Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Parkinson’s disease (PD) is a prominent area of study within the field of neurology, particularly neurodegenerative disease (ND). The peak incidence of PD occurs in those over the age of 45, and the disease’s prevalence rises continuously with age, the incidence of PD has skyrocketed over the world. A slow decline in neural function characterizes NDs, but the pathophysiological mechanisms behind this decline remain elusive. Because the pathophysiological mechanisms behind neurodegeneration are intricate, the clinical issue of finding efficient, multi-target treatments still exists. Furthermore, adequate neuroprotective medicines are currently scarce, necessitating the development of new therapeutic agents. There is currently no medicine for PD that is without side effects. The ability of natural flavonoids to lower the risk of PD has contributed to an increase in their popularity in recent years, models both and . Flavonoids are multi-target natural substances that affect distinct pathogenic pathways in neurodegeneration. As a result, the emphasis has turned to discovering natural product inhibitors for the treatment of PD. The majority of the results pointed to flavonoids' beneficial role in the treatment of PD and no adverse events were reported. This review offered scientific data on the protective and preventative functions of flavonoids. It has been demonstrated that flavonoids have a neuroprotective effect by activating anti-apoptotic mechanisms that target mitochondrial dysfunction and produce neurotrophic factors. In addition to having antioxidant, anti-inflammatory, and protective dopaminergic neurons. Even though no evidence using flavonoids as a treatment might reverse the abnormal phenotypes of PD patients, it was also indicated that flavonoids might be promising natural remedies for PD prevention and could be used as therapeutic agents against PD.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855292178240223100534
2024-03-13
2025-04-23
Loading full text...

Full text loading...

References

  1. ObesoJ.A. StamelouM. GoetzC.G. Past, present, and future of Parkinson’s disease: A special essay on the 200th Anniversary of the Shaking Palsy.Mov. Disord.20173291264131010.1002/mds.27115 28887905
    [Google Scholar]
  2. MagalingamK.B. RadhakrishnanA.K. HaleagraharaN. Protective mechanisms of flavonoids in Parkinson’s disease.Oxid. Med. Cell. Longev.2015201511410.1155/2015/314560 26576219
    [Google Scholar]
  3. PoeweW. SeppiK. TannerC.M. Parkinson disease.Nat. Rev. Dis. Primers2017311701310.1038/nrdp.2017.13 28332488
    [Google Scholar]
  4. KouliA. TorsneyK.M. KuanW.L. Parkinson’s disease: etiology, neuropathology, and pathogenesis. StokerT.B. Parkinson’s Disease: Pathogenesis and Clinical Aspects.Codon Publications201832610.15586/codonpublications.parkinsonsdisease.2018.ch1
    [Google Scholar]
  5. Mahul-MellierA.L. BurtscherJ. MaharjanN. The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration.Proc. Natl. Acad. Sci. USA202011794971498210.1073/pnas.1913904117 32075919
    [Google Scholar]
  6. ValléeA. LecarpentierY. GuillevinR. ValléeJ.N. Effects of cannabidiol interactions with Wnt/β-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer’s disease.Acta Biochim. Biophys. Sin. (Shanghai)2017491085386610.1093/abbs/gmx073 28981597
    [Google Scholar]
  7. TangY. LeW. Differential roles of M1 and M2 microglia in neurodegenerative diseases.Mol. Neurobiol.20165321181119410.1007/s12035‑014‑9070‑5 25598354
    [Google Scholar]
  8. CherryJ.D. OlschowkaJ.A. O’BanionM.K. Arginase 1+ microglia reduce Aβ plaque deposition during IL-1β-dependent neuroinflammation.J. Neuroinflammation201512120310.1186/s12974‑015‑0411‑8 26538310
    [Google Scholar]
  9. HuX. LeakR.K. ShiY. Microglial and macrophage polarization—new prospects for brain repair.Nat. Rev. Neurol.2015111566410.1038/nrneurol.2014.207 25385337
    [Google Scholar]
  10. KimT.Y. LeemE. LeeJ.M. KimS.R. Control of reactive oxygen species for the prevention of Parkinson’s disease: The Possible Application of Flavonoids.Antioxidants20209758310.3390/antiox9070583 32635299
    [Google Scholar]
  11. BaroniL. SarniA.R. ZulianiC. Plant foods rich in antioxidants and human cognition: a systematic review.Antioxidants202110571410.3390/antiox10050714 33946461
    [Google Scholar]
  12. IsikS. Yeman KiyakB. AkbayirR. SeyhaliR. ArpaciT. Microglia mediated neuroinflammation in parkinson’s disease.Cells2023127101210.3390/cells12071012 37048085
    [Google Scholar]
  13. DzamkoN. Cytokine activity in Parkinson’s disease.Neuronal Signal.202374NS2022006310.1042/NS20220063 38059210
    [Google Scholar]
  14. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: an overview.J. Nutr. Sci.20165e4710.1017/jns.2016.41 28620474
    [Google Scholar]
  15. LiuW. FengY. YuS. The flavonoid biosynthesis network in plants.Int. J. Mol. Sci.202122231282410.3390/ijms222312824 34884627
    [Google Scholar]
  16. ChagasM.S.S. BehrensM.D. Moragas-TellisC.J. PenedoG.X.M. SilvaA.R. Gonçalves-de-AlbuquerqueC.F. Flavonols and flavones as potential anti-inflammatory, antioxidant, and antibacterial compounds.Oxid. Med. Cell. Longev.2022202212110.1155/2022/9966750 36111166
    [Google Scholar]
  17. MuruganathanN. DhanapalA.R. BaskarV. Recent updates on source, biosynthesis, and therapeutic potential of natural flavonoid luteolin: A Review.Metabolites20221211114510.3390/metabo12111145 36422285
    [Google Scholar]
  18. YangS.C. ChenP.J. ChangS.H. Luteolin attenuates neutrophilic oxidative stress and inflammatory arthritis by inhibiting Raf1 activity.Biochem. Pharmacol.201815438439610.1016/j.bcp.2018.06.003 29883707
    [Google Scholar]
  19. RudrapalM. KhairnarS.J. KhanJ. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action.Front. Pharmacol.20221380647010.3389/fphar.2022.806470 35237163
    [Google Scholar]
  20. SinghA. KukretiR. SasoL. KukretiS. Oxidative stress: a key modulator in neurodegenerative diseases.Molecules2019248158310.3390/molecules24081583 31013638
    [Google Scholar]
  21. PhaniendraA. JestadiD.B. PeriyasamyL. Free radicals: properties, sources, targets, and their implication in various diseases.Indian J. Clin. Biochem.2015301112610.1007/s12291‑014‑0446‑0 25646037
    [Google Scholar]
  22. AramouniK. AssafR. ShaitoA. Biochemical and cellular basis of oxidative stress: Implications for disease onset.J. Cell. Physiol.202323891951196310.1002/jcp.31071 37436042
    [Google Scholar]
  23. J, Kumar Gupta, S, Giri. Cenzyme Q 10: a potential breakthrough in physiological dysfunctions.Int. J. Pharm. Sci. Res.2020112599604
    [Google Scholar]
  24. LubranoV. BalzanS. Enzymatic antioxidant system in vascular inflammation and coronary artery disease.World J. Exp. Med.20155421822410.5493/wjem.v5.i4.218 26618108
    [Google Scholar]
  25. EvansJ.A. MendoncaP. SolimanK.F.A. Neuroprotective effects and therapeutic potential of the citrus flavonoid hesperetin in neurodegenerative diseases.Nutrients20221411222810.3390/nu14112228 35684025
    [Google Scholar]
  26. MuhammadT. AliT. IkramM. KhanA. AlamS.I. KimM.O. Melatonin rescue oxidative stress-mediated neuroinflammation/neurodegeneration and memory impairment in scopolamine-induced amnesia mice model.J. Neuroimmune Pharmacol.201914227829410.1007/s11481‑018‑9824‑3 30478761
    [Google Scholar]
  27. ZhuC. DongY. LiuH. RenH. CuiZ. Hesperetin protects against H 2 O 2 -triggered oxidative damage via upregulation of the Keap1-Nrf2/HO-1 signal pathway in ARPE-19 cells.Biomed. Pharmacother.20178812413310.1016/j.biopha.2016.11.089 28103505
    [Google Scholar]
  28. NakazawaY. OkaM. TamuraH. TakehanaM. Effect of hesperetin on chaperone activity in selenite-induced cataract.Open Med. (Wars.)201611118318910.1515/med‑2016‑0035 28352791
    [Google Scholar]
  29. AtokiA.V. AjaP.M. ShinkafiT.S. OndariE.N. AwuchiC.G. Hesperidin plays beneficial roles in disorders associated with the central nervous system: a review.Int. J. Food Prop.20232611867188410.1080/10942912.2023.2236327
    [Google Scholar]
  30. AntunesM.S. Cattelan SouzaL. LaddF.V.L. Hesperidin ameliorates anxiety-depressive-like behavior in 6-OHDA model of parkinson’s disease by regulating striatal cytokine and neurotrophic factors levels and dopaminergic innervation loss in the striatum of mice.Mol. Neurobiol.20205773027304110.1007/s12035‑020‑01940‑3 32458386
    [Google Scholar]
  31. EmranT.B. IslamF. NathN. Naringin and naringenin polyphenols in neurological diseases: understandings from a therapeutic viewpoint.Life (Basel)20221319910.3390/life13010099 36676048
    [Google Scholar]
  32. RashmiR. Bojan MageshS. Mohanram RamkumarK. SuryanarayananS. Venkata SubbaRao M. Venkata SubbaRao, M. Antioxidant potential of naringenin helps to protect liver tissue from streptozotocin-induced damage.Rep. Biochem. Mol. Biol.2018717684 30324121
    [Google Scholar]
  33. GerçekE. ZenginH. Erdem ErişirF. YılmazÖ. Biochemical changes and antioxidant capacity of naringin and naringenin against malathion toxicity in Saccharomyces cerevisiae.Comp. Biochem. Physiol. C Toxicol. Pharmacol.202124110896910.1016/j.cbpc.2020.108969 33412300
    [Google Scholar]
  34. GarabaduD. AgrawalN. Naringin exhibits neuroprotection against rotenone-induced neurotoxicity in experimental rodents.Neuromolecular Med.202022231433010.1007/s12017‑019‑08590‑2 31916219
    [Google Scholar]
  35. ZaidunN.H. ThentZ.C. LatiffA.A. Combating oxidative stress disorders with citrus flavonoid.Naringenin. Life Sci201820811112210.1016/j.lfs.2018.07.017 30021118
    [Google Scholar]
  36. KimG. HanD.W. LeeJ.H. The cytoprotective effects of baicalein on h2o2-induced ros by maintaining mitochondrial homeostasis and cellular tight junction in hacat keratinocytes.Antioxidants202312490210.3390/antiox12040902 37107277
    [Google Scholar]
  37. DuY. HanY. ZhangR. ZhangY. BaoS. CaoY. Dietary baicalein improves growth performance, antioxidant activity, and intestinal flora of koi carp (Cyprinus carpio).Aquac Rep202227
    [Google Scholar]
  38. EnogieruA.B. HaylettW. HissD.C. BardienS. EkpoO.E. Rutin as a potent antioxidant: implications for neurodegenerative disorders.Oxid. Med. Cell. Longev.2018201811710.1155/2018/6241017 30050657
    [Google Scholar]
  39. LaiX. ZhangY. WuJ. ShenM. YinS. YanJ. Rutin attenuates oxidative stress via phb2-mediated mitophagy in mpp+-induced SH-SY5Y cells.Neurotox. Res.202341324225510.1007/s12640‑023‑00636‑5 36738374
    [Google Scholar]
  40. SharmaS. NarangJ.K. AliJ. BabootaS. Synergistic antioxidant action of vitamin E and rutin SNEDDS in ameliorating oxidative stress in a Parkinson’s disease model.Nanotechnology2016273737510110.1088/0957‑4484/27/37/375101 27491690
    [Google Scholar]
  41. De AraújoF.M. FrotaA.F. de JesusL.B. Protective effects of flavonoid rutin against aminochrome neurotoxicity.Neurotox. Res.202341322424110.1007/s12640‑022‑00616‑1 36723781
    [Google Scholar]
  42. MadanS. UttekarB. ChowdharyS. RikhyR. Mitochondria lead the way: mitochondrial dynamics and function in cellular movements in development and disease.Front. Cell Dev. Biol.20229978193310.3389/fcell.2021.781933 35186947
    [Google Scholar]
  43. PrasadE.M. HungS.Y. Behavioral tests in neurotoxin-induced animal models of parkinson’s disease.Antioxidants2020910100710.3390/antiox9101007 33081318
    [Google Scholar]
  44. NitaM. GrzybowskiA. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults.Oxid. Med. Cell. Longev.2016201612310.1155/2016/3164734 26881021
    [Google Scholar]
  45. RannehY. AliF. AkimA.M. HamidH.A. KhazaaiH. FadelA. Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases: a review.Applied Biological Chemistry201760332733810.1007/s13765‑017‑0285‑9
    [Google Scholar]
  46. TolarM. HeyJ. PowerA. AbushakraS. Neurotoxic soluble amyloid oligomers drive alzheimer’s pathogenesis and represent a clinically validated target for slowing disease progression.Int. J. Mol. Sci.20212212635510.3390/ijms22126355 34198582
    [Google Scholar]
  47. ChodariL. Dilsiz AytemirM. VahediP. Targeting mitochondrial biogenesis with polyphenol compounds.Oxid. Med. Cell. Longev.2021202112010.1155/2021/4946711 34336094
    [Google Scholar]
  48. QiuL. LuoY. ChenX. Quercetin attenuates mitochondrial dysfunction and biogenesis via upregulated AMPK/SIRT1 signaling pathway in OA rats.Biomed. Pharmacother.20181031031585159110.1016/j.biopha.2018.05.003 29864946
    [Google Scholar]
  49. KicinskaA. JarmuszkiewiczW. Flavonoids and mitochondria: activation of cytoprotective pathways.Molecules20202513306010.3390/molecules25133060 32635481
    [Google Scholar]
  50. Di MeoS. ReedT.T. VendittiP. VictorV.M. Role of ros and rns sources in physiological and pathological conditions.Oxid. Med. Cell. Longev.2016201614410.1155/2016/1245049 27478531
    [Google Scholar]
  51. Di MeoS. NapolitanoG. VendittiP. Physiological and pathological role of ros: benefits and limitations of antioxidant treatment.Int. J. Mol. Sci.20192019481010.3390/ijms20194810 31569717
    [Google Scholar]
  52. ApakR. ÖzyürekM. GüçlüK. ÇapanoğluE. Antioxidant activity/capacity measurement. 1. classification, physicochemical principles, mechanisms, and electron transfer (et)-based assays.J. Agric. Food Chem.2016645997102710.1021/acs.jafc.5b04739 26728425
    [Google Scholar]
  53. ZengY SongJ ZhangM WangH ZhangY SuoH Comparison of in vitro and in vivo antioxidant activities of six flavonoids with similar structures.202098114
    [Google Scholar]
  54. ChenM. PengL. GongP. Baicalein induces mitochondrial autophagy to prevent Parkinson’s disease in rats via miR-30b and the SIRT1/AMPK/mTOR Pathway.Front. Neurol.2022121264681710.3389/fneur.2021.646817 35237220
    [Google Scholar]
  55. ZhengZ.V. CheungC.Y. LyuH. Baicalein enhances the effect of low dose Levodopa on the gait deficits and protects dopaminergic neurons in experimental Parkinsonism.J. Clin. Neurosci.2019646424225110.1016/j.jocn.2019.02.005 30905662
    [Google Scholar]
  56. ReisJ.F. MonteiroV.V.S. de Souza GomesR. Action mechanism and cardiovascular effect of anthocyanins: a systematic review of animal and human studies.J. Transl. Med.201614131510.1186/s12967‑016‑1076‑5 27846846
    [Google Scholar]
  57. QianF. WangM. WangJ. LuC. Anthocyanin-rich blueberry extract ameliorates the behavioral deficits of MPTP-induced mouse model of Parkinson’s disease via anti-oxidative mechanisms.Yangtze Medicine201931727810.4236/ym.2019.31008
    [Google Scholar]
  58. UllahR. KhanM. ShahS.A. SaeedK. KimM.O. Natural antioxidant anthocyanins-a hidden therapeutic candidate in metabolic disorders with major focus in neurodegeneration.Nutrients2019116119510.3390/nu11061195 31141884
    [Google Scholar]
  59. WangX. HuW. QuL. Tricin promoted ATG-7 dependent autophagic degradation of α-synuclein and dopamine release for improving cognitive and motor deficits in Parkinson’s disease.Pharmacol. Res.202319610687410.1016/j.phrs.2023.106874 37586619
    [Google Scholar]
  60. ZhangL.X. LiC.X. KakarM.U. Resveratrol (RV): A pharmacological review and call for further research.Biomed. Pharmacother.202114311216410.1016/j.biopha.2021.112164 34649335
    [Google Scholar]
  61. LiuQ. ZhuD. JiangP. Resveratrol synergizes with low doses of L-DOPA to improve MPTP-induced Parkinson disease in mice.Behav. Brain Res.2019367101810.1016/j.bbr.2019.03.043 30922940
    [Google Scholar]
  62. ZhangL. YuX. JiM. Resveratrol alleviates motor and cognitive deficits and neuropathology in the A53T α-synuclein mouse model of Parkinson’s disease.Food Funct.20189126414642610.1039/C8FO00964C 30462117
    [Google Scholar]
  63. SuC.F. JiangL. ZhangX.W. IyaswamyA. LiM. ’ Iyaswamy, A.; Li, M. Resveratrol in rodent models of parkinson’s disease: a systematic review of experimental studies.Front. Pharmacol.20211264421910.3389/fphar.2021.644219 33967780
    [Google Scholar]
  64. HuangN. ZhangY. ChenM. Resveratrol delays 6-hydroxydopamine-induced apoptosis by activating the PI3K/Akt signaling pathway.Exp. Gerontol.201912411065310.1016/j.exger.2019.110653 31295526
    [Google Scholar]
  65. LiuX. ChenW. WangC. Silibinin ameliorates depression/anxiety-like behaviors of Parkinson’s disease mouse model and is associated with attenuated STING-IRF3-IFN-β pathway activation and neuroinflammation.Physiol. Behav.202124111359310.1016/j.physbeh.2021.113593 34536434
    [Google Scholar]
  66. HeT. LinX. SuA. Mitochondrial dysfunction-targeting therapeutics of natural products in Parkinson’s disease.Front. Pharmacol.202314111733710.3389/fphar.2023.1117337 37234707
    [Google Scholar]
  67. Eyvari BrooshghalanS. SabahiM. EbadiS.A. SadeghianZ. Mohajjel NayebiA. HaddadiR. Silibinin chronic treatment in a rat model of Parkinson disease: A comprehensive in-vivo evaluation and in silico molecular modeling.Eur. J. Pharmacol.202394117551710.1016/j.ejphar.2023.175517 36669615
    [Google Scholar]
  68. LeeY. ParkH.R. ChunH.J. LeeJ. Silibinin prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease via mitochondrial stabilization.J. Neurosci. Res.201593575576510.1002/jnr.23544 25677261
    [Google Scholar]
  69. LeeY. ChunH.J. LeeK.M. JungY.S. LeeJ. Silibinin suppresses astroglial activation in a mouse model of acute Parkinson׳s disease by modulating the ERK and JNK signaling pathways.Brain Res.2015162723324210.1016/j.brainres.2015.09.029 26434409
    [Google Scholar]
  70. EsselunC. BrunsB. HaglS. GrewalR. EckertG.P. Differential effects of silibinin a on mitochondrial function in neuronal pc12 and hepg2 liver cells.Oxid. Med. Cell. Longev.2019201911010.1155/2019/1652609 31871539
    [Google Scholar]
  71. LiuX WangC LiuW Oral administration of silibinin ameliorates cognitive deficits of parkinson's disease mouse model by restoring mitochondrial disorders in hippocampus.neurochemical research2021469231732
    [Google Scholar]
  72. GodoyJ.A. LindsayC.B. QuintanillaR.A. CarvajalF.J. CerpaW. InestrosaN.C. Quercetin exerts differential neuroprotective effects against h2o2 and aβ aggregates in hippocampal neurons: the role of mitochondria.Mol. Neurobiol.20175497116712810.1007/s12035‑016‑0203‑x 27796749
    [Google Scholar]
  73. L SuraweeraT RupasingheHPV DellaireG XuZ Regulation of Nrf2/ARE Pathway by Dietary Flavonoids: A Friend or Foe for Cancer Management?Antioxidants202091097310.3390/antiox9100973 33050575
    [Google Scholar]
  74. XuQ. LangleyM. KanthasamyA.G. ReddyM.B. Epigallocatechin gallate has a neurorescue effect in a mouse model of parkinson disease.J. Nutr.2017147101926193110.3945/jn.117.255034 28835392
    [Google Scholar]
  75. RahmanM.H. AkterR. BhattacharyaT. Resveratrol and neuroprotection: impact and its therapeutic potential in Alzheimer’s disease.Front. Pharmacol.20201161902410.3389/fphar.2020.619024 33456444
    [Google Scholar]
  76. NollC. KandiahJ. MoroyG. GuY. DairouJ. JanelN. Catechins as a potential dietary supplementation in prevention of comorbidities linked with down syndrome.Nutrients20221410203910.3390/nu14102039 35631180
    [Google Scholar]
  77. NaseriR. FarzaeiF. HaratipourP. Anthocyanins in the management of metabolic syndrome: a pharmacological and biopharmaceutical review.Front. Pharmacol.20189131010.3389/fphar.2018.01310 30564116
    [Google Scholar]
  78. FarzaeiM.H. El-SendunyF.F. MomtazS. An update on dietary consideration in inflammatory bowel disease: anthocyanins and more.Expert Rev. Gastroenterol. Hepatol.201812101007102410.1080/17474124.2018.1513322 30136591
    [Google Scholar]
  79. WoodburnS.C. BollingerJ.L. WohlebE.S. The semantics of microglia activation: neuroinflammation, homeostasis, and stress.J. Neuroinflammation202118125810.1186/s12974‑021‑02309‑6 34742308
    [Google Scholar]
  80. SahaS. ButtariB. PanieriE. ProfumoE. SasoL. An Overview of Nrf2 signaling pathway and its role in inflammation.Molecules20202522547410.3390/molecules25225474 33238435
    [Google Scholar]
  81. Al-KhayriJ.M. SahanaG.R. NagellaP. JosephB.V. AlessaF.M. Al-MssallemM.Q. Flavonoids as potential anti-inflammatory molecules: a review.Molecules2022279290110.3390/molecules27092901 35566252
    [Google Scholar]
  82. AnushaC. SumathiT. JosephL.D. Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis.Chem. Biol. Interact.2017269677910.1016/j.cbi.2017.03.016 28389404
    [Google Scholar]
  83. PatelM. SinghS. apigenin attenuates functional and structural alterations via targeting nf-kb/nrf2 signaling pathway in lps-induced parkinsonism in experimental rats.Neurotox. Res.202240494196010.1007/s12640‑022‑00521‑7 35608813
    [Google Scholar]
  84. DuanH. ZhangQ. LiuJ. Suppression of apoptosis in vascular endothelial cell, the promising way for natural medicines to treat atherosclerosis.Pharmacol. Res.202116810559910.1016/j.phrs.2021.105599 33838291
    [Google Scholar]
  85. CaiS.Q. TangZ.M. XiongC. The anti-inflammatory effects of apigenin and genistein on the rat intestinal epithelial (IEC-6) cells with TNF-α stimulation in response to heat treatment.Current Research in Food Science2022591892610.1016/j.crfs.2022.05.011 36686365
    [Google Scholar]
  86. ParkC.H. MinS.Y. YuH.W. (). Effects of apigenin on RBL-2H3, RAW264.7, and HaCaT cells: anti-allergic, anti-inflammatory, and skin-protective activities.Int. J. Mol. Sci.20202113462010.3390/ijms21134620 32610574
    [Google Scholar]
  87. AhmedU. RaoM.J. QiC. (). Expression profiling of flavonoid biosynthesis genes and secondary metabolites accumulation in populus under drought stress.Molecules20212618554610.3390/molecules26185546 34577017
    [Google Scholar]
  88. JungU.J. KimS.R. Beneficial effects of flavonoids against Parkinson’s disease.J. Med. Food201821542143210.1089/jmf.2017.4078 29412767
    [Google Scholar]
  89. NakajimaA. OhizumiY. Potential benefits of nobiletin, a citrus flavonoid, against Alzheimer’s disease and Parkinson’s disease.Int. J. Mol. Sci.20192014338010.3390/ijms20143380 31295812
    [Google Scholar]
  90. JeongK.H. JeonM.T. KimH.D. Nobiletin protects dopaminergic neurons in the 1-methyl-4-phenylpyridinium-treated rat model of Parkinson’s disease.J. Med. Food201518440941410.1089/jmf.2014.3241 25325362
    [Google Scholar]
  91. YangJ. WuX. YuH. TengL. Tangeretin inhibits neurodegeneration and attenuates inflammatory responses and behavioural deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease dementia in rats.Inflammopharmacology201725447148410.1007/s10787‑017‑0348‑x 28577132
    [Google Scholar]
  92. XuS. KongY.G. JiaoW.E. Tangeretin promotes regulatory T cell differentiation by inhibiting Notch1/Jagged1 signaling in allergic rhinitis.Int. Immunopharmacol.20197240241210.1016/j.intimp.2019.04.039 31030096
    [Google Scholar]
  93. Meng-zhenS. JuL. Lan-chunZ. Potential therapeutic use of plant flavonoids in AD and PD.Heliyon2022811e1144010.1016/j.heliyon.2022.e11440 36387565
    [Google Scholar]
  94. FangY. ZhangQ. WangX. Quantitative phosphoproteomics reveals genistein as a modulator of cell cycle and DNA damage response pathways in triple-negative breast cancer cells.Int. J. Oncol.20164831016102810.3892/ijo.2016.3327 26783066
    [Google Scholar]
  95. RazaC. AnjumR. ShakeelN.A. Parkinson’s disease: Mechanisms, translational models and management strategies.Life Sci.2019226779010.1016/j.lfs.2019.03.057 30980848
    [Google Scholar]
  96. JiaF. FellnerA. KumarK.R. Monogenic Parkinson’s disease: genotype, phenotype, pathophysiology, and genetic testing.Genes (Basel)202213347110.3390/genes13030471 35328025
    [Google Scholar]
  97. ChiangM.C. TsaiT.Y. WangC.J. The potential benefits of quercetin for brain health: a review of anti-inflammatory and neuroprotective mechanisms.Int. J. Mol. Sci.2023247632810.3390/ijms24076328 37047299
    [Google Scholar]
  98. ZhangM. LiuW. ZhouY. LiY. QinY. XuY. Neurodevelopmental toxicity induced by maternal PM2.5 exposure and protective effects of quercetin and Vitamin C.Chemosphere201821318219610.1016/j.chemosphere.2018.09.009 30218877
    [Google Scholar]
  99. MagalingamK.B. RadhakrishnanA. RamdasP. HaleagraharaN. Quercetin glycosides induced neuroprotection by changes in the gene expression in a cellular model of Parkinson’s disease.J. Mol. Neurosci.201555360961710.1007/s12031‑014‑0400‑x 25129099
    [Google Scholar]
  100. DuanX. LiY. XuF. DingH. Study on the neuroprotective effects of Genistein on Alzheimer’s disease.Brain Behav.2021115e0210010.1002/brb3.2100 33704934
    [Google Scholar]
  101. FarzaeiM.H. SinghA.K. KumarR. Targeting inflammation by flavonoids: novel therapeutic strategy for metabolic disorders.Int. J. Mol. Sci.20192019495710.3390/ijms20194957 31597283
    [Google Scholar]
  102. Sharifi-RadJ. QuispeC. ImranM. Genistein: An integrative overview of its mode of action, pharmacological properties, and health benefits.Oxid. Med. Cell. Longev.2021202113610.1155/2021/3268136 34336089
    [Google Scholar]
  103. DeRango-AdemE.F. BlayJ. Does oral apigenin have real potential for a therapeutic effect in the context of human gastrointestinal and other cancers?Front. Pharmacol.20211268147710.3389/fphar.2021.681477 34084146
    [Google Scholar]
  104. ZhangK.K. WangH. QuD. luteolin alleviates methamphetamine-induced hepatotoxicity by suppressing the p53 pathway-mediated apoptosis, autophagy, and inflammation in rats.Front. Pharmacol.20211264191710.3389/fphar.2021.641917 33679421
    [Google Scholar]
  105. JaimeL SantoyoS The health benefits of the bioactive compounds in foods.foods2021102325
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855292178240223100534
Loading
/content/journals/cdth/10.2174/0115748855292178240223100534
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test