorouI. MorenoP. ManningJ. FuentesA.M. GeorgeN. FexovaS. FonsecaN.A. FüllgrabeA. GreenM. HuangN. HuertaL. IqbalH. JianuM. MohammedS. ZhaoL. JarnuczakA.F. JuppS. MarioniJ. MeyerK. PetryszakR. Prada MedinaC.A. Talavera-LópezC. TeichmannS. VizcainoJ.A. BrazmaA. Expression Atlas update: From tissues to single cells.Nucleic Acids Res.202048D1D77D8331665515
    [Google Scholar]
  53. GonorazkyH.D. NaumenkoS. RamaniA.K. NelakuditiV. MashouriP. WangP. KaoD. OhriK. ViththiyapaskaranS. TarnopolskyM.A. MathewsK.D. MooreS.A. OsorioA.N. VillanovaD. KemaladewiD.U. CohnR.D. BrudnoM. DowlingJ.J. Expanding the boundaries of RNA sequencing as a diagnostic tool for rare mendelian disease.Am. J. Hum. Genet.2019104346648310.1016/j.ajhg.2019.01.01230827497
    [Google Scholar]
  54. AicherJ.K. JewellP. Vaquero-GarciaJ. BarashY. BhojE.J. Mapping RNA splicing variations in clinically accessible and nonaccessible tissues to facilitate Mendelian disease diagnosis using RNA-seq.Genet. Med.20202271181119010.1038/s41436‑020‑0780‑y32225167
    [Google Scholar]
  55. MertesC. SchellerI. F. Detection of aberrant splicing events in RNA-seq data using FRASER.Nat Commun.202112529
    [Google Scholar]
  56. GravesP.R. HaysteadT.A.J. Molecular biologist’s guide to proteomics.Microbiol. Mol. Biol. Rev.2002661396310.1128/MMBR.66.1.39‑63.200211875127
    [Google Scholar]
  57. McArdleA.J. MenikouS. What is proteomics?Arch Dis Child Educ Pract Ed. 20211063178181
    [Google Scholar]
  58. StentonS.L. KremerL.S. KopajtichR. LudwigC. ProkischH. The diagnosis of inborn errors of metabolism by an integrative “multi-omics” approach: A perspective encompassing genomics, transcriptomics, and proteomics.J. Inherit. Metab. Dis.2020431253510.1002/jimd.1213031119744
    [Google Scholar]
  59. SahniN. YiS. TaipaleM. Fuxman BassJ.I. Coulombe-HuntingtonJ. YangF. PengJ. WeileJ. KarrasG.I. WangY. KovácsI.A. KamburovA. KrykbaevaI. LamM.H. TuckerG. KhuranaV. SharmaA. LiuY.Y. YachieN. ZhongQ. ShenY. PalagiA. San-MiguelA. FanC. BalchaD. DricotA. JordanD.M. WalshJ.M. ShahA.A. YangX. StoyanovaA.K. LeightonA. CalderwoodM.A. JacobY. CusickM.E. Salehi-AshtianiK. WhitesellL.J. SunyaevS. BergerB. BarabásiA.L. CharloteauxB. HillD.E. HaoT. RothF.P. XiaY. WalhoutA.J.M. LindquistS. VidalM. Widespread macromolecular interaction perturbations in human genetic disorders.Cell2015161364766010.1016/j.cell.2015.04.01325910212
    [Google Scholar]
  60. LakeN.J. WebbB.D. StroudD.A. RichmanT.R. RuzzenenteB. ComptonA.G. MountfordH.S. PulmanJ. ZangarelliC. RioM. BoddaertN. AssoulineZ. SherpaM.D. SchadtE.E. HoutenS.M. ByrnesJ. McCormickE.M. Zolkipli-CunninghamZ. HaudeK. ZhangZ. RettererK. BaiR. CalvoS.E. MoothaV.K. ChristodoulouJ. RötigA. FilipovskaA. CristianI. FalkM.J. MetodievM.D. ThorburnD.R. Biallelic mutations in MRPS34 lead to instability of the small mitoribosomal subunit and leigh syndrome.Am. J. Hum. Genet.2017101223925410.1016/j.ajhg.2017.07.00528777931
    [Google Scholar]
  61. BornaN. N. KishitaY. KohdaM. LimS. C. ShimuraM. WuY. MogushiK. YatsukaY. HarashimaH. HisatomiY. Mitochondrial ribosomal protein PTCD3 mutations cause oxidative phosphorylation defects with Leigh syndrome.Neurogenetics201920925
    [Google Scholar]
  62. FilipovskaA. RackhamO. Pentatricopeptide repeats.RNA Biol.20131091426143210.4161/rna.2476923635770
    [Google Scholar]
  63. GuaraniV. PauloJ. ZhaiB. HuttlinE.L. GygiS.P. HarperJ.W. TIMMDC1/C3orf1 functions as a membrane-embedded mitochondrial complex I assembly factor through association with the MCIA complex.Mol. Cell. Biol.201434584786110.1128/MCB.01551‑1324344204
    [Google Scholar]
  64. BoenziS. DiodatoD. Biomarkers for mitochondrial energy metabolism diseases.Essays Biochem.201862344345410.1042/EBC2017011129980631
    [Google Scholar]
  65. SmutsI. van der WesthuizenF.H. LouwR. MienieL.J. EngelkeU.F.H. WeversR.A. MasonS. KoekemoerG. ReineckeC.J. Disclosure of a putative biosignature for respiratory chain disorders through a metabolomics approach.Metabolomics20139237939110.1007/s11306‑012‑0455‑z
    [Google Scholar]
  66. ThomasR.H. HunterA. ButterworthL. FeeneyC. GravesT.D. HolmesS. HossainP. LowndesJ. SharpeJ. UpadhyayaS. VarhaugK.N. VotrubaM. WheelerR. StaleyK. RahmanS. Research priorities for mitochondrial disorders: Current landscape and patient and professional views.J. Inherit. Metab. Dis.202245479680310.1002/jimd.1252135543492
    [Google Scholar]
  67. SharmaR. ReinstadlerB. EngelstadK. SkinnerO.S. StackowitzE. HallerR.G. ClishC.B. PierceK. WalkerM.A. FryerR. OglesbeeD. MaoX. ShunguD.C. KhatriA. HiranoM. De VivoD.C. MoothaV.K. Circulating markers of NADH-reductive stress correlate with mitochondrial disease severity.J. Clin. Invest.20211312e13605510.1172/JCI13605533463549
    [Google Scholar]
  68. EsterhuizenK. van der WesthuizenF.H. LouwR. Metabolomics of mitochondrial disease.Mitochondrion2017359711010.1016/j.mito.2017.05.01228576558
    [Google Scholar]
  69. CoeneK.L.M. KluijtmansL.A.J. van der HeeftE. EngelkeU.F.H. de BoerS. HoegenB. KwastH.J.T. van de VorstM. HuigenM.C.D.G. KeulartsI.M.L.W. SchreuderM.F. van KarnebeekC.D.M. WortmannS.B. de VriesM.C. JanssenM.C.H. GilissenC. EngelJ. WeversR.A. Next-generation metabolic screening: Targeted and untargeted metabolomics for the diagnosis of inborn errors of metabolism in individual patients.J. Inherit. Metab. Dis.201841333735310.1007/s10545‑017‑0131‑629453510
    [Google Scholar]
  70. LandsverkM.L. ZhangV.W. WongL.J.C. AnderssonH.C. A SUCLG1 mutation in a patient with mitochondrial DNA depletion and congenital anomalies.Mol. Genet. Metab. Rep.2014145145410.1016/j.ymgmr.2014.09.00727896121
    [Google Scholar]
  71. TortF. García-SilvaM.T. Ferrer-CortèsX. Navarro-SastreA. Garcia-VilloriaJ. CollM.J. VidalE. Jiménez-AlmazánJ. DopazoJ. BrionesP. ElpelegO. RibesA. Exome sequencing identifies a new mutation in SERAC1 in a patient with 3-methylglutaconic aciduria.Mol. Genet. Metab.20131101-2737710.1016/j.ymgme.2013.04.02123707711
    [Google Scholar]
  72. ShayotaB.J. Biomarkers of mitochondrial disorders.Neurotherapeutics2024211e0032510.1016/j.neurot.2024.e0032538295557
    [Google Scholar]
  73. KnottnerusS.J.G. Pras-RavesM.L. van der HamM. FerdinandusseS. HoutkooperR.H. SchielenP.C.J.I. VisserG. WijburgF.A. de Sain-van der VeldenM.G.M. Prediction of VLCAD deficiency phenotype by a metabolic fingerprint in newborn screening bloodspots.Biochim. Biophys. Acta Mol. Basis Dis.20201866616572510.1016/j.bbadis.2020.16572532061778
    [Google Scholar]
  74. MerrittJ.L.II NorrisM. KanungoS. Fatty acid oxidation disorders.Ann. Transl. Med.201862447310.21037/atm.2018.10.5730740404
    [Google Scholar]
  75. MaguoloA. RodellaG. DianinA. NurtiR. MongeI. RigottiE. CantalupoG. SalviatiL. TucciS. PellegriniF. MolinaroG. LupiF. ToninP. PasiniA. CampostriniN. Ion PopaF. TeofoliF. VincenziM. CamilotM. PiacentiniG. BordugoA. Diagnosis, genetic characterization and clinical follow up of mitochondrial fatty acid oxidation disorders in the new era of expanded newborn screening: A single centre experience.Mol. Genet. Metab. Rep.20202410063210.1016/j.ymgmr.2020.10063232793418
    [Google Scholar]
  76. ZytkoviczT.H. FitzgeraldE.F. MarsdenD. LarsonC.A. ShihV.E. JohnsonD.M. StraussA.W. ComeauA.M. EatonR.B. GradyG.F. Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: A two-year summary from the new england newborn screening program.Clin. Chem.200147111945195510.1093/clinchem/47.11.194511673361
    [Google Scholar]
  77. AndersenL. W. MackenhauerJ. RobertsJ. C. BergK. M. CocchiM. N. DonninoM. W. Etiology and therapeutic approach to elevated lactate levels.Mayo Clin Proc2013881011271140
    [Google Scholar]
  78. FitzsimonsP.E. AlstonC.L. BonnenP.E. HughesJ. CrushellE. GeraghtyM.T. TetreaultM. O’ReillyP. TwomeyE. SheikhY. WalshR. WaterhamH.R. FerdinandusseS. WandersR.J.A. TaylorR.W. PittJ.J. MayneP.D. Clinical, biochemical, and genetic features of four patients with short-chain enoyl-CoA hydratase (ECHS1) deficiency.Am. J. Med. Genet. A.201817651115112710.1002/ajmg.a.3865829575569
    [Google Scholar]
  79. IbrahimA.Z. Thirumal KumarD. AbunadaT. YounesS. George Priya DossC. ZakiO.K. ZayedH. Investigating the structural impacts of a novel missense variant identified with whole exome sequencing in an Egyptian patient with propionic acidemia.Mol. Genet. Metab. Rep.20202510064510.1016/j.ymgmr.2020.10064532995289
    [Google Scholar]
  80. AboulmaouahibB. KastenmüllerG. SuhreK. ZöllnerS. WeissensteinerH. PrehnC. AdamskiJ. GiegerC. Wang-SattlerR. LichtnerP. StrauchK. FlaquerA. First mitochondrial genome-wide association study with metabolomics.Hum. Mol. Genet.202231193367337610.1093/hmg/ddab31234718574
    [Google Scholar]
  81. MaiM. TönjesA. KovacsP. StumvollM. FiedlerG.M. LeichtleA.B. Serum levels of acylcarnitines are altered in prediabetic conditions.PLoS One2013812e8245910.1371/journal.pone.008245924358186
    [Google Scholar]
  82. HiranoM. EmmanueleV. QuinziiC.M. Emerging therapies for mitochondrial diseases.Essays Biochem.201862346748110.1042/EBC2017011429980632
    [Google Scholar]
  83. El-HattabA.W. ZaranteA.M. AlmannaiM. ScagliaF. Therapies for mitochondrial diseases and current clinical trials.Mol. Genet. Metab.201712231910.1016/j.ymgme.2017.09.00928943110
    [Google Scholar]
  84. Hidalgo-GutiérrezA. González-GarcíaP. Díaz-CasadoM.E. Barriocanal-CasadoE. López-HerradorS. QuinziiC.M. LópezL.C. Metabolic targets of coenzyme Q10 in mitochondria.Antioxidants202110452010.3390/antiox1004052033810539
    [Google Scholar]
  85. PotgieterM. PretoriusE. PepperM.S. Primary and secondary coenzyme Q10 deficiency: The role of therapeutic supplementation.Nutr. Rev.201371318018810.1111/nure.1201123452285
    [Google Scholar]
  86. KlopstockT. Yu-Wai-ManP. DimitriadisK. RouleauJ. HeckS. BailieM. AtawanA. ChattopadhyayS. SchubertM. GaripA. KerntM. PetrakiD. RummeyC. LeinonenM. MetzG. GriffithsP.G. MeierT. ChinneryP.F. A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy.Brain201113492677268610.1093/brain/awr17021788663
    [Google Scholar]
  87. KlopstockT. MetzG. Yu-Wai-ManP. BüchnerB. GallenmüllerC. BailieM. NwaliN. GriffithsP.G. von LivoniusB. ReznicekL. RouleauJ. CoppardN. MeierT. ChinneryP.F. Persistence of the treatment effect of idebenone in Leber’s hereditary optic neuropathy.Brain20131362e230e23010.1093/brain/aws27923388409
    [Google Scholar]
  88. RudolphG. DimitriadisK. BüchnerB. HeckS. Al-TamamiJ. SeidenstickerF. RummeyC. LeinonenM. MeierT. KlopstockT. Effects of idebenone on color vision in patients with leber hereditary optic neuropathy.J. Neuroophthalmol.2013331303610.1097/WNO.0b013e318272c64323263355
    [Google Scholar]
  89. BlanchetL. SmeitinkJ.A.M. van Emst - de VriesS.E. VogelsC. PellegriniM. JonckheereA.I. RodenburgR.J.T. BuydensL.M.C. BeyrathJ. WillemsP.H.G.M. KoopmanW.J.H. Quantifying small molecule phenotypic effects using mitochondrial morpho-functional fingerprinting and machine learning.Sci. Rep.201551803510.1038/srep0803525620325
    [Google Scholar]
  90. PfefferG. MajamaaK. TurnbullD.M. ThorburnD. ChinneryP.F. Treatment for mitochondrial disorders.Cochrane Database Syst. Rev.201220124CD00442622513923
    [Google Scholar]
  91. SinghA. FaccendaD. CampanellaM. Pharmacological advances in mitochondrial therapy.EBioMedicine20216510324410.1016/j.ebiom.2021.10324433647769
    [Google Scholar]
  92. ShraderW.D. AmagataA. BarnesA. EnnsG.M. HinmanA. JankowskiO. KheifetsV. KomatsuzakiR. LeeE. MollardP. MuraseK. SadunA.A. ThoolenM. WessonK. MillerG. α-Tocotrienol quinone modulates oxidative stress response and the biochemistry of aging.Bioorg. Med. Chem. Lett.201121123693369810.1016/j.bmcl.2011.04.08521600768
    [Google Scholar]
  93. ChenX. SunL.G. ZhaoY. NCMCMDA: MiRNA–disease association prediction through neighborhood constraint matrix completion.Brief. Bioinform.202122148549610.1093/bib/bbz15931927572
    [Google Scholar]
  94. JanssenM.C.H. KoeneS. de LaatP. HemelaarP. PickkersP. SpaansE. BeukemaR. BeyrathJ. GroothuisJ. VerhaakC. SmeitinkJ. The KHENERGY study: Safety and efficacy of KH 176 in mitochondrial m.3243A>G spectrum disorders.Clin. Pharmacol. Ther.2019105110111110.1002/cpt.119730058726
    [Google Scholar]
  95. SmeitinkJ. van MaanenR. de BoerL. RuiterkampG. RenkemaH. A randomised placebo-controlled, double-blind phase II study to explore the safety, efficacy, and pharmacokinetics of sonlicromanol in children with genetically confirmed mitochondrial disease and motor symptoms (“KHENERGYC”).BMC Neurol.202222115810.1186/s12883‑022‑02685‑335477351
    [Google Scholar]
  96. MarangonK. DevarajS. TiroshO. PackerL. JialalI. Comparison of the effect of α-lipoic acid and α-tocopherol supplementation on measures of oxidative stress.Free Radic. Biol. Med.1999279-101114112110.1016/S0891‑5849(99)00155‑010569644
    [Google Scholar]
  97. ParikhS. SanetoR. FalkM.J. AnselmI. CohenB.H. HaasR. Medicine SocietyT.M. A modern approach to the treatment of mitochondrial disease.Curr. Treat. Options Neurol.200911641443010.1007/s11940‑009‑0046‑019891905
    [Google Scholar]
  98. AnthonyR.M. MacLeayJ.M. GrossK.L. Alpha-lipoic acid as a nutritive supplement for humans and animals: An overview of its use in dog food.Animals (Basel)2021115145410.3390/ani1105145434069383
    [Google Scholar]
  99. SalehiB. Berkay YılmazY. AntikaG. Boyunegmez TumerT. Fawzi MahomoodallyM. LobineD. AkramM. RiazM. CapanogluE. SharopovF. MartinsN. ChoW.C. Sharifi-RadJ. Insights on the use of α-lipoic acid for therapeutic purposes.Biomolecules20199835610.3390/biom908035631405030
    [Google Scholar]
  100. TarnopolskyM.A. The mitochondrial cocktail: Rationale for combined nutraceutical therapy in mitochondrial cytopathies.Adv. Drug Deliv. Rev.20086013-141561156710.1016/j.addr.2008.05.00118647623
    [Google Scholar]
  101. KastaniotisA.J. AutioK.J.R. R NairR. Mitochondrial fatty acids and neurodegenerative disorders.Neuroscientist202127214315810.1177/107385842093616232644907
    [Google Scholar]
  102. SatoY. NakagawaM. HiguchiI. OsameM. NaitoE. OizumiK. Mitochondrial myopathy and familial thiamine deficiency.Muscle Nerve20002371069107510.1002/1097‑4598(200007)23:7<1069::AID‑MUS9>3.0.CO;2‑010883001
    [Google Scholar]
  103. MermigkisC. BouloukakiI. MastorodemosV. PlaitakisA. AlogdianakisV. SiafakasN. SchizaS. Medical treatment with thiamine, coenzyme Q, vitamins E and C, and carnitine improved obstructive sleep apnea in an adult case of Leigh disease.Sleep Breath.20131741129113510.1007/s11325‑013‑0816‑523389837
    [Google Scholar]
  104. BerlinS. GoetteA. SummoL. LossieJ. GebauerA. Al-SaadyN. CaloL. NaccarelliG. SchunckW.H. FischerR. CammA.J. DobrevD. Assessment of OMT-28, a synthetic analog of omega-3 epoxyeicosanoids, in patients with persistent atrial fibrillation: Rationale and design of the PROMISE-AF phase II study.Int. J. Cardiol. Heart Vasc.20202910057310.1016/j.ijcha.2020.10057332685659
    [Google Scholar]
  105. WhitakerR.M. CorumD. BeesonC.C. SchnellmannR.G. Mitochondrial biogenesis as a pharmacological target: A new approach to acute and chronic diseases.Annu. Rev. Pharmacol. Toxicol.201656122924910.1146/annurev‑pharmtox‑010715‑10315526566156
    [Google Scholar]
  106. GiordanoC. IommariniL. GiordanoL. MarescaA. PisanoA. ValentinoM.L. CaporaliL. LiguoriR. DeceglieS. RobertiM. FanelliF. FracassoF. Ross-CisnerosF.N. D’AdamoP. HudsonG. PyleA. Yu-Wai-ManP. ChinneryP.F. ZevianiM. SalomaoS.R. BerezovskyA. BelfortR.Jr VenturaD.F. MoraesM. Moraes FilhoM. BarboniP. SadunF. De NegriA. SadunA.A. TancrediA. ManciniM. d’AmatiG. Loguercio PolosaP. CantatoreP. CarelliV. Efficient mitochondrial biogenesis drives incomplete penetrance in Leber’s hereditary optic neuropathy.Brain2014137233535310.1093/brain/awt34324369379
    [Google Scholar]
  107. SteeleH. Gomez-DuranA. PyleA. HoptonS. NewmanJ. StefanettiR.J. CharmanS.J. ParikhJ.D. HeL. ViscomiC. JakovljevicD.G. HollingsworthK.G. RobinsonA.J. TaylorR.W. BottoloL. HorvathR. ChinneryP.F. Metabolic effects of bezafibrate in mitochondrial disease.EMBO Mol. Med.2020123e1158910.15252/emmm.20191158932107855
    [Google Scholar]
  108. ReismanS.A. GahirS.S. LeeC.Y.I. ProkschJ.W. SakamotoM. WardK.W. Pharmacokinetics and pharmacodynamics of the novel Nrf2 activator omaveloxolone in primates.Drug Des. Devel. Ther.2019131259127010.2147/DDDT.S19388931118567
    [Google Scholar]
  109. RussellO.M. GormanG.S. LightowlersR.N. TurnbullD.M. Mitochondrial diseases: Hope for the future.Cell2020181116818810.1016/j.cell.2020.02.05132220313
    [Google Scholar]
  110. BishopD.J. BotellaJ. GendersA.J. LeeM.J.C. SanerN.J. KuangJ. YanX. GranataC. High-intensity exercise and mitochondrial biogenesis: Current controversies and future research directions.Physiology2019341567010.1152/physiol.00038.201830540234
    [Google Scholar]
  111. TarnopolskyM.A. Exercise as a therapeutic strategy for primary mitochondrial cytopathies.J. Child Neurol.20142991225123410.1177/088307381453851225008908
    [Google Scholar]
  112. SchaeferP.M. RathiK. ButicA. TanW. MitchellK. WallaceD.C. Mitochondrial mutations alter endurance exercise response and determinants in mice.Proc. Natl. Acad. Sci. USA202211918e220054911910.1073/pnas.220054911935482926
    [Google Scholar]
  113. ChenL. QinY. LiuB. GaoM. LiA. LiX. GongG. PGC-1α-mediated mitochondrial quality control: Molecular mechanisms and implications for heart failure.Front. Cell Dev. Biol.20221087135710.3389/fcell.2022.871357
    [Google Scholar]
  114. ScarpullaR.C. Transcriptional paradigms in mammalian mitochondrial biogenesis and function.Physiol. Rev.200888261163810.1152/physrev.00025.200718391175
    [Google Scholar]
  115. HongS. KimS. KimK. LeeH. Clinical approaches for mitochondrial diseases.Cells20231220249410.3390/cells1220249437887337
    [Google Scholar]
  116. TiberiJ. SegattoM. FiorenzaM.T. La RosaP. Apparent opportunities and hidden pitfalls: The conflicting results of restoring nrf2-regulated redox metabolism in friedreich’s ataxia pre-clinical models and clinical trials.Biomedicines2023115129310.3390/biomedicines1105129337238963
    [Google Scholar]
  117. WangL. ShanH. WangB. WangN. ZhouZ. PanC. WangF. Puerarin attenuates osteoarthritis via upregulating AMP-activated protein kinase/proliferator-activated receptor-γ coactivator-1 signaling pathway in osteoarthritis rats.Pharmacology20181023-411712510.1159/00049041829961054
    [Google Scholar]
  118. PuigserverP. SpiegelmanB.M. Peroxisome proliferator-activated receptor-γ coactivator 1 α (PGC-1 α): Transcriptional coactivator and metabolic regulator.Endocr. Rev.2003241789010.1210/er.2002‑001212588810
    [Google Scholar]
  119. ViscomiC. BottaniE. CivilettoG. CeruttiR. MoggioM. FagiolariG. SchonE.A. LampertiC. ZevianiM. In vivo correction of COX deficiency by activation of the AMPK/PGC-1α axis.Cell Metab.2011141809010.1016/j.cmet.2011.04.01121723506
    [Google Scholar]
  120. DillonL.M. HidaA. GarciaS. ProllaT.A. MoraesC.T. Long-term bezafibrate treatment improves skin and spleen phenotypes of the mtDNA mutator mouse.PLoS One201279e4433510.1371/journal.pone.004433522962610
    [Google Scholar]
  121. Fernandez-MarcosP.J. AuwerxJ. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis.Am. J. Clin. Nutr.2011934884S890S10.3945/ajcn.110.00191721289221
    [Google Scholar]
  122. YatsugaS. SuomalainenA. Effect of bezafibrate treatment on late-onset mitochondrial myopathy in mice.Hum. Mol. Genet.201221352653510.1093/hmg/ddr48222012983
    [Google Scholar]
  123. JeppesenT.D. SchwartzM. OlsenD.B. WibrandF. KragT. DunøM. HauerslevS. VissingJ. Aerobic training is safe and improves exercise capacity in patients with mitochondrial myopathy.Brain2006129123402341210.1093/brain/awl14916815877
    [Google Scholar]
  124. CortonJ.M. GillespieJ.G. HawleyS.A. HardieD.G. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells?Eur. J. Biochem.1995229255856510.1111/j.1432‑1033.1995.tb20498.x7744080
    [Google Scholar]
  125. GolubitzkyA. DanP. WeissmanS. LinkG. WikstromJ.D. SaadaA. Screening for active small molecules in mitochondrial complex I deficient patient’s fibroblasts, reveals AICAR as the most beneficial compound.PLoS One2011610e2688310.1371/journal.pone.002688322046392
    [Google Scholar]
  126. El-MirM.Y. NogueiraV. FontaineE. AvéretN. RigouletM. LeverveX. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I.J. Biol. Chem.2000275122322810.1074/jbc.275.1.22310617608
    [Google Scholar]
  127. OwenM.R. DoranE. HalestrapA.P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain.Biochem. J.2000348360761410.1042/bj348060710839993
    [Google Scholar]
  128. MariniC. CossuV. BaucknehtM. LanfranchiF. RaffaS. OrengoA.M. RaveraS. BrunoS. SambucetiG. Metformin and cancer glucose metabolism: At the bench or at the bedside?Biomolecules2021118123110.3390/biom1108123134439897
    [Google Scholar]
  129. MadirajuA.K. ErionD.M. RahimiY. ZhangX.M. BraddockD.T. AlbrightR.A. PrigaroB.J. WoodJ.L. BhanotS. MacDonaldM.J. JurczakM.J. CamporezJ.P. LeeH.Y. ClineG.W. SamuelV.T. KibbeyR.G. ShulmanG.I. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase.Nature2014510750654254610.1038/nature1327024847880
    [Google Scholar]
  130. ZhouG. MyersR. LiY. ChenY. ShenX. Fenyk-MelodyJ. WuM. VentreJ. DoebberT. FujiiN. MusiN. HirshmanM.F. GoodyearL.J. MollerD.E. Role of AMP-activated protein kinase in mechanism of metformin action.J. Clin. Invest.200110881167117410.1172/JCI1350511602624
    [Google Scholar]
  131. KraG. DaddamJ.R. GabayH. YosefiS. ZachutM. Antioxidant resveratrol increases lipolytic and reduces lipogenic gene expression under in vitro heat stress conditions in dedifferentiated adipocyte-derived progeny cells from dairy cows.Antioxidants202110690510.3390/antiox1006090534205039
    [Google Scholar]
  132. MizuguchiY. HatakeyamaH. SueokaK. TanakaM. GotoY. Low dose resveratrol ameliorates mitochondrial respiratory dysfunction and enhances cellular reprogramming.Mitochondrion201734434810.1016/j.mito.2016.12.00628093354
    [Google Scholar]
  133. De PaepeB. VandemeulebroeckeK. SmetJ. VanlanderA. SenecaS. LissensW. Van HoveJ.L.K. DeschepperE. BrionesP. Van CosterR. Effect of resveratrol on cultured skin fibroblasts from patients with oxidative phosphorylation defects.Phytother. Res.201428231231610.1002/ptr.498823620374
    [Google Scholar]
  134. TangJ.X. ThompsonK. TaylorR.W. OláhováM. Mitochondrial OXPHOS biogenesis: Co-regulation of protein synthesis, import, and assembly pathways.Int. J. Mol. Sci.20202111382010.3390/ijms2111382032481479
    [Google Scholar]
  135. ZhangY. XuH. Translational regulation of mitochondrial biogenesis.Biochem. Soc. Trans.20164461717172410.1042/BST20160071C27913682
    [Google Scholar]
  136. SaB.K. KimC. KimM.B. HwangJ.K. Panduratin A prevents tumor necrosis factor-alpha-induced muscle atrophy in L6 rat skeletal muscle cells.J. Med. Food201720111047105410.1089/jmf.2017.397028933980
    [Google Scholar]
  137. TenganC.H. MoraesC.T. NO control of mitochondrial function in normal and transformed cells.Biochim. Biophys. Acta Bioenerg.20171858857358110.1016/j.bbabio.2017.02.00928216426
    [Google Scholar]
  138. BonaldoP. SandriM. Cellular and molecular mechanisms of muscle atrophy.Dis. Model. Mech.201361253910.1242/dmm.01038923268536
    [Google Scholar]
  139. KimM.B. KimT. KimC. HwangJ.K. Standardized Kaempferia parviflora extract enhances exercise performance through activation of mitochondrial biogenesis.J. Med. Food2018211303810.1089/jmf.2017.398929125913
    [Google Scholar]
  140. VaughanR.A. MermierC.M. BisoffiM. TrujilloK.A. ConnC.A. Dietary stimulators of the PGC-1 superfamily and mitochondrial biosynthesis in skeletal muscle. A mini-review.J. Physiol. Biochem.201470127128410.1007/s13105‑013‑0301‑424338337
    [Google Scholar]
  141. TatsutaT. LangerT. Quality control of mitochondria: protection against neurodegeneration and ageing.EMBO J.200827230631410.1038/sj.emboj.760197218216873
    [Google Scholar]
  142. PellegrinoM.W. NargundA.M. HaynesC.M. Signaling the mitochondrial unfolded protein response. Biochimica et Biophysica Acta (BBA)-.Molecular Cell Research20131833410416
    [Google Scholar]
  143. SugiuraA. McLellandG.L. FonE.A. McBrideH.M. A new pathway for mitochondrial quality control: Mitochondrial-derived vesicles.EMBO J.201433192142215610.15252/embj.20148810425107473
    [Google Scholar]
  144. WredenbergA. WibomR. WilhelmssonH. GraffC. WienerH.H. BurdenS.J. OldforsA. WesterbladH. LarssonN.G. Increased mitochondrial mass in mitochondrial myopathy mice.Proc. Natl. Acad. Sci. USA20029923150661507110.1073/pnas.23259149912417746
    [Google Scholar]
  145. PuigserverP. WuZ. ParkC.W. GravesR. WrightM. SpiegelmanB.M. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis.Cell199892682983910.1016/S0092‑8674(00)81410‑59529258
    [Google Scholar]
  146. ScarpullaR. C. Nuclear activators and coactivators in mammalian mitochondrial biogenesis.Biochim Biophys Acta2002114
    [Google Scholar]
  147. KhanN. A. NikkanenJ. YatsugaS. JacksonC. WangL. PradhanS. KiveläR. PessiaA. VelagapudiV. SuomalainenA. mTORC1 regulates mitochondrial integrated stress response and mitochondrial myopathy progression.Cell Metabolism201726419428
    [Google Scholar]
  148. JohnsonS.C. KaeberleinM. Rapamycin in aging and disease: Maximizing efficacy while minimizing side effects.Oncotarget2016729448764487810.18632/oncotarget.1038127384492
    [Google Scholar]
  149. RahmanM.A. AkterS. DoroteaD. MazumderA. UddinM.N. HannanM.A. HossenM.J. AhmedM.S. KimW. KimB. UddinM.J. Renoprotective potentials of small molecule natural products targeting mitochondrial dysfunction.Front. Pharmacol.20221392599310.3389/fphar.2022.92599335910356
    [Google Scholar]
  150. JacobyE. Bar-YosefO. GruberN. LahavE. Varda-BloomN. BolkierY. BarD. BlumkinM.B.Y. BarakS. EisensteinE. Ahonniska-AssaJ. SilbergT. KrasovskyT. BarO. ErezN. BieloraiB. GolanH. DekelB. BesserM.J. PoznerG. KhouryH. JacobsA. CampbellJ. HerskovitzE. SherN. Yivgi-OhanaN. AniksterY. TorenA. Mitochondrial augmentation of hematopoietic stem cells in children with single large-scale mitochondrial DNA deletion syndromes.Sci. Transl. Med.202214676eabo372410.1126/scitranslmed.abo372436542693
    [Google Scholar]
  151. EmaniS.M. McCullyJ.D. Mitochondrial transplantation: Applications for pediatric patients with congenital heart disease.Transl. Pediatr.20187216917510.21037/tp.2018.02.0229770298
    [Google Scholar]
  152. RossiA. AsthanaA. RigantiC. SedrakyanS. ByersL.N. RobertsonJ. SengerR.S. MontaliF. GrangeC. DalmassoA. PorporatoP.E. PallesC. ThorntonM.E. Da SaccoS. PerinL. AhnB. McCullyJ. OrlandoG. BussolatiB. Mitochondria transplantation mitigates damage in an in vitro model of renal tubular injury and in an ex vivo model of DCD renal transplantation.Ann. Surg.20232786e1313e132610.1097/SLA.000000000000600537450698
    [Google Scholar]
  153. AlemanyV.S. NomotoR. SaeedM.Y. CelikA. ReganW.L. MatteG.S. ReccoD.P. EmaniS.M. Del NidoP.J. McCullyJ.D. Mitochondrial transplantation preserves myocardial function and viability in pediatric and neonatal pig hearts donated after circulatory death.J. Thorac. Cardiovasc. Surg.20231671e6e2137211245
    [Google Scholar]
  154. GuarientoA. PiekarskiB.L. DoulamisI.P. BlitzerD. FerraroA.M. HarrildD.M. ZurakowskiD. del NidoP.J. McCullyJ.D. EmaniS.M. Autologous mitochondrial transplantation for cardiogenic shock in pediatric patients following ischemia-reperfusion injury.J. Thorac. Cardiovasc. Surg.20211623992100110.1016/j.jtcvs.2020.10.15133349443
    [Google Scholar]
  155. WaiT. AoA. ZhangX. CyrD. DufortD. ShoubridgeE.A. The role of mitochondrial DNA copy number in mammalian fertility.Biol. Reprod.2010831526210.1095/biolreprod.109.08088720130269
    [Google Scholar]
  156. SomuncuB. EkmekciogluA. AntmenF.M. ErtuzunT. DenizE. KeskinN. ParkJ. YaziciI.E. SimsekB. ErmanB. YinW. ErmanB. MuftuogluM. Targeting mitochondrial DNA polymerase gamma for selective inhibition of MLH1 deficient colon cancer growth.PLoS One2022176e026839110.1371/journal.pone.026839135657956
    [Google Scholar]
  157. BacmanS.R. GammageP. MinczukM. MoraesC.T. Manipulation of mitochondrial genes and mtDNA heteroplasmy.Elsevier202044148710.1016/bs.mcb.2019.12.004
    [Google Scholar]
  158. FalabellaM. MinczukM. HannaM.G. ViscomiC. PitceathlyR.D.S. Gene therapy for primary mitochondrial diseases: Experimental advances and clinical challenges.Nat. Rev. Neurol.2022181168969810.1038/s41582‑022‑00715‑936257993
    [Google Scholar]
  159. Barrera-PaezJ.D. MoraesC.T. Mitochondrial genome engineering coming-of-age.Trends Genet.202238886988010.1016/j.tig.2022.04.011
    [Google Scholar]
  160. VigneE. DedieuJ-F. BrieA. GillardeauxA. BriotD. BenihoudK. Latta-MahieuM. SaulnierP. PerricaudetM. YehP. Genetic manipulations of adenovirus type 5 fiber resulting in liver tropism attenuation.Gene Ther.200310215316210.1038/sj.gt.330184512571644
    [Google Scholar]
  161. MiyagawaY. MarinoP. VerlengiaG. UchidaH. GoinsW.F. YokotaS. GellerD.A. YoshidaO. MesterJ. CohenJ.B. GloriosoJ.C. Herpes simplex viral-vector design for efficient transduction of nonneuronal cells without cytotoxicity.Proc. Natl. Acad. Sci. USA201511213E1632E164110.1073/pnas.142355611225775541
    [Google Scholar]
  162. OreficeN.S. Development of new strategies using extracellular vesicles loaded with exogenous nucleic acid.Pharmaceutics202012870510.3390/pharmaceutics1208070532722622
    [Google Scholar]
  163. VignalC. UretskyS. FitoussiS. GalyA. BlouinL. GirmensJ.F. BidotS. ThomassonN. BouquetC. ValeroS. MeunierS. CombalJ.P. GillyB. KatzB. SahelJ.A. Safety of rAAV2/2-ND4 gene therapy for Leber hereditary optic neuropathy.Ophthalmology2018125694594710.1016/j.ophtha.2017.12.03629426586
    [Google Scholar]
  164. ChangJ.C. RyanM.R. StarkM.C. LiuS. PurushothamanP. BolanF. JohnsonC.A. ChampeM. MengH. LawlorM.W. HalawaniS. NgabaL.V. LynchD.R. DavisC. Gonzalo-GilE. LutzC. UrbinatiF. MedicherlaB. FonckC. AAV8 gene therapy reverses cardiac pathology and prevents early mortality in a mouse model of Friedreich’s ataxia.Mol. Ther. Methods Clin. Dev.202432110119310.1016/j.omtm.2024.10119338352270
    [Google Scholar]
  165. BegumA.A. TothI. HusseinW.M. MoyleP.M. Advances in targeted gene delivery.Curr. Drug Deliv.201916758860810.2174/156720181666619052907291431142250
    [Google Scholar]
  166. GammageP.A. GaudeE. Van HauteL. Rebelo-GuiomarP. JacksonC.B. RorbachJ. PekalskiM.L. RobinsonA.J. CharpentierM. ConcordetJ.P. FrezzaC. MinczukM. Near-complete elimination of mutant mtDNA by iterative or dynamic dose- controlled treatment with mtZFNs.Nucleic Acids Res.201644167804781610.1093/nar/gkw67627466392
    [Google Scholar]
  167. BacmanS.R. KauppilaJ.H.K. PereiraC.V. NissankaN. MirandaM. PintoM. WilliamsS.L. LarssonN.G. StewartJ.B. MoraesC.T. MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation.Nat. Med.201824111696170010.1038/s41591‑018‑0166‑830250143
    [Google Scholar]
  168. GammageP.A. ViscomiC. SimardM.L. CostaA.S.H. GaudeE. PowellC.A. Van HauteL. McCannB.J. Rebelo-GuiomarP. CeruttiR. ZhangL. RebarE.J. ZevianiM. FrezzaC. StewartJ.B. MinczukM. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo.Nat. Med.201824111691169510.1038/s41591‑018‑0165‑930250142
    [Google Scholar]
  169. HendelA. FineE.J. BaoG. PorteusM.H. Quantifying on- and off-target genome editing.Trends Biotechnol.201533213214010.1016/j.tibtech.2014.12.00125595557
    [Google Scholar]
  170. JoA. HamS. LeeG.H. LeeY.I. KimS. LeeY.S. ShinJ.H. LeeY. Efficient mitochondrial genome editing by CRISPR/Cas9.BioMed Res. Int.2015201511010.1155/2015/30571626448933
    [Google Scholar]
  171. PrakashR. KannanA. Mitochondrial DNA modification by CRISPR/Cas system: Challenges and future direction.Prog. Mol. Biol. Transl. Sci.202117819321110.1016/bs.pmbts.2020.12.00933685597
    [Google Scholar]
  172. Bayona-BafaluyM.P. BlitsB. BattersbyB.J. ShoubridgeE.A. MoraesC.T. Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease.Proc. Natl. Acad. Sci. USA200510240143921439710.1073/pnas.050289610216179392
    [Google Scholar]
  173. TanakaM. BorgeldH-J. ZhangJ. MuramatsuS. GongJ-S. YonedaM. MaruyamaW. NaoiM. IbiT. SahashiK. ShamotoM. FukuN. KurataM. YamadaY. NishizawaK. AkaoY. OhishiN. MiyabayashiS. UmemotoH. MuramatsuT. FurukawaK. KikuchiA. NakanoI. OzawaK. YagiK. Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria.J. Biomed. Sci.200296 Pt 153454112372991
    [Google Scholar]
  174. AlexeyevM.F. VenediktovaN. PastukhV. ShokolenkoI. BonillaG. WilsonG.L. Selective elimination of mutant mitochondrial genomes as therapeutic strategy for the treatment of NARP and MILS syndromes.Gene Ther.200815751652310.1038/gt.2008.1118256697
    [Google Scholar]
  175. FukuiH. MoraesC.T. Mechanisms of formation and accumulation of mitochondrial DNA deletions in aging neurons.Hum. Mol. Genet.20091861028103610.1093/hmg/ddn43719095717
    [Google Scholar]
  176. WangX. PickrellA.M. RossiS.G. PintoM. DillonL.M. HidaA. RotundoR.L. MoraesC.T. Transient systemic mtDNA damage leads to muscle wasting by reducing the satellite cell pool.Hum. Mol. Genet.201322193976398610.1093/hmg/ddt25123760083
    [Google Scholar]
  177. MuttiC. Silva-PinheiroP. MinczukM. Fixing the powerhouse: Genetic engineering of mitochondrial DNA.Biochemist202244491310.1042/bio_2022_120
    [Google Scholar]
  178. BacmanS.R. WilliamsS.L. HernandezD. MoraesC.T. Modulating mtDNA heteroplasmy by mitochondria-targeted restriction endonucleases in a ‘differential multiple cleavage-site’ model.Gene Ther.200714181309131810.1038/sj.gt.330298117597792
    [Google Scholar]
  179. WangG. ShimadaE. KoehlerC.M. TeitellM.A. PNPASE and RNA trafficking into mitochondria.Biochim Biophys Acta.201218199981007
    [Google Scholar]
  180. ShepherdD.L. HathawayQ.A. PintiM.V. NicholsC.E. DurrA.J. SreekumarS. HughesK.M. StineS.M. MartinezI. HollanderJ.M. Exploring the mitochondrial microRNA import pathway through polynucleotide phosphorylase (PNPase).J. Mol. Cell. Cardiol.2017110152510.1016/j.yjmcc.2017.06.01228709769
    [Google Scholar]
  181. SatoR. Arai-IchinoiN. KikuchiA. MatsuhashiT. Numata-UematsuY. UematsuM. FujiiY. MurayamaK. OhtakeA. AbeT. KureS. Novel biallelic mutations in the PNPT1 gene encoding a mitochondrial- RNA -import protein PNPase cause delayed myelination.Clin. Genet.201893224224710.1111/cge.1306828594066
    [Google Scholar]
  182. WangG. ChenH.W. OktayY. ZhangJ. AllenE.L. SmithG.M. FanK.C. HongJ.S. FrenchS.W. McCafferyJ.M. LightowlersR.N. MorseH.C.III KoehlerC.M. TeitellM.A. PNPASE regulates RNA import into mitochondria.Cell2010142345646710.1016/j.cell.2010.06.03520691904
    [Google Scholar]
  183. HussainS.R.A. YalvacM.E. KhooB. EckardtS. McLaughlinK.J. Adapting CRISPR/Cas9 system for targeting mitochondrial genome.Front. Genet.20211262705010.3389/fgene.2021.62705033889176
    [Google Scholar]
  184. MokB.Y. de MoraesM.H. ZengJ. BoschD.E. KotrysA.V. RaguramA. HsuF. RadeyM.C. PetersonS.B. MoothaV.K. MougousJ.D. LiuD.R. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing.Nature2020583781763163710.1038/s41586‑020‑2477‑432641830
    [Google Scholar]
  185. MoraesC.T. BacmanS.R. WilliamsS.L. Manipulating mitochondrial genomes in the clinic: playing by different rules.Trends Cell Biol.201424420921110.1016/j.tcb.2014.02.00224679453
    [Google Scholar]
  186. PeranteauW.H. FlakeA.W. The future of in utero gene therapy.Mol. Diagn. Ther.202024213514210.1007/s40291‑020‑00445‑y32020561
    [Google Scholar]
  187. SharmaH. SinghD. MahantA. SohalS.K. KesavanA.K. Samiksha Development of mitochondrial replacement therapy: A review.Heliyon202069e0464310.1016/j.heliyon.2020.e0464332984570
    [Google Scholar]
  188. SmeetsH.J.M. Preventing the transmission of mitochondrial DNA disorders: Selecting the good guys or kicking out the bad guys.Reprod. Biomed. Online201327659961010.1016/j.rbmo.2013.08.00724135157
    [Google Scholar]
  189. TachibanaM. AmatoP. SparmanM. WoodwardJ. SanchisD.M. MaH. GutierrezN.M. Tippner-HedgesR. KangE. LeeH.S. RamseyC. MastersonK. BattagliaD. LeeD. WuD. JensenJ. PattonP. GokhaleS. StoufferR. MitalipovS. Towards germline gene therapy of inherited mitochondrial diseases.Nature2013493743462763110.1038/nature1164723103867
    [Google Scholar]
  190. SendraL. García-MaresA. HerreroM.J. AliñoS.F. Mitochondrial dna replacement techniques to prevent human mitochondrial diseases.Int. J. Mol. Sci.202122255110.3390/ijms2202055133430493
    [Google Scholar]
  191. GreenfieldA. BraudeP. FlinterF. Lovell-BadgeR. OgilvieC. PerryA.C.F. Assisted reproductive technologies to prevent human mitochondrial disease transmission.Nat. Biotechnol.201735111059106810.1038/nbt.399729121011
    [Google Scholar]
  192. GormanG.S. McFarlandR. StewartJ. FeeneyC. TurnbullD.M. Mitochondrial donation: From test tube to clinic.Lancet2018392101541191119210.1016/S0140‑6736(18)31868‑330319102
    [Google Scholar]
  193. AryamvallyA. MyersM.F. HuangT. SloneJ. PilipenkoV. HartmannJ.E. Mitochondrial replacement therapy: Genetic counselors’ experiences, knowledge, and opinions.J. Genet. Couns.202130382883710.1002/jgc4.138233469959
    [Google Scholar]
  194. FanX-Y. YinS. LuoS-M. SQSTM1 and its MAP1LC3B-binding domain induce forced mitophagy to degrade mitochondrial carryover during mitochondrial replacement therapy.Autophagy202219136336435574946
    [Google Scholar]
  195. FanX.Y. GuoL. ChenL.N. YinS. WenJ. LiS. MaJ.Y. JingT. JiangM.X. SunX.H. ChenM. WangF. WangZ.B. ZhangC.F. WangX.H. GeZ.J. HuC. ZengL. ShenW. SunQ.Y. OuX.H. LuoS.M. Reduction of mtDNA heteroplasmy in mitochondrial replacement therapy by inducing forced mitophagy.Nat. Biomed. Eng.20226433935010.1038/s41551‑022‑00881‑735437313
    [Google Scholar]
  196. HellebrekersD.M.E.I. WolfeR. HendrickxA.T.M. de CooI.F.M. de DieC.E. GeraedtsJ.P.M. ChinneryP.F. SmeetsH.J.M. PGD and heteroplasmic mitochondrial DNA point mutations: A systematic review estimating the chance of healthy offspring.Hum. Reprod. Update201218434134910.1093/humupd/dms00822456975
    [Google Scholar]
  197. PoultonJ. SteffannJ. BurgstallerJ. McFarlandR. workshop participants 243rd ENMC international workshop: Developing guidelines for management of reproductive options for families with maternally inherited mtDNA disease, Amsterdam, the Netherlands, 22–24 March 2019.Neuromuscul. Disord.201929972573310.1016/j.nmd.2019.08.00431501000
    [Google Scholar]
  198. KeshavanN. MinczukM. ViscomiC. RahmanS. Gene therapy for mitochondrial disorders.J. Inherit. Metab. Dis.202447114517510.1002/jimd.1269938171948
    [Google Scholar]
/content/journals/cg/10.2174/0113892029308327240612110334
Loading
/content/journals/cg/10.2174/0113892029308327240612110334
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): genomic; metabolomics; Mitochondrial disease; omics; proteomics; transcriptomics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test