Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Objective

This study aimed to investigate the frequently mutated genes in Gastric Cancer (GC), assess their association with Tumor Mutation Burden (TMB) and the patients’ survival, and identify the potential biomarkers for tailored therapy.

Methods

Simple somatic mutation data of GC were collected from the TCGA and ICGC databases. The high-frequency mutated genes were identified from both datasets. The samples were initially dichotomized into wild-type and mutation groups based on the status of overlapping genes. TMB difference between the two groups was evaluated by the Mann-Whitney U-test. Survival difference between the two groups was compared by the Kaplan-Meier method with a log-rank test. The prognostic value of the target gene was assessed by the Cox proportional hazards model. The signaling pathways involved in FAT4 mutation were identified by Gene Set Enrichment Analysis (GSEA). The fractions of different tumor-infiltrating immune cells were calculated by the CIBERSORT algorithm.

Results

21 overlapping genes with frequent mutation were identified in both datasets. Mutation of these genes was significantly associated with higher TMB (<0.05) in GC. The survival of the FAT4 mutation group was superior to the wild-type group. FAT4 mutation was also identified as an independent favorable prognostic factor for the GC patients. GSEA indicated that FAT4 mutation activated the signaling pathways involved in energy metabolism. Finally, CD4 memory-activated T cells, follicular helper T cells, and gamma delta T cells were significantly more enriched, while naïve B cells and regulatory T cells (Tregs) were significantly less enriched in the FAT4 mutation group (<0.05).

Conclusion

FAT4 mutation is relevant to TMB and favorable prognosis in GC, which may become a useful biomarker for immunotherapy of GC patients.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029300694240612081006
2024-10-01
2024-11-14
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. MaoC. MaL. HuangY. YangX. HuangH. CaiW. SitrakiniainaA. GuR. XueX. ShenX. Immunogenomic landscape and immune-related gene-based prognostic signature in asian gastric cancer.Front. Oncol.20211175076810.3389/fonc.2021.75076834804939
    [Google Scholar]
  3. KlebanovN. ArtomovM. GogginsW.B. DalyE. DalyM.J. TsaoH. Burden of unique and low prevalence somatic mutations correlates with cancer survival.Sci. Rep.201991484810.1038/s41598‑019‑41015‑530890735
    [Google Scholar]
  4. WangX. LiM. Correlate tumor mutation burden with immune signatures in human cancers.BMC Immunol.2019201410.1186/s12865‑018‑0285‑530634925
    [Google Scholar]
  5. XuZ. XiangL. WangR. XiongY. ZhouH. GuH. WangJ. PengL. Bioinformatic analysis of immune significance of RYR2 mutation in breast cancer.BioMed Res. Int.2021202111210.1155/2021/807279634888385
    [Google Scholar]
  6. ZhangL. LiB. PengY. WuF. LiQ. LinZ. XieS. XiaoL. LinX. OuZ. CaiT. RongH. FanS. LiJ. The prognostic value of TMB and the relationship between TMB and immune infiltration in head and neck squamous cell carcinoma: A gene expression-based study.Oral Oncol.202011010494310.1016/j.oraloncology.2020.10494332919362
    [Google Scholar]
  7. PanX. JiX. ZhangR. ZhouZ. ZhongY. PengW. SunN. XuX. XiaL. LiP. LuJ. TuJ. Landscape of somatic mutations in gastric cancer assessed using next-generation sequencing analysis.Oncol. Lett.20181644863487010.3892/ol.2018.931430250552
    [Google Scholar]
  8. WangK. YuenS.T. XuJ. LeeS.P. YanH.H.N. ShiS.T. SiuH.C. DengS. ChuK.M. LawS. ChanK.H. ChanA.S.Y. TsuiW.Y. HoS.L. ChanA.K.W. ManJ.L.K. FoglizzoV. NgM.K. ChanA.S. ChingY.P. ChengG.H.W. XieT. FernandezJ. LiV.S.W. CleversH. RejtoP.A. MaoM. LeungS.Y. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer.Nat. Genet.201446657358210.1038/ng.298324816253
    [Google Scholar]
  9. HolbrookJ.D. ParkerJ.S. GallagherK.T. HalseyW.S. HughesA.M. WeigmanV.J. LebowitzP.F. KumarR. Deep sequencing of gastric carcinoma reveals somatic mutations relevant to personalized medicine.J. Transl. Med.20119111910.1186/1479‑5876‑9‑11921781349
    [Google Scholar]
  10. IshiuchiT. MisakiK. YonemuraS. TakeichiM. TanoueT. Mammalian Fat and Dachsous cadherins regulate apical membrane organization in the embryonic cerebral cortex.J. Cell Biol.2009185695996710.1083/jcb.20081103019506035
    [Google Scholar]
  11. ZangZ.J. CutcutacheI. PoonS.L. ZhangS.L. McPhersonJ.R. TaoJ. RajasegaranV. HengH.L. DengN. GanA. LimK.H. OngC.K. HuangD. ChinS.Y. TanI.B. NgC.C.Y. YuW. WuY. LeeM. WuJ. PohD. WanW.K. RhaS.Y. SoJ. Salto-TellezM. YeohK.G. WongW.K. ZhuY.J. FutrealP.A. PangB. RuanY. HillmerA.M. BertrandD. NagarajanN. RozenS. TehB.T. TanP. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes.Nat. Genet.201244557057410.1038/ng.224622484628
    [Google Scholar]
  12. WeiR. XiaoY. SongY. YuanH. LuoJ. XuW. FAT4 regulates the EMT and autophagy in colorectal cancer cells in part via the PI3K-AKT signaling axis.J. Exp. Clin. Cancer Res.201938111210.1186/s13046‑019‑1043‑030832706
    [Google Scholar]
  13. TavassolyI. GoldfarbJ. IyengarR. Systems biology primer: The basic methods and approaches.Essays Biochem.201862448750010.1042/EBC2018000330287586
    [Google Scholar]
  14. ChandrasegaranS. ScanlanR.L. ClarkP. PeaseL. WordsworthJ. ShanleyD.P. Systems biology of ageing.Subcell. Biochem.202310241542410.1007/978‑3‑031‑21410‑3_1636600142
    [Google Scholar]
  15. StenzingerA. EndrisV. BudcziesJ. Merkelbach-BruseS. KazdalD. DietmaierW. PfarrN. SieboltsU. HummelM. HeroldS. AndreasJ. ZocheM. TögelL. RempelE. MaasJ. MerinoD. StewartM. ZaouiK. SchlesnerM. GlimmH. FröhlingS. AllenJ. HorstD. BarettonG. WickenhauserC. TiemannM. EvertM. MochH. KirchnerT. BüttnerR. SchirmacherP. JungA. HallerF. WeichertW. DietelM. Harmonization and standardization of panel-based tumor mutational burden measurement: Real-world results and recommendations of the quality in pathology study.J. Thorac. Oncol.20201571177118910.1016/j.jtho.2020.01.02332119917
    [Google Scholar]
  16. ChalmersZ.R. ConnellyC.F. FabrizioD. GayL. AliS.M. EnnisR. SchrockA. CampbellB. ShlienA. ChmieleckiJ. HuangF. HeY. SunJ. TaboriU. KennedyM. LieberD.S. RoelsS. WhiteJ. OttoG.A. RossJ.S. GarrawayL. MillerV.A. StephensP.J. FramptonG.M. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden.Genome Med.2017913410.1186/s13073‑017‑0424‑228420421
    [Google Scholar]
  17. LiW. ZhouK. LiM. HuQ. WeiW. LiuL. ZhaoQ. Identification of SCN7A as the key gene associated with tumor mutation burden in gastric cancer.BMC Gastroenterol.20222214510.1186/s12876‑022‑02112‑435123417
    [Google Scholar]
  18. DengS. GuH. ChenZ. LiuY. ZhangQ. ChenD. YiS. PTCH1 mutation as a potential predictive biomarker for immune checkpoint inhibitors in gastrointestinal cancer.Carcinogenesis202445535135710.1093/carcin/bgae00738310539
    [Google Scholar]
  19. ZhangF. LiX. ChenH. GuoJ. XiongZ. YinS. JinL. ChenX. LuoD. TangH. MaoC. LianL. Mutation of MUC16 is associated with tumor mutational burden and lymph node metastasis in patients with gastric cancer.Front. Med.2022983689210.3389/fmed.2022.83689235211490
    [Google Scholar]
  20. KatohM. Function and cancer genomics of FAT family genes.Int. J. Oncol.20124161913191810.3892/ijo.2012.166923076869
    [Google Scholar]
  21. RauchT.A. WangZ. WuX. KernstineK.H. RiggsA.D. PfeiferG.P. DNA methylation biomarkers for lung cancer.Tumour Biol.201233228729610.1007/s13277‑011‑0282‑222143938
    [Google Scholar]
  22. FurukawaT. SakamotoH. TakeuchiS. AmeriM. KubokiY. YamamotoT. HatoriT. YamamotoM. SugiyamaM. OhikeN. YamaguchiH. ShimizuM. ShibataN. ShimizuK. ShiratoriK. Whole exome sequencing reveals recurrent mutations in BRCA2 and FAT genes in acinar cell carcinomas of the pancreas.Sci. Rep.201551882910.1038/srep0882925743105
    [Google Scholar]
  23. LinY. WuZ. GuoW. LiJ. Gene mutations in gastric cancer: A review of recent next-generation sequencing studies.Tumour Biol.201536107385739410.1007/s13277‑015‑4002‑126364057
    [Google Scholar]
  24. MaW. LiW. XuL. LiuL. XiaY. YangL. DaM. Identification of a gene prognostic model of gastric cancer based on analysis of tumor mutation burden.Pathol. Oncol. Res.202127160985210.3389/pore.2021.160985234566519
    [Google Scholar]
  25. MerinoD.M. McShaneL.M. FabrizioD. FunariV. ChenS.J. WhiteJ.R. WenzP. BadenJ. BarrettJ.C. ChaudharyR. ChenL. ChenW.S. ChengJ.H. CyanamD. DickeyJ.S. GuptaV. HellmannM. HelmanE. LiY. MaasJ. PapinA. PatidarR. QuinnK.J. RizviN. TaeH. WardC. XieM. ZehirA. ZhaoC. DietelM. StenzingerA. StewartM. AllenJ. TMB Harmonization Consortium Establishing guidelines to harmonize tumor mutational burden (TMB): in silico assessment of variation in TMB quantification across diagnostic platforms: phase I of the Friends of Cancer Research TMB Harmonization Project.J. Immunother. Cancer202081e00014710.1136/jitc‑2019‑00014732217756
    [Google Scholar]
  26. ChengY. BuD. ZhangQ. SunR. LyleS. ZhaoG. DongL. LiH. ZhaoY. YuJ. HaoX. Genomic and transcriptomic profiling indicates the prognosis significance of mutational signature for TMB-high subtype in Chinese patients with gastric cancer.J. Adv. Res.20235112113410.1016/j.jare.2022.10.01936351537
    [Google Scholar]
  27. JiangX. LiuZ. XiaY. LuoJ. XuJ. HeX. TaoH. Low FAT4 expression is associated with a poor prognosis in gastric cancer patients.Oncotarget2018945137515410.18632/oncotarget.2370229435168
    [Google Scholar]
  28. JungH.Y. ChoH. OhM.H. LeeJ.H. LeeH.J. JangS.H. LeeM.S. Loss of FAT atypical cadherin 4 expression is associated with high pathologic T stage in radically resected gastric cancer.J. Gastric Cancer2015151394510.5230/jgc.2015.15.1.3925861521
    [Google Scholar]
  29. MalgundkarS.H. BurneyI. Al MoundhriM. Al KalbaniM. LakhtakiaR. OkamotoA. TamimiY. FAT4 silencing promotes epithelial-to-mesenchymal transition and invasion via regulation of YAP and β-catenin activity in ovarian cancer.BMC Cancer202020137410.1186/s12885‑020‑06900‑732366234
    [Google Scholar]
  30. WangL. LiK. WangC. ShiX. YangH. miR-107 regulates growth and metastasis of gastric cancer cells via activation of the PI3K-AKT signaling pathway by down-regulating FAT4.Cancer Med.20198115264527310.1002/cam4.239631297980
    [Google Scholar]
  31. ChangJ.J. WangX.Y. ZhangW. TanC. ShengW.Q. XuM.D. Comprehensive molecular characterization and identification of prognostic signature in stomach adenocarcinoma on the basis of energy-metabolism-related genes.World J. Gastrointest. Oncol.202214247849710.4251/wjgo.v14.i2.47835317313
    [Google Scholar]
  32. VahidiY. FaghihZ. TaleiA.R. DoroudchiM. GhaderiA. Memory CD4+ T cell subsets in tumor draining lymph nodes of breast cancer patients: A focus on T stem cell memory cells.Cell Oncol.201841111110.1007/s13402‑017‑0352‑628994018
    [Google Scholar]
  33. ZhuG. PeiL. LiY. GouX. EP300 mutation is associated with tumor mutation burden and promotes antitumor immunity in bladder cancer patients.Aging20201232132214110.18632/aging.10272832012118
    [Google Scholar]
  34. CannataroV.L. GaffneyS.G. TownsendJ.P. Effect sizes of somatic mutations in cancer.J. Natl. Cancer Inst.2018110111171117710.1093/jnci/djy16830365005
    [Google Scholar]
  35. MandellJ.D. CannataroV.L. TownsendJ.P. Estimation of neutral mutation rates and quantification of somatic variant selection using cancereffectsizeR.Cancer Res.202383450050510.1158/0008‑5472.CAN‑22‑150836469362
    [Google Scholar]
/content/journals/cg/10.2174/0113892029300694240612081006
Loading
/content/journals/cg/10.2174/0113892029300694240612081006
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test