Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Currently, a significant proportion of older individuals have demonstrated connections between Parkinson's disease (PD) and type 2 diabetes mellitus (T2DM). Emerging evidence from cohort studies, clinical data, and preclinical meta-analyses reveals that T2DM patients have an increased risk of developing PD, often accompanied by more severe disease progression. These two chronic conditions are believed to share common pathways. The pathways that likely connect the neurodegenerative process of PD include autophagy, mitochondrial dysfunction, dysregulated insulin signaling, inflammation, and insulin resistance. Preclinical PD models highlight the importance of cerebral insulin signaling, which confers numerous neuroprotective benefits. Several ongoing phase II and phase III trials are being conducted in PD-affected populations. These trials reflect the potential of existing anti-diabetic medications to improve PD motor symptoms and halt the progression of neurodegeneration. Brain insulin resistance plays a crucial role in the pathophysiology of PD. The insulin signaling pathway represents a promising novel target for disease modification in both diabetic and non-diabetic PD. Incretin receptors in the brain have emerged as the most promising targets for repurposing existing drugs in PD treatment. Targeting these receptors mitigates inflammation, apoptosis, toxic protein aggregation, long-term potentiation, autophagy, and insulin signaling failure.

Presently, various novel anti-diabetic targets are available that can regulate the insulin signaling pathway in dopaminergic neurons, suggesting improvements in cognitive function and significant neuroprotective effects in PD. Throughout neurodegenerative processes, insulin and incretins exert therapeutic effects in multiple manners. Preclinical studies have demonstrated that glucagon-like peptide 1 (GLP-1) receptor agonists reduce neuroinflammation, tau phosphorylation, and amyloid deposition while increasing synaptic function and enhancing memory formation. Incretin mimetics may act through the restoration of insulin signaling pathways, inducing further neuroprotective effects.

This review examined the reported shared cellular and molecular pathologies between PD and T2DM, and explored the repurposing of anti-diabetic drugs for the prevention of PD progression through the regulation of insulin signaling pathways.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855332557240820054810
2024-10-07
2025-04-20
Loading full text...

Full text loading...

References

  1. PoorS.R. EttchetoM. CanoA. Sanchez-LopezE. ManzineP.R. OlloquequiJ. CaminsA. JavanM. Metformin a potential pharmacological strategy in late onset Alzheimer’s disease treatment.Pharmaceuticals202114989010.3390/ph1409089034577590
    [Google Scholar]
  2. de LauL.M.L. BretelerM.M.B. Epidemiology of Parkinson’s disease.Lancet Neurol.20065652553510.1016/S1474‑4422(06)70471‑916713924
    [Google Scholar]
  3. PolitisM. WuK. MolloyS. G BainP. ChaudhuriK.R. PicciniP. Parkinson’s disease symptoms: the patient’s perspective.Mov. Disord.201025111646165110.1002/mds.2313520629164
    [Google Scholar]
  4. CheongJ.L.Y. de Pablo-FernandezE. FoltynieT. NoyceA.J. The association between type 2 diabetes mellitus and Parkinson’s disease.J. Parkinsons Dis.202010377578910.3233/JPD‑19190032333549
    [Google Scholar]
  5. ChohanH. SenkevichK. PatelR.K. BestwickJ.P. JacobsB.M. Bandres CigaS. Gan-OrZ. NoyceA.J. Type 2 diabetes as a determinant of Parkinson’s disease risk and progression.Mov. Disord.20213661420142910.1002/mds.2855133682937
    [Google Scholar]
  6. DunnL. AllenG.F.G. MamaisA. LingH. LiA. DuberleyK.E. HargreavesI.P. PopeS. HoltonJ.L. LeesA. HealesS.J. BandopadhyayR. Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease.Neurobiol. Aging20143551111111510.1016/j.neurobiolaging.2013.11.00124300239
    [Google Scholar]
  7. BassilF. CanronM.H. VitalA. BezardE. LiY. GreigN.H. GulyaniS. KapogiannisD. FernagutP.O. MeissnerW.G. Insulin resistance and exendin-4 treatment for multiple system atrophy.Brain201714051420143610.1093/brain/awx04428334990
    [Google Scholar]
  8. SandykR. The relationship between diabetes mellitus and Parkinson’s disease.Int. J. Neurosci.1993691-412513010.3109/002074593090033228082998
    [Google Scholar]
  9. BaladiM.G. HortonR.E. OwensW.A. DawsL.C. FranceC.P. Eating high fat chow decreases dopamine clearance in adolescent and adult male rats but selectively enhances the locomotor stimulating effects of cocaine in adolescents.Int. J. Neuropsychopharmacol.2015187pyv02410.1093/ijnp/pyv02425805560
    [Google Scholar]
  10. HuG. JousilahtiP. BidelS. AntikainenR. TuomilehtoJ. Type 2 diabetes and the risk of Parkinson’s disease.Diabetes Care200730484284710.2337/dc06‑201117251276
    [Google Scholar]
  11. XuQ. ParkY. HuangX. HollenbeckA. BlairA. SchatzkinA. ChenH. Diabetes and risk of Parkinson’s disease.Diabetes Care201134491091510.2337/dc10‑192221378214
    [Google Scholar]
  12. YueX. LiH. YanH. ZhangP. ChangL. LiT. Risk of Parkinson's disease in diabetes mellitus: an updated meta-analysis of population-based cohort studies.Medicine (Baltimore)20169518e354910.1097/MD.000000000000354927149468
    [Google Scholar]
  13. De Pablo-FernandezE. GoldacreR. PakpoorJ. NoyceA.J. WarnerT.T. Association between diabetes and subsequent Parkinson's disease.Neurology2018912e139e14210.1212/WNL.000000000000577129898968
    [Google Scholar]
  14. YangY.W. HsiehT.F. LiC.I. LiuC.S. LinW.Y. ChiangJ.H. LiT.C. LinC.C. Increased risk of Parkinson's disease with diabetes mellitus in a population-based study.Medicine (Baltimore)2017963e592110.1097/MD.000000000000592128099356
    [Google Scholar]
  15. SchernhammerE. HansenJ. RugbjergK. WermuthL. RitzB. Diabetes and the risk of developing Parkinson’s disease in Denmark.Diabetes Care20113451102110810.2337/dc10‑133321411503
    [Google Scholar]
  16. JeongS.H. ChungS.J. YooH.S. HongN. JungJ.H. BaikK. LeeY.H. SohnY.H. LeeP.H. Beneficial effects of dipeptidyl peptidase-4 inhibitors in diabetic Parkinson’s disease.Brain202114441127113710.1093/brain/awab01533895825
    [Google Scholar]
  17. SharmaT. KaurD. GrewalA.K. SinghT.G. Therapies modulating insulin resistance in Parkinson’s disease: A cross talk.Neurosci. Lett.202174913575410.1016/j.neulet.2021.13575433610666
    [Google Scholar]
  18. ChungS.J. JeonS. YooH.S. KimG. OhJ.S. KimJ.S. EvansA.C. SohnY.H. LeeP.H. Detrimental effect of type 2 diabetes mellitus in a large case series of Parkinson’s disease.Parkinsonism Relat. Disord.201964545910.1016/j.parkreldis.2018.08.02330193817
    [Google Scholar]
  19. GiuntiniM. BaldacciF. Del PreteE. BonuccelliU. CeravoloR. Diabetes is associated with postural and cognitive domains in Parkinson’s disease. Results from a single-center study.Parkinsonism Relat. Disord.201420667167210.1016/j.parkreldis.2014.02.01624685342
    [Google Scholar]
  20. CeredaE. BarichellaM. PedrolliC. KlersyC. CassaniE. CaccialanzaR. PezzoliG. Diabetes and risk of Parkinson’s disease: a systematic review and meta-analysis.Diabetes Care201134122614262310.2337/dc11‑158422110170
    [Google Scholar]
  21. MoranC. BeareR. PhanT.G. BruceD.G. CallisayaM.L. SrikanthV. MoranC. BeareR. PhanT.G. BruceD.G. CallisayaM.L. SrikanthV. Alzheimer’s Disease Neuroimaging Initiative (ADNI) Type 2 diabetes mellitus and biomarkers of neurodegeneration.Neurology201585131123113010.1212/WNL.000000000000198226333802
    [Google Scholar]
  22. BohnenN.I. KotagalV. MüllerM.L.T.M. KoeppeR.A. ScottP.J.H. AlbinR.L. FreyK.A. PetrouM. Diabetes mellitus is independently associated with more severe cognitive impairment in Parkinson's disease.Parkinsonism Relat. Disord.201420121394139810.1016/j.parkreldis.2014.10.00825454317
    [Google Scholar]
  23. Mohamed IbrahimN. RamliR. Koya KuttyS. ShahS.A. Earlier onset of motor complications in Parkinson’s patients with comorbid diabetes mellitus.Mov. Disord.2018-196833121967196810.1002/mds.27526
    [Google Scholar]
  24. PetrouM. DavatzikosC. HsiehM. FoersterB.R. AlbinR.L. KotagalV. MüllerM.L. KoeppeR.A. HermanW.H. FreyK.A. BohnenN.I. Diabetes, gray matter loss, and cognition in the setting of Parkinson's disease.Acad. Radiol.201623557758110.1016/j.acra.2015.07.01426874576
    [Google Scholar]
  25. KotagalV. AlbinR.L. MüllerM.L.T.M. KoeppeR.A. FreyK.A. BohnenN.I. Diabetes is associated with postural instability and gait difficulty in Parkinson's disease.Parkinsonism Relat. Disord.201319552252610.1016/j.parkreldis.2013.01.01623462483
    [Google Scholar]
  26. RamalingamM. KimS.J. The role of insulin against hydrogen peroxide-induced oxidative damages in differentiated SH-SY5Y cells.J. Recept. Signal Transduct. Res.201434321222010.3109/10799893.2013.87604324456325
    [Google Scholar]
  27. Ruiz-PozoV.A. Tamayo-TrujilloR. Cadena-UllauriS. Frias-ToralE. Guevara-RamírezP. Paz-CruzE. ChapelaS. MontalvánM. Morales-LópezT. Simancas-RacinesD. ZambranoA.K. The Molecular Mechanisms of the Relationship between Insulin Resistance and Parkinson’s Disease Pathogenesis.Nutrients20231516358510.3390/nu1516358537630775
    [Google Scholar]
  28. Heras-SandovalD. Pérez-RojasJ.M. Hernández-DamiánJ. Pedraza-ChaverriJ. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration.Cell. Signal.201426122694270110.1016/j.cellsig.2014.08.01925173700
    [Google Scholar]
  29. FoidlB.M. HumpelC. Differential hyperphosphorylation of tau-S199,-T231 and-S396 in organotypic brain slices of Alzheimer mice. A model to study early tau hyperphosphorylation using okadaic acid.Front. Aging Neurosci.20181011310.3389/fnagi.2018.0011329725295
    [Google Scholar]
  30. SangwungP. PetersenK.F. ShulmanG.I. KnowlesJ.W. Mitochondrial dysfunction, insulin resistance, and potential genetic implications: potential role of alterations in mitochondrial function in the pathogenesis of insulin resistance and type 2 diabetes.Endocrinology20201614bqaa01710.1210/endocr/bqaa01732060542
    [Google Scholar]
  31. AghanooriM.R. SmithD.R. Roy ChowdhuryS. SabbirM.G. CalcuttN.A. FernyhoughP. Insulin prevents aberrant mitochondrial phenotype in sensory neurons of type 1 diabetic rats.Exp. Neurol.201729714815710.1016/j.expneurol.2017.08.00528803751
    [Google Scholar]
  32. MorrisJ.K. VidoniE.D. PereaR.D. RadaR. JohnsonD.K. LyonsK. PahwaR. BurnsJ.M. HoneaR.A. Insulin resistance and gray matter volume in neurodegenerative disease.Neuroscience201427013914710.1016/j.neuroscience.2014.04.00624735819
    [Google Scholar]
  33. PaakinahoA. KoponenM. TiihonenM. KauppiM. HartikainenS. TolppanenA.M. Disease-modifying antirheumatic drugs and risk of Parkinson's disease: nested case-control study of people with rheumatoid arthritis.Neurology20229812e1273e128110.1212/WNL.000000000001330335064025
    [Google Scholar]
  34. ArnoldS.E. ArvanitakisZ. Macauley-RambachS.L. KoenigA.M. WangH.Y. AhimaR.S. CraftS. GandyS. BuettnerC. StoeckelL.E. HoltzmanD.M. NathanD.M. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums.Nat. Rev. Neurol.201814316818110.1038/nrneurol.2017.18529377010
    [Google Scholar]
  35. UngerJ. LivingstonJ. MossA. Insulin receptors in the central nervous system: Localization, signalling mechanisms and functional aspects.Prog. Neurobiol.199136534336210.1016/0301‑0082(91)90015‑S1887067
    [Google Scholar]
  36. AthaudaD. FoltynieT. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: mechanisms of action.Drug Discov. Today201621580281810.1016/j.drudis.2016.01.01326851597
    [Google Scholar]
  37. JonesK.T. WoodsC. ZhenJ. AntonioT. CarrK.D. ReithM.E.A. Effects of diet and insulin on dopamine transporter activity and expression in rat caudate-putamen, nucleus accumbens, and midbrain.J. Neurochem.2017140572874010.1111/jnc.1393027973691
    [Google Scholar]
  38. WangL. ZhaiY.Q. XuL.L. QiaoC. SunX.L. DingJ.H. LuM. HuG. Metabolic inflammation exacerbates dopaminergic neuronal degeneration in response to acute MPTP challenge in type 2 diabetes mice.Exp. Neurol.2014251222910.1016/j.expneurol.2013.11.00124220636
    [Google Scholar]
  39. HassanA. Sharma KandelR. MishraR. GautamJ. AlarefA. JahanN. Diabetes mellitus and Parkinson’s disease: shared pathophysiological links and possible therapeutic implications.Cureus2020128e985310.7759/cureus.985332832307
    [Google Scholar]
  40. FerrarioC.R. ReaganL.P. Insulin-mediated synaptic plasticity in the CNS: Anatomical, functional and temporal contexts.Neuropharmacology2018136Pt B18219110.1016/j.neuropharm.2017.12.00129217283
    [Google Scholar]
  41. MartinsR.S. RomboD.M. Gonçalves-RibeiroJ. MenesesC. Borges-MartinsV.P.P. RibeiroJ.A. VazS.H. KubruslyR.C.C. SebastiãoA.M. Caffeine has a dual influence on NMDA receptor–mediated glutamatergic transmission at the hippocampus.Purinergic Signal.202016450351810.1007/s11302‑020‑09724‑z33025424
    [Google Scholar]
  42. KasaragodV.B. MortensenM. HardwickS.W. WahidA.A. DorovykhV. ChirgadzeD.Y. SmartT.G. MillerP.S. Mechanisms of inhibition and activation of extrasynaptic αβ GABAA receptors.Nature2022602789752953310.1038/s41586‑022‑04402‑z35140402
    [Google Scholar]
  43. WuY.K. MiehlC. GjorgjievaJ. Regulation of circuit organization and function through inhibitory synaptic plasticity.Trends Neurosci.2022451288489810.1016/j.tins.2022.10.00636404455
    [Google Scholar]
  44. AkterR. CaoP. NoorH. RidgwayZ. TuL.H. WangH. WongA.G. ZhangX. AbediniA. SchmidtA.M. RaleighD.P. Islet amyloid polypeptide: structure, function, and pathophysiology.J. Diabetes Res.2016201611810.1155/2016/279826926649319
    [Google Scholar]
  45. KhemtemourianL. AntonicielloF. SahooB.R. DecossasM. LecomteS. RamamoorthyA. Investigation of the effects of two major secretory granules components, insulin and zinc, on human-IAPP amyloid aggregation and membrane damage.Chem. Phys. Lipids202123710508310.1016/j.chemphyslip.2021.10508333887213
    [Google Scholar]
  46. YangY. ShiY. SchweighauserM. ZhangX. KotechaA. MurzinA.G. GarringerH.J. CullinaneP.W. SaitoY. ForoudT. WarnerT.T. HasegawaK. VidalR. MurayamaS. ReveszT. GhettiB. HasegawaM. LashleyT. ScheresS.H.W. GoedertM. Structures of α-synuclein filaments from human brains with Lewy pathology.Nature2022610793379179510.1038/s41586‑022‑05319‑336108674
    [Google Scholar]
  47. MucibabicM. StenebergP. LidhE. StrasevicieneJ. ZiolkowskaA. DahlU. LindahlE. EdlundH. α-Synuclein promotes IAPP fibril formation in vitro and β-cell amyloid formation in vivo in mice.Sci. Rep.20201012043810.1038/s41598‑020‑77409‑z33235246
    [Google Scholar]
  48. BabicI. GorakA. EngelM. SellersD. ElseP. OsborneA.L. PaiN. HuangX.F. NealonJ. Weston-GreenK. Liraglutide prevents metabolic side-effects and improves recognition and working memory during antipsychotic treatment in rats.J. Psychopharmacol.201832557859010.1177/026988111875606129493378
    [Google Scholar]
  49. SahooB.R. PandaP.K. LiangW. TangW.J. AhujaR. RamamoorthyA. Degradation of Alzheimer’s amyloid-β by a catalytically inactive insulin-degrading enzyme.J. Mol. Biol.20214331316699310.1016/j.jmb.2021.16699333865867
    [Google Scholar]
  50. Vidal-MartinezG. YangB. Vargas-MedranoJ. PerezR.G. Could α-synuclein modulation of insulin and dopamine identify a novel link between Parkinson’s disease and diabetes as well as potential therapies?Front. Mol. Neurosci.20181146510.3389/fnmol.2018.0046530622456
    [Google Scholar]
  51. WuY.N. ShenK.Z. JohnsonS.W. Differential actions of AMP kinase on ATP-sensitive K + currents in ventral tegmental area and substantia nigra zona compacta neurons.Eur. J. Neurosci.201746112746275310.1111/ejn.1375629057540
    [Google Scholar]
  52. HuS. HuM. LiuJ. ZhangB. ZhangZ. ZhouF.H. WangL. DongJ. Phosphorylation of tau and α-synuclein induced neurodegeneration in MPTP mouse model of Parkinson’s disease.Neuropsychiatr. Dis. Treat.20201665166310.2147/NDT.S23556232184604
    [Google Scholar]
  53. BorscheM. PereiraS.L. KleinC. GrünewaldA. Mitochondria and Parkinson’s disease: clinical, molecular, and translational aspects.J. Parkinsons Dis.2021111456010.3233/JPD‑20198133074190
    [Google Scholar]
  54. MilsteinJ.L. FerrisH.A. The brain as an insulin-sensitive metabolic organ.Mol. Metab.20215210123410.1016/j.molmet.2021.10123433845179
    [Google Scholar]
  55. RamasubbuK. Devi RajeswariV. Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: a perspective review.Mol. Cell. Biochem.202347861307132410.1007/s11010‑022‑04587‑x36308670
    [Google Scholar]
  56. SakaguchiM. CaiW. WangC.H. CederquistC.T. DamasioM. HomanE.P. BatistaT. RamirezA.K. GuptaM.K. StegerM. Wewer AlbrechtsenN.J. SinghS.K. ArakiE. MannM. EnerbäckS. KahnC.R. FoxK1 and FoxK2 in insulin regulation of cellular and mitochondrial metabolism.Nat. Commun.2019101158210.1038/s41467‑019‑09418‑030952843
    [Google Scholar]
  57. DewanjeeS. ChakrabortyP. BhattacharyaH. ChackoL. SinghB. ChaudharyA. JavvajiK. PradhanS.R. VallamkonduJ. DeyA. KalraR.S. JhaN.K. JhaS.K. ReddyP.H. KandimallaR. Altered glucose metabolism in Alzheimer’s disease: Role of mitochondrial dysfunction and oxidative stress.Free Radic. Biol. Med.2022193Pt 113415710.1016/j.freeradbiomed.2022.09.03236206930
    [Google Scholar]
  58. ApostolovaN. VezzaT. MuntaneJ. RochaM. VíctorV.M. Mitochondrial dysfunction and mitophagy in type 2 diabetes: pathophysiology and therapeutic targets.Antioxid. Redox Signal.2023394-627832010.1089/ars.2022.001636641637
    [Google Scholar]
  59. LuoQ. SchnöderL. HaoW. LitzenburgerK. DeckerY. TomicI. MengerM.D. LiuY. FassbenderK. p38α-MAPK-deficient myeloid cells ameliorate symptoms and pathology of APP -transgenic Alzheimer’s disease mice.Aging Cell2022218e1367910.1111/acel.1367935909315
    [Google Scholar]
  60. BaufeldC. O’LoughlinE. CalcagnoN. MadoreC. ButovskyO. Differential contribution of microglia and monocytes in neurodegenerative diseases.J. Neural Transm. (Vienna)2018125580982610.1007/s00702‑017‑1795‑729063348
    [Google Scholar]
  61. ChenS.D. ChuangY.C. LinT.K. YangJ.L. Alternative role of glucagon-like Peptide-1 receptor agonists in neurodegenerative diseases.Eur. J. Pharmacol.202393817543910.1016/j.ejphar.2022.17543936470445
    [Google Scholar]
  62. LavisseS. GoutalS. WimberleyC. ToniettoM. BottlaenderM. GervaisP. KuhnastB. PeyronneauM.A. BarretO. LagardeJ. SarazinM. HantrayeP. ThiriezC. RemyP. Increased microglial activation in patients with Parkinson's disease using [18F]-DPA714 TSPO PET imaging.Parkinsonism Relat. Disord.202182293610.1016/j.parkreldis.2020.11.01133242662
    [Google Scholar]
  63. KarpenkoM.N. VasilishinaA.A. GromovaE.A. MuruzhevaZ.M. BernadotteA. BernadotteA. Interleukin-1β, interleukin-1 receptor antagonist, interleukin-6, interleukin-10, and tumor necrosis factor-α levels in CSF and serum in relation to the clinical diversity of Parkinson’s disease.Cell. Immunol.2018327778210.1016/j.cellimm.2018.02.01129478949
    [Google Scholar]
  64. YangX. FengP. JiR. RenY. WeiW. HölscherC. Therapeutic application of GLP-1 and GIP receptor agonists in Parkinson’s disease.Expert Opin. Ther. Targets202226544546010.1080/14728222.2022.207949235584372
    [Google Scholar]
  65. LimaJ.E.B.F. MoreiraN.C.S. Sakamoto-HojoE.T. Mechanisms underlying the pathophysiology of type 2 diabetes: From risk factors to oxidative stress, metabolic dysfunction, and hyperglycemia.Mutat. Res. Genet. Toxicol. Environ. Mutagen.2022874-87550343710.1016/j.mrgentox.2021.50343735151421
    [Google Scholar]
  66. ChegãoA. GuardaM. AlexandreB.M. ShvachiyL. Temido-FerreiraM. Marques-MorgadoI. Fernandes GomesB. MatthiesenR. LopesL.V. FlorindoP.R. GomesR.A. Gomes-AlvesP. CoelhoJ.E. OuteiroT.F. Vicente MirandaH. Glycation modulates glutamatergic signaling and exacerbates Parkinson’s disease-like phenotypes.NPJ Parkinsons Dis.2022815110.1038/s41531‑022‑00314‑x35468899
    [Google Scholar]
  67. KönigA. Vicente MirandaH. OuteiroT.F. Alpha-synuclein glycation and the action of anti-diabetic agents in Parkinson’s disease.J. Parkinsons Dis.201881334310.3233/JPD‑17128529480231
    [Google Scholar]
  68. GaoS. DuanC. GaoG. WangX. YangH. Alpha-synuclein overexpression negatively regulates insulin receptor substrate 1 by activating mTORC1/S6K1 signaling.Int. J. Biochem. Cell Biol.201564253310.1016/j.biocel.2015.03.00625813876
    [Google Scholar]
  69. DudekH. DattaS.R. FrankeT.F. BirnbaumM.J. YaoR. CooperG.M. SegalR.A. KaplanD.R. GreenbergM.E. Regulation of neuronal survival by the serine-threonine protein kinase Akt.Science1997275530066166510.1126/science.275.5300.6619005851
    [Google Scholar]
  70. SekarS. TaghibiglouC. Elevated nuclear phosphatase and tensin homolog (PTEN) and altered insulin signaling in substantia nigral region of patients with Parkinson’s disease.Neurosci. Lett.201866613914310.1016/j.neulet.2017.12.04929288045
    [Google Scholar]
  71. AthaudaD. FoltynieT. Protective effects of the GLP-1 mimetic exendin-4 in Parkinson’s disease.Neuropharmacology2018136Pt B26027010.1016/j.neuropharm.2017.09.02328927992
    [Google Scholar]
  72. LengS. ZhangW. ZhengY. LibermanZ. RhodesC.J. Eldar-FinkelmanH. SunX.J. Glycogen synthase kinase 3β mediates high glucose-induced ubiquitination and proteasome degradation of insulin receptor substrate 1.J. Endocrinol.2010206217118110.1677/JOE‑09‑045620466847
    [Google Scholar]
  73. SunX. HuangL. ZhangM. SunS. WuY. Insulin like growth factor-1 prevents 1-mentyl-4-phenylphyridinium-induced apoptosis in PC12 cells through activation of glycogen synthase kinase-3beta.Toxicology20102711-251210.1016/j.tox.2010.01.00120064577
    [Google Scholar]
  74. BabcockJ.T. QuilliamL.A. Rheb/mTOR activation and regulation in cancer: novel treatment strategies beyond rapamycin.Curr. Drug Targets20111281223123110.2174/13894501179590658921561413
    [Google Scholar]
  75. MagnusonB. EkimB. FingarD.C. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks.Biochem. J.2012441112110.1042/BJ2011089222168436
    [Google Scholar]
  76. SharmaV.K. MehtaV. SinghT.G. Alzheimer’s disorder: epigenetic connection and associated risk factors.Curr. Neuropharmacol.202018874075310.2174/1570159X1866620012812564131989902
    [Google Scholar]
  77. QuansahE. McGregorN.W. Towards diversity in genomics: The emergence of neurogenomics in Africa?Genomics201811011910.1016/j.ygeno.2017.07.00928774809
    [Google Scholar]
  78. PandayA. IndaM.E. BagamP. SahooM.K. OsorioD. BatraS. Transcription factor NF-κB: an update on intervention strategies.Arch. Immunol. Ther. Exp. (Warsz.)201664646348310.1007/s00005‑016‑0405‑y27236331
    [Google Scholar]
  79. BatchelorD.C. LinH. WenJ.Y. KevenC. ZijlP.L.V. BreierB.H. GluckmanP.D. ThomasG.B. Pharmacokinetics of glycine–proline–glutamate, the N-terminal tripeptide of insulin-like growth factor-1, in rats.Anal. Biochem.2003323215616310.1016/j.ab.2003.08.03214656520
    [Google Scholar]
  80. MinelliA. ConteC. CacciatoreI. CornacchiaC. PinnenF. Molecular mechanism underlying the cerebral effect of Gly-Pro-Glu tripeptide bound to l-dopa in a Parkinson’s animal model.Amino Acids20124331359136710.1007/s00726‑011‑1210‑x22218995
    [Google Scholar]
  81. NovakP. Pimentel MaldonadoD.A. NovakV. Safety and preliminary efficacy of intranasal insulin for cognitive impairment in Parkinson's disease and multiple system atrophy: A double-blinded placebo-controlled pilot study.PLoS One2019144e021436410.1371/journal.pone.021436431022213
    [Google Scholar]
  82. ChapmanC.D. SchiöthH.B. GrilloC.A. BenedictC. Intranasal insulin in Alzheimer’s disease: Food for thought.Neuropharmacology2018136Pt B19620110.1016/j.neuropharm.2017.11.03729180222
    [Google Scholar]
  83. CraftS. BakerL.D. MontineT.J. MinoshimaS. WatsonG.S. ClaxtonA. ArbuckleM. CallaghanM. TsaiE. PlymateS.R. GreenP.S. LeverenzJ. CrossD. GertonB. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial.Arch. Neurol.2012691293810.1001/archneurol.2011.23321911655
    [Google Scholar]
  84. GubbiS. QuipildorG.F. BarzilaiN. HuffmanD.M. MilmanS. 40 YEARS of IGF1: IGF1: the Jekyll and Hyde of the aging brain.J. Mol. Endocrinol.2018611T171T18510.1530/JME‑18‑009329739805
    [Google Scholar]
  85. KeK-F. GuX-S. ZhangH-Y. JiangY-C. LiJ-R. YanJ-N. WangX-J. ShenJ-B. Neuroprotective effects of insulin-like growth factor-2 in 6-hydroxydopamine-induced cellular and mouse models of Parkinson’s disease.Neural Regen. Res.20231851099110610.4103/1673‑5374.35581536254999
    [Google Scholar]
  86. AyadiA.E. ZigmondM.J. SmithA.D. IGF-1 protects dopamine neurons against oxidative stress: association with changes in phosphokinases.Exp. Brain Res.201623471863187310.1007/s00221‑016‑4572‑126894890
    [Google Scholar]
  87. GreenH. TsitsiP. MarkakiI. AarslandD. SvenningssonP. Novel treatment opportunities against cognitive impairment in Parkinson’s disease with an emphasis on diabetes-related pathways.CNS Drugs201933214316010.1007/s40263‑018‑0601‑x30687888
    [Google Scholar]
  88. ChaiS. LiuF. YuS. YangZ. SunF. Cognitive protection of incretin-based therapies in patients with type 2 diabetes mellitus: A systematic review and meta-analysis based on clinical studies.J. Diabetes Investig.202314786487310.1111/jdi.1401537147888
    [Google Scholar]
  89. MousaS. AyoubB. Repositioning of dipeptidyl peptidase-4 inhibitors and glucagon like peptide-1 agonists as potential neuroprotective agents.Neural Regen. Res.201914574574810.4103/1673‑5374.24921730688255
    [Google Scholar]
  90. KangM.Y. OhT.J. ChoY.M. Glucagon-like peptide-1 increases mitochondrial biogenesis and function in INS-1 rat insulinoma cells.Endocrinol. Metab. (Seoul)201530221622010.3803/EnM.2015.30.2.21626194081
    [Google Scholar]
  91. CandeiasE.M. SebastiãoI.C. CardosoS.M. CorreiaS.C. CarvalhoC.I. PlácidoA.I. SantosM.S. OliveiraC.R. MoreiraP.I. DuarteA.I. Gut-brain connection: The neuroprotective effects of the anti-diabetic drug liraglutide.World J. Diabetes20156680782710.4239/wjd.v6.i6.80726131323
    [Google Scholar]
  92. CuiQ.N. SteinL.M. FortinS.M. HayesM.R. The role of glia in the physiology and pharmacology of glucagon-like peptide-1: implications for obesity, diabetes, neurodegeneration and glaucoma.Br. J. Pharmacol.2022179471572610.1111/bph.1568334519040
    [Google Scholar]
  93. LewittM.S. BoydG.W. The role of insulin-like growth factors and insulin-like growth factor–binding proteins in the nervous system.Biochem. Insights20191210.1177/117862641984217631024217
    [Google Scholar]
  94. ZhangL. ZhangL. LiL. HölscherC. Neuroprotective effects of the novel GLP-1 long acting analogue semaglutide in the MPTP Parkinson’s disease mouse model.Neuropeptides201871708010.1016/j.npep.2018.07.00330017231
    [Google Scholar]
  95. LiY. LiuW. LiL. HölscherC. Neuroprotective effects of a GIP analogue in the MPTP Parkinson’s disease mouse model.Neuropharmacology201610125526310.1016/j.neuropharm.2015.10.00226453962
    [Google Scholar]
  96. NagatsuT. NakashimaA. IchinoseH. KobayashiK. Human tyrosine hydroxylase in Parkinson’s disease and in related disorders.J. Neural Transm. (Vienna)2019126439740910.1007/s00702‑018‑1903‑329995172
    [Google Scholar]
  97. MatteucciE. GiampietroO. Mechanisms of neurodegeration in type 2 diabetes and the neuroprotective potential of dipeptidyl peptidase 4 inhibitors.Curr. Med. Chem.201522131573158110.2174/092986732266615022715330825723507
    [Google Scholar]
  98. ZhangD.D. ShiN. FangH. MaL. WuW.P. ZhangY.Z. TianJ.L. TianL.B. KangK. ChenS. Vildagliptin, a DPP4 inhibitor, alleviates diabetes-associated cognitive deficits by decreasing the levels of apoptosis-related proteins in the rat hippocampus.Exp. Ther. Med.20181565100510610.3892/etm.2018.601629805536
    [Google Scholar]
  99. AbdelsalamR.M. SafarM.M. Neuroprotective effects of vildagliptin in rat rotenone Parkinson’s disease model: role of RAGE - NF κB and Nrf2-antioxidant signaling pathways.J. Neurochem.2015133570070710.1111/jnc.1308725752913
    [Google Scholar]
  100. LeeD.S. LeeE.S. AlamM.M. JangJ.H. LeeH.S. OhH. KimY.C. ManzoorZ. KohY.S. KangD.G. LeeD.H. Soluble DPP-4 up-regulates toll-like receptors and augments inflammatory reactions, which are ameliorated by vildagliptin or mannose-6-phosphate.Metabolism20166528910110.1016/j.metabol.2015.10.00226773932
    [Google Scholar]
  101. NeurolL. NINDS Exploratory Trials in Parkinson's Disease (NET-PD) FS-ZONE Investigators Pioglitazone in early Parkinson’s disease: a phase 2, multicentre, double-blind, randomised trial.Lancet Neurol.201514879580310.1016/S1474‑4422(15)00144‑126116315
    [Google Scholar]
  102. SwansonC. EmborgM. Expression of peroxisome proliferator-activated receptor-gamma in the substantia nigra of hemiparkinsonian nonhuman primates.Neurol. Res.201436763464610.1179/1743132813Y.000000030524620964
    [Google Scholar]
  103. Segura-AguilarJ. SilvaV. State and perspectives on flavonoid neuroprotection against aminochrome-induced neurotoxicity.Neural Regen. Res.20211691797179810.4103/1673‑5374.30608233510082
    [Google Scholar]
  104. HildrethK.L. Van PeltR.E. MoreauK.L. GrigsbyJ. HothK.F. PelakV. AndersonC.A. ParnesB. KittelsonJ. WolfeP. NakamuraT. LinneburS.A. TrujilloJ.M. AquilanteC.L. SchwartzR.S. Effects of pioglitazone or exercise in older adults with mild cognitive impairment and insulin resistance: a pilot study.Dement. Geriatr. Cogn. Disord. Extra201551516310.1159/00037150925852732
    [Google Scholar]
  105. PérezM.J. QuintanillaR.A. Therapeutic actions of the thiazolidinediones in Alzheimer’s disease.PPAR Res.201520151810.1155/2015/95724826587016
    [Google Scholar]
  106. ItkonenM.K. TornioA. NeuvonenM. NeuvonenP.J. NiemiM. BackmanJ.T. Clopidogrel markedly increases plasma concentrations of CYP2C8 substrate pioglitazone.Drug Metab. Dispos.20164481364137110.1124/dmd.116.07037527260150
    [Google Scholar]
  107. WahlqvistM.L. LeeM.S. HsuC.C. ChuangS.Y. LeeJ.T. TsaiH.N. Metformin-inclusive sulfonylurea therapy reduces the risk of Parkinson’s disease occurring with Type 2 diabetes in a Taiwanese population cohort.Parkinsonism Relat. Disord.201218675375810.1016/j.parkreldis.2012.03.01022498320
    [Google Scholar]
  108. OsborneC. WestE. NolanW. McHale-OwenH. WilliamsA. BateC. Glimepiride protects neurons against amyloid-β-induced synapse damage.Neuropharmacology201610122523610.1016/j.neuropharm.2015.09.03026432105
    [Google Scholar]
  109. LiuF. WangY. YanM. ZhangL. PangT. LiaoH. Glimepiride attenuates Aβ production via suppressing BACE1 activity in cortical neurons.Neurosci. Lett.2013557Pt B909410.1016/j.neulet.2013.10.05224184877
    [Google Scholar]
  110. AlpH. VarolS. CelikM.M. AltasM. EvliyaogluO. TokgozO. TanrıverdiM.H. UzarE. Protective effects of beta glucan and gliclazide on brain tissue and sciatic nerve of diabetic rats induced by streptozosin.Exp. Diabetes Res.201220121710.1155/2012/23034222291696
    [Google Scholar]
  111. DeaconC.F. LebovitzH.E. Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas.Diabetes Obes. Metab.201618433334710.1111/dom.1261026597596
    [Google Scholar]
  112. ViolletB. GuigasB. GarciaN.S. LeclercJ. ForetzM. AndreelliF. Cellular and molecular mechanisms of metformin: an overview.Clin. Sci. (Lond.)2012122625327010.1042/CS2011038622117616
    [Google Scholar]
  113. ChungM.M. ChenY.L. PeiD. ChengY.C. SunB. NicolC.J. YenC.H. ChenH.M. LiangY.J. ChiangM.C. The neuroprotective role of metformin in advanced glycation end product treated human neural stem cells is AMPK-dependent.Biochim. Biophys. Acta Mol. Basis Dis.20151852572073110.1016/j.bbadis.2015.01.00625595658
    [Google Scholar]
  114. DulovicM. JovanovicM. XilouriM. StefanisL. Harhaji-TrajkovicL. Kravic-StevovicT. PaunovicV. ArdahM.T. El-AgnafO.M.A. KosticV. MarkovicI. TrajkovicV. The protective role of AMP-activated protein kinase in alpha-synuclein neurotoxicity in vitro.Neurobiol. Dis.20146311110.1016/j.nbd.2013.11.00224269733
    [Google Scholar]
  115. AdedejiH.A. IsholaI.O. AdeyemiO.O. Novel action of metformin in the prevention of haloperidol-induced catalepsy in mice: Potential in the treatment of Parkinson’s disease?Prog. Neuropsychopharmacol. Biol. Psychiatry20144824525110.1016/j.pnpbp.2013.10.01424513020
    [Google Scholar]
  116. PintanaH. ApaijaiN. PratchayasakulW. ChattipakornN. ChattipakornS.C. Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats.Life Sci.20129111-1240941410.1016/j.lfs.2012.08.01722925597
    [Google Scholar]
  117. PatilS.P. JainP.D. GhumatkarP.J. TambeR. SathayeS. Neuroprotective effect of metformin in MPTP-induced Parkinson’s disease in mice.Neuroscience201427774775410.1016/j.neuroscience.2014.07.04625108167
    [Google Scholar]
  118. ImfeldP. BodmerM. JickS.S. MeierC.R. Metformin, other antidiabetic drugs, and risk of Alzheimer’s disease: a population-based case-control study.J. Am. Geriatr. Soc.201260591692110.1111/j.1532‑5415.2012.03916.x22458300
    [Google Scholar]
  119. BariniE. AnticoO. ZhaoY. AstaF. TucciV. CatelaniT. MarottaR. XuH. GaspariniL. Metformin promotes tau aggregation and exacerbates abnormal behavior in a mouse model of tauopathy.Mol. Neurodegener.20161111610.1186/s13024‑016‑0082‑726858121
    [Google Scholar]
  120. StottS.R.W. WyseR.K. BrundinP. Drug repurposing for Parkinson’s disease: the international linked clinical trials experience.Front. Neurosci.20211565337710.3389/fnins.2021.65337733815053
    [Google Scholar]
  121. NauckM.A. D’AlessioD.A. Tirzepatide, a dual GIP/GLP-1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regrading glycaemic control and body weight reduction.Cardiovasc. Diabetol.202221116910.1186/s12933‑022‑01604‑736050763
    [Google Scholar]
  122. FengP. ZhangX. LiD. JiC. YuanZ. WangR. XueG. LiG. HölscherC. Two novel dual GLP-1/GIP receptor agonists are neuroprotective in the MPTP mouse model of Parkinson’s disease.Neuropharmacology201813338539410.1016/j.neuropharm.2018.02.01229462693
    [Google Scholar]
  123. GallwitzB. Clinical perspectives on the use of the GIP/GLP-1 receptor agonist tirzepatide for the treatment of type-2 diabetes and obesity.Front. Endocrinol. (Lausanne)202213100404410.3389/fendo.2022.100404436313764
    [Google Scholar]
  124. CartaA.R. FrauL. PinnaA. MorelliM. Dyskinetic potential of dopamine agonists is associated with different striatonigral/striatopallidal zif-268 expression.Exp. Neurol.2010224239540210.1016/j.expneurol.2010.04.01620452347
    [Google Scholar]
  125. SunY. ChangY.H. ChenH.F. SuY.H. SuH.F. LiC.Y. Risk of Parkinson's disease onset in patients with diabetes: a 9-year population-based cohort study with age and sex stratifications.Diabetes Care20123551047104910.2337/dc11‑151122432112
    [Google Scholar]
  126. KalraS. KalraB. AgrawalN. KumarS. Dopamine: the forgotten felon in type 2 diabetes.Recent Pat. Endocr. Metab. Immune Drug Discov.201151616510.2174/18722141179435184222074579
    [Google Scholar]
  127. ConnollyJ.G. BykovK. GagneJ.J. Thiazolidinediones and Parkinson's disease: a cohort study.Am. J. Epidemiol.20151821193694410.1093/aje/kwv10926493264
    [Google Scholar]
  128. BernhardF.P. HeinzelS. BinderG. WeberK. ApelA. RoebenB. DeuschleC. MaechtelM. HegerT. NussbaumS. GasserT. MaetzlerW. BergD. Insulin-like growth factor 1 (IGF-1) in Parkinson’s disease: potential as trait-, progression-and prediction marker and confounding factors.PLoS One2016113e015055210.1371/journal.pone.015055226967642
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855332557240820054810
Loading
/content/journals/cdth/10.2174/0115748855332557240820054810
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): diabetes; insulin; non-diabetic PD; Parkinson’s disease; pd progression; therapeutic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test