Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Globally, lung cancer ranks among the most frequent forms of tumor. The survival rate for people suffering from lung tumors after five years is only 20%, despite novel treatment options such as immunotherapy. Current therapies cause severe off-target effects and acquired drug resistance to explain the low survival rate. Identifying and developing new therapeutic approaches for lung cancer patients is crucial to improving the standard of care. As a result of the study, we researched clinical trials and experiments in fundamental research, and new approaches to drug delivery including adenoviruses, nanoparticles, and proteolysis-targeting chimeras (PROTACs). Several approaches can now be applied directly to lung cancer to prevent disease progression, including phosphatases, targeting protein kinases, protein modifications and ubiquitin ligases. In addition, the recent approval of Ribonucleic acid (RNA) based vaccines based on lipid nanoparticle technology has made it possible to improve current lung cancer treatments by combining chemo- and immunotherapies. This review emphasises recent advancements in pharmaceutical research aimed at developing technologies to target post-translational modifications in lung tumorigenesis. Elucidation of various scientific advances in conjunction with encouraging findings concerning therapies available, the future perspectives and challenges of nanocarriers for effective lung cancer are also presented in this article.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855282418240220112042
2024-03-01
2025-04-13
Loading full text...

Full text loading...

References

  1. VermaR. RaoL. NagpalD. Emerging nanotechnology-based therapeutics: A new insight into promising drug delivery system for lung cancer therapy.Recent Pat. Nanotechnol.202317Epub ahead of print10.2174/1872210517666230613154847 37537775
    [Google Scholar]
  2. PDQ adult treatment editorial board. Small Cell Lung Cancer Treatment (PDQ®): Health Professional Version.Bethesda, MD, USANational Cancer Institute2002
    [Google Scholar]
  3. GuptaC. JaipuriaA. GuptaN. Inhalable formulations to treat non-small cell lung cancer (NSCLC): Recent therapies and developments.Pharmaceutics202215113910.3390/pharmaceutics15010139 36678768
    [Google Scholar]
  4. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.21708 35020204
    [Google Scholar]
  5. CicconeG. IbbaM.L. CoppolaG. CatuognoS. EspositoC.L. The small RNA landscape in nsclc: Current therapeutic applications and progresses.Int. J. Mol. Sci.2023247612110.3390/ijms24076121 37047090
    [Google Scholar]
  6. de KoningH.J. van der AalstC.M. de JongP.A. Reduced lung-cancer mortality with volume CT screening in a randomized trial.N. Engl. J. Med.2020382650351310.1056/NEJMoa1911793 31995683
    [Google Scholar]
  7. LiN. TanF. ChenW. One-off low-dose CT for lung cancer screening in China: a multicentre, population-based, prospective cohort study.Lancet Respir. Med.202210437839110.1016/S2213‑2600(21)00560‑9 35276087
    [Google Scholar]
  8. WuX. ChauY.F. BaiH. ZhuangX. WangJ. DuanJ. Progress on neoadjuvant immunotherapy in resectable non-small cell lung cancer and potential biomarkers.Front. Oncol.202312109930410.3389/fonc.2022.1099304 36761426
    [Google Scholar]
  9. LampridisS. ScarciM. Perioperative systemic therapies for non-small-cell lung cancer: Recent advances and future perspectives.Front. Surg.20239112648610.3389/fsurg.2022.1126486 36743902
    [Google Scholar]
  10. PDQ adult treatment editorial board. Non-small cell lung cancer treatment (PDQ®): Health professional version.In: PDQ Cancer Information Summaries. National Cancer Institute2002
    [Google Scholar]
  11. ZhangZ. ZhangX. GaoY. ChenY. QinL. WuI.X.Y. Risk factors for the development of lung cancer among never smokers: A systematic review.Cancer Epidemiol.20228110227410.1016/j.canep.2022.102274 36209662
    [Google Scholar]
  12. KaushikD. VermaR. KumarK. Untangling breast cancer: Trailing towards nanoformulations-based drug development.Recent Pat. Nanotechnol.20231710.2174/1872210517666230731091046 37519201
    [Google Scholar]
  13. HolderJ.E. FergusonC. OliveiraE. The use of nanoparticles for targeted drug delivery in non-small cell lung cancer.Front. Oncol.202313115431810.3389/fonc.2023.1154318 36994202
    [Google Scholar]
  14. ChangA. Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC.Lung Cancer201171131010.1016/j.lungcan.2010.08.022 20951465
    [Google Scholar]
  15. YadavK.S. UpadhyaA. MisraA. Targeted drug therapy in nonsmall cell lung cancer: clinical significance and possible solutions-part II (role of nanocarriers).Expert Opin. Drug Deliv.202118110311810.1080/17425247.2021.1832989 33017541
    [Google Scholar]
  16. NurgaliK. JagoeR.T. AbaloR. Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae?Front. Pharmacol.2018924510.3389/fphar.2018.00245 29623040
    [Google Scholar]
  17. SinghV. KumarK. PurohitD. Exploration of therapeutic applicability and different signaling mechanism of various phytopharmacological agents for treatment of breast cancer.Biomed. Pharmacother.202113911158410.1016/j.biopha.2021.111584 34243623
    [Google Scholar]
  18. DeviS. KumarS. VermaV. KaushikD. VermaR. BhatiaM. Enhancement of ketoprofen dissolution rate by the liquisolid technique: optimization and in vitro and in vivo investigations.Drug Deliv. Transl. Res.202212112693270710.1007/s13346‑022‑01120‑x 35178670
    [Google Scholar]
  19. NeslineM.K. KnightT. ColmanS. PatelK. Economic burden of checkpoint inhibitor immunotherapy for the treatment of non-small cell lung cancer in US clinical practice.Clin. Ther.202042916821698.e710.1016/j.clinthera.2020.06.018 32747004
    [Google Scholar]
  20. PutzuC. CanovaS. PaliogiannisP. Duration of immunotherapy in non-small cell lung cancer survivors: A lifelong commitment?Cancers202315368910.3390/cancers15030689 36765647
    [Google Scholar]
  21. BayleA. BesseB. AnnereauM. BonastreJ. Switch to anti-programmed cell death protein 1 (anti-PD-1) fixed-dose regimen: What is the economic impact?Eur. J. Cancer2019113283110.1016/j.ejca.2019.02.016 30965212
    [Google Scholar]
  22. MariottoA.B. EnewoldL. ZhaoJ. ZerutoC.A. YabroffK.R. Medical care costs associated with cancer survivorship in the United States.Cancer Epidemiol. Biomarkers Prev.20202971304131210.1158/1055‑9965.EPI‑19‑1534 32522832
    [Google Scholar]
  23. JainK.K. The role of nanobiotechnology in drug discovery.Drug Discov. Today200510211435144210.1016/S1359‑6446(05)03573‑7 16243263
    [Google Scholar]
  24. LaVanD.A. LynnD.M. LangerR. Moving smaller in drug discovery and delivery.Nat. Rev. Drug Discov.200211778410.1038/nrd707 12119612
    [Google Scholar]
  25. AnselmoA.C. MitragotriS. Nanoparticles in the clinic: An update.Bioeng. Transl. Med.201943e1014310.1002/btm2.10143 31572799
    [Google Scholar]
  26. AroraD. BhattS. KumarM. QbD-based rivastigmine tartrate-loaded solid lipid nanoparticles for enhanced intranasal delivery to the brain for Alzheimer’s therapeutics.Front. Aging Neurosci.20221496024610.3389/fnagi.2022.960246 36034142
    [Google Scholar]
  27. BaetkeS.C. LammersT. KiesslingF. Applications of nanoparticles for diagnosis and therapy of cancer.Br. J. Radiol.20158810542015020710.1259/bjr.20150207 25969868
    [Google Scholar]
  28. BaptistaP. PereiraE. EatonP. Gold nanoparticles for the development of clinical diagnosis methods.Anal. Bioanal. Chem.2008391394395010.1007/s00216‑007‑1768‑z 18157524
    [Google Scholar]
  29. IgyártóB.Z. JacobsenS. NdeupenS. Future considerations for the mRNA-lipid nanoparticle vaccine platform.Curr. Opin. Virol.202148657210.1016/j.coviro.2021.03.008 33906124
    [Google Scholar]
  30. SahdevP. OchylL.J. MoonJ.J. Biomaterials for nanoparticle vaccine delivery systems.Pharm. Res.201431102563258210.1007/s11095‑014‑1419‑y 24848341
    [Google Scholar]
  31. PascoloS. Synthetic messenger RNA-based vaccines: From scorn to hype.Viruses202113227010.3390/v13020270
    [Google Scholar]
  32. ZaheerT. PalK. ZaheerI. Topical review on nano-vaccinology: Biochemical promises and key challenges.Process Biochem.202110023724410.1016/j.procbio.2020.09.028 33013180
    [Google Scholar]
  33. WesselsJ.M. NothoferH.G. FordW.E. Optical and electrical properties of three-dimensional interlinked gold nanoparticle assemblies.J. Am. Chem. Soc.2004126103349335610.1021/ja0377605 15012165
    [Google Scholar]
  34. IskandarF. Nanoparticle processing for optical applications: A review.Adv. Powder Technol.200920428329210.1016/j.apt.2009.07.001
    [Google Scholar]
  35. VermaA. StellacciF. Effect of surface properties on nanoparticle-cell interactions.Small201061122110.1002/smll.200901158 19844908
    [Google Scholar]
  36. ZhaoJ. StenzelM.H. Entry of nanoparticles into cells: The importance of nanoparticle properties.Polym. Chem.20189325927210.1039/C7PY01603D
    [Google Scholar]
  37. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  38. DateA.A. PatravaleV.B. Current strategies for engineering drug nanoparticles.Curr. Opin. Colloid Interface Sci.200493-422223510.1016/j.cocis.2004.06.009
    [Google Scholar]
  39. DobrovolskaiaM.A. AggarwalP. HallJ.B. McNeilS.E. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution.Mol. Pharm.20085448749510.1021/mp800032f 18510338
    [Google Scholar]
  40. TharkarP. VaranasiR. WongW.S.F. JinC.T. ChrzanowskiW. Nano-enhanced drug delivery and therapeutic ultrasound for cancer treatment and beyond.Front. Bioeng. Biotechnol.2019732410.3389/fbioe.2019.00324 31824930
    [Google Scholar]
  41. García-PinelB. Porras-AlcaláC. Ortega-RodríguezA. Lipid-based nanoparticles: Application and recent advances in cancer treatment.Nanomaterials20199463810.3390/nano9040638 31010180
    [Google Scholar]
  42. WickiA. WitzigmannD. BalasubramanianV. HuwylerJ. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications.J. Control. Release201520013815710.1016/j.jconrel.2014.12.030 25545217
    [Google Scholar]
  43. BlancoE. ShenH. FerrariM. Principles of nanoparticle design for overcoming biological barriers to drug delivery.Nat. Biotechnol.201533994195110.1038/nbt.3330 26348965
    [Google Scholar]
  44. CuongH.N. PansambalS. GhotekarS. New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review.Environ. Res.202220311185810.1016/j.envres.2021.111858 34389352
    [Google Scholar]
  45. BagyalakshmiS. SivakamiA. PalK. SarankumarR. MahendranC. Manufacturing of electrochemical sensors via carbon nanomaterials novel applications: A systematic review.J. Nanopart. Res.2022241020110.1007/s11051‑022‑05576‑3
    [Google Scholar]
  46. PandaP. PalK. ChakrobortyS. Smart advancements of key challenges in graphene-assembly glucose sensor technologies: A mini review.Mater. Lett.202130313050810.1016/j.matlet.2021.130508
    [Google Scholar]
  47. DuttaV. VermaR. GopalkrishnanC. Bio-Inspired synthesis of carbon-based nanomaterials and their potential environmental applications: A state-of-the-art review.Inorganics2022101016910.3390/inorganics10100169
    [Google Scholar]
  48. PengL. XuQ. YinS. The emerging nanomedicine-based technology for non-small cell lung cancer immunotherapy: how far are we from an effective treatment.Front. Oncol.202313115331910.3389/fonc.2023.1153319 37182180
    [Google Scholar]
  49. ZhenS. LiX. Liposomal delivery of CRISPR/Cas9.Cancer Gene Ther.2020277-851552710.1038/s41417‑019‑0141‑7 31676843
    [Google Scholar]
  50. ZoqlamR. MorrisC.J. AkbarM. Evaluation of the benefits of microfluidic-assisted preparation of polymeric nanoparticles for DNA delivery.Mater. Sci. Eng. C202112711224310.1016/j.msec.2021.112243 34225883
    [Google Scholar]
  51. Simon-DeckersA. LooS. Mayne-L’hermiteM. Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria.Environ. Sci. Technol.200943218423842910.1021/es9016975 19924979
    [Google Scholar]
  52. BarenholzY.C. Doxil® — The first FDA-approved nano-drug: Lessons learned.J. Control. Release2012160211713410.1016/j.jconrel.2012.03.020 22484195
    [Google Scholar]
  53. PascoloS. Synthetic messenger RNA-based vaccines : From scorn to hype.Viruses202113227010.3390/v13020270
    [Google Scholar]
  54. DhirS. BhattS. ChauhanM. GargV. DuttR. VermaR. An overview of metallic nanoparticles: Classification, synthesis, applications, and their patents.Recent Pat. Nanotechnol.20231710.2174/1872210517666230901114421 37680162
    [Google Scholar]
  55. EdisZ. WangJ. WaqasM.K. IjazM. IjazM. Nanocarriers-mediated drug delivery systems for anticancer agents: An overview and perspectives.Int. J. Nanomedicine2021161313133010.2147/IJN.S289443 33628022
    [Google Scholar]
  56. YingN. LiuS. ZhangM. Nano delivery system for paclitaxel: Recent advances in cancer theranostics.Colloids Surf. B Biointerfaces202322811341910.1016/j.colsurfb.2023.113419 37393700
    [Google Scholar]
  57. MajumderJ. MinkoT. multifunctional lipid-based nanoparticles for codelivery of anticancer drugs and siRNA for treatment of non-small cell lung cancer with different level of resistance and EGFR mutations.Pharmaceutics2021137106310.3390/pharmaceutics13071063 34371754
    [Google Scholar]
  58. AlSawaftahN.M. AwadN.S. PittW.G. HusseiniG.A. pH-responsive nanocarriers in cancer therapy.Polymers202214593610.3390/polym14050936 35267759
    [Google Scholar]
  59. CrinteaA. ConstantinA.M. MotofeleaA.C. Targeted EGFR nanotherapy in non-small cell lung cancer.J. Funct. Biomater.202314946610.3390/jfb14090466 37754880
    [Google Scholar]
  60. ThanguduS. TsaiC.Y. LinW.C. SuC.H. Modified gefitinib conjugated Fe3O4 NPs for improved delivery of chemo drugs following an image-guided mechanistic study of inner vs. outer tumor uptake for the treatment of non-small cell lung cancer.Front. Bioeng. Biotechnol.202311127249210.3389/fbioe.2023.1272492 37877039
    [Google Scholar]
  61. ZouJ. Site-specific delivery of cisplatin and paclitaxel mediated by liposomes: A promising approach in cancer chemotherapy.Environ. Res.2023238Pt 111711110.1016/j.envres.2023.117111 37734579
    [Google Scholar]
  62. RadhakrishnanD. PatelV. MohananS. Combinatorial treatment using bevacizumab/pemetrexed loaded core-shell silica nanoparticles for non-small cell lung cancer.Sci. Technol. Adv. Mater.2023241227481910.1080/14686996.2023.2274819
    [Google Scholar]
  63. SoaresS. SousaJ. PaisA. VitorinoC. Nanomedicine: Principles, properties, and regulatory issues.Front Chem.2018636010.3389/fchem.2018.00360 30177965
    [Google Scholar]
  64. YusufA. AlmotairyA.R.Z. HenidiH. AlshehriO.Y. AldughaimM.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems.Polymers2023157159610.3390/polym15071596 37050210
    [Google Scholar]
  65. VeigaN. DiesendruckY. PeerD. Targeted nanomedicine: Lessons learned and future directions.J. Control. Release202335544645710.1016/j.jconrel.2023.02.010 36773958
    [Google Scholar]
  66. PardeshiS.R. MoreM.P. PagarR. Importance of nanomedicine in human health.In: Green sustainable process for chemical and environmental engineering and science recent advances in nanocarriers.Elsevier Inc202333310.1016/B978‑0‑323‑95171‑5.00014‑5
    [Google Scholar]
  67. ZhangY. MartinezM.R. SunH. Charge, aspect ratio, and plant species affect uptake efficiency and translocation of polymeric agrochemical nanocarriers.Environ. Sci. Technol.202357228269827910.1021/acs.est.3c01154 37227395
    [Google Scholar]
  68. MajumderJ. TaratulaO. MinkoT. Nanocarrier-based systems for targeted and site specific therapeutic delivery.Adv. Drug Deliv. Rev.2019144577710.1016/j.addr.2019.07.010 31400350
    [Google Scholar]
  69. BhattH. Kiran RompicharlaS.V. GhoshB. TorchilinV. BiswasS. Transferrin/α-tocopherol modified poly(amidoamine) dendrimers for improved tumor targeting and anticancer activity of paclitaxel.Nanomedicine201914243159317610.2217/nnm‑2019‑0128 31855118
    [Google Scholar]
  70. DinF. AmanW. UllahI. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors.Int. J. Nanomedicine2017127291730910.2147/IJN.S146315 29042776
    [Google Scholar]
  71. BhattH. Kiran RompicharlaS.V. GhoshB. BiswasS. α-Tocopherol succinate-anchored pegylated poly(amidoamine) dendrimer for the delivery of paclitaxel: assessment of in vitro and in vivo therapeutic efficacy.Mol. Pharm.20191641541155410.1021/acs.molpharmaceut.8b01232 30817166
    [Google Scholar]
  72. YuanD. LvY. YaoY. Efficacy and safety of Abraxane in treatment of progressive and recurrent non‐small cell lung cancer patients: A retrospective clinical study.Thorac. Cancer20123434134710.1111/j.1759‑7714.2012.00113.x 28920278
    [Google Scholar]
  73. HeQ. ChenJ. YanJ. Tumor microenvironment responsive drug delivery systems.Asian J Pharma Sci202015441644810.1016/j.ajps.2019.08.003 32952667
    [Google Scholar]
  74. KongL. ZhangS. ChuJ. Tumor microenvironmental responsive liposomes simultaneously encapsulating biological and chemotherapeutic drugs for enhancing antitumor efficacy of NSCLC.Int. J. Nanomedicine2020156451646810.2147/IJN.S258906 32922011
    [Google Scholar]
  75. dos Santos RodriguesB. LakkadwalaS. KanekiyoT. SinghJ. Dual-modified liposome for targeted and enhanced gene delivery into mice brain.J. Pharmacol. Exp. Ther.2020374335436510.1124/jpet.119.264127 32561686
    [Google Scholar]
  76. ZhangQ. WangJ. ZhangH. The anticancer efficacy of paclitaxel liposomes modified with low-toxicity hydrophobic cell-penetrating peptides in breast cancer: An in vitro and in vivo evaluation.RSC Advances2018843240842409310.1039/C8RA03607A 35539172
    [Google Scholar]
  77. LeeY. ThompsonD.H. Stimuli-responsive liposomes for drug delivery.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20179510.1002/wnan.1450
    [Google Scholar]
  78. ZhangJ. XuL. HuH. ChenE. The combination of MnO 2 @Lipo-coated gefitinib and bevacizumab inhibits the development of non-small cell lung cancer.Drug Deliv.202229146647710.1080/10717544.2022.2032872 35147070
    [Google Scholar]
  79. NaikH. SonjuJ.J. SinghS. Lipidated peptidomimetic ligand-functionalized HER2 targeted liposome as nano-carrier designed for doxorubicin delivery in cancer therapy.Pharmaceuticals202114322110.3390/ph14030221 33800723
    [Google Scholar]
  80. ParkY.I. KwonS.H. LeeG. pH-sensitive multi-drug liposomes targeting folate receptor β for efficient treatment of non-small cell lung cancer.J. Control. Release202133011410.1016/j.jconrel.2020.12.011 33321157
    [Google Scholar]
  81. HuY. ZhangJ. HuH. XuS. XuL. ChenE. Gefitinib encapsulation based on nano-liposomes for enhancing the curative effect of lung cancer.Cell Cycle202019243581359410.1080/15384101.2020.1852756 33300430
    [Google Scholar]
  82. PatraJ.K. DasG. FracetoL.F. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  83. RaniA. VermaR. MittalV. Formulation development and optimization of rosuvastatin loaded nanosuspension for enhancing dissolution rate.Current Drug Therapy20231813758710.2174/1574885517666220822104652
    [Google Scholar]
  84. VermaR. KaushikD. Design and optimization of candesartan loaded self-nanoemulsifying drug delivery system for improving its dissolution rate and pharmacodynamic potential.Drug Deliv.202027175677110.1080/10717544.2020.1760961 32397771
    [Google Scholar]
  85. AlkhatibM.H. AlyamaniS.A. AbduF. Incorporation of methotrexate into coconut oil nanoemulsion potentiates its antiproliferation activity and attenuates its oxidative stress.Drug Deliv.202027142243010.1080/10717544.2020.1736209 32133872
    [Google Scholar]
  86. GaberD.A. AlsubaiyelA.M. AlabdulrahimA.K. Nano-emulsion based gel for topical delivery of an anti-inflammatory drug: in vitro and in vivo evaluation.Drug Des. Devel. Ther.2023171435145110.2147/DDDT.S407475 37216175
    [Google Scholar]
  87. SalawiA. AlmoshariY. SultanM.H. Production, characterization, and in vitro and in vivo studies of nanoemulsions containing St. John’s Wort Plant constituents and their potential for the treatment of depression.Pharmaceuticals202316449010.3390/ph16040490 37111247
    [Google Scholar]
  88. ChauhanG. WangX. YousryC. GuptaV. Scalable production and in vitro efficacy of inhaled erlotinib nanoemulsion for enhanced efficacy in non-small cell lung cancer (NSCLC).Pharmaceutics202315399610.3390/pharmaceutics15030996 36986858
    [Google Scholar]
  89. PardhiV.P. VermaT. FloraS.J.S. ChandasanaH. ShuklaR. Nanocrystals: An overview of fabrication, characterization and therapeutic applications in drug delivery.Curr. Pharm. Des.201924435129514610.2174/1381612825666190215121148 30767737
    [Google Scholar]
  90. LiuT. HuangX. ZhaoL. Distinguishable targeting of non-small cell lung cancer using hyaluronan functionalized platinum nanoclusters and their inhibition behaviors of proliferation, invasion, migration.ChemistryOpen202110988288810.1002/open.202100070 34363352
    [Google Scholar]
  91. LiF. LiZ. JinX. Radiosensitizing effect of gadolinium oxide nanocrystals in NSCLC cells under carbon ion irradiation.Nanoscale Res. Lett.201914132810.1186/s11671‑019‑3152‑2 31637533
    [Google Scholar]
  92. OledzkaE. PaśnikK. DomańskaI. Poly(amidoamine) dendrimer/camptothecin complex: from synthesis to in vitro cancer cell line studies.Molecules2023286269610.3390/molecules28062696 36985668
    [Google Scholar]
  93. Hernández BecerraE. QuinchiaJ. CastroC. OrozcoJ. Light-triggered polymersome-based anticancer therapeutics delivery.Nanomaterials202212583610.3390/nano12050836 35269324
    [Google Scholar]
  94. XuH. CuiW. ZongZ. A facile method for anti-cancer drug encapsulation into polymersomes with a core-satellite structure.Drug Deliv.20222912414242710.1080/10717544.2022.2103209 35904177
    [Google Scholar]
  95. ZouY. WeiJ. XiaY. MengF. YuanJ. ZhongZ. Targeted chemotherapy for subcutaneous and orthotopic non-small cell lung tumors with cyclic RGD-functionalized and disulfide-crosslinked polymersomal doxorubicin.Signal Transduct. Target. Ther.2018313210.1038/s41392‑018‑0032‑7 30564464
    [Google Scholar]
  96. ShahriariM. TaghdisiS.M. AbnousK. RamezaniM. AlibolandiM. Self-targeted polymersomal co-formulation of doxorubicin, camptothecin and FOXM1 aptamer for efficient treatment of non-small cell lung cancer.J. Control. Release202133536938810.1016/j.jconrel.2021.05.039 34058270
    [Google Scholar]
  97. ZouY. SunY. GuoB. α3β1 integrin-targeting polymersomal docetaxel as an advanced nanotherapeutic for nonsmall cell lung cancer treatment.ACS Appl. Mater. Interfaces20201213149051491310.1021/acsami.0c01069 32148016
    [Google Scholar]
  98. AbbasiE. AvalS.F. AkbarzadehA. Dendrimers: Synthesis, applications, and properties.Nanoscale Res. Lett.20149124710.1186/1556‑276X‑9‑247 24994950
    [Google Scholar]
  99. UramŁ. WróbelK. WalczakM. SzymaszekŻ. TwardowskaM. WołowiecS. Exploring the potential of lapatinib, fulvestrant, and paclitaxel conjugated with glycidylated PAMAM G4 dendrimers for cancer and parasite treatment.Molecules20232817633410.3390/molecules28176334 37687164
    [Google Scholar]
  100. ZhuF. XuL. LiX. Co-delivery of gefitinib and hematoporphyrin by aptamer-modified fluorinated dendrimer for hypoxia alleviation and enhanced synergistic chemo-photodynamic therapy of NSCLC.Eur. J. Pharm. Sci.202116710600410.1016/j.ejps.2021.106004 34520834
    [Google Scholar]
  101. MaghsoudniaN. EftekhariR.B. SohiA.N. DorkooshF.A. Chloroquine assisted delivery of microRNA mimic Let-7b to NSCLC cell line by PAMAM (G5): HA nano-carrier.Curr. Drug Deliv.2021181314310.2174/1567201817666200804105017 32753014
    [Google Scholar]
  102. AmreddyN. BabuA. PanneerselvamJ. Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer nanoparticles for lung cancer treatment.Nanomedicine201814237338410.1016/j.nano.2017.11.010 29155362
    [Google Scholar]
  103. JainS. HirstD.G. O’SullivanJ.M. Gold nanoparticles as novel agents for cancer therapy.Br. J. Radiol.201285101010111310.1259/bjr/59448833 22010024
    [Google Scholar]
  104. ChenY. LiuS. LiaoY. Albumin-modified gold nanoparticles as novel radiosensitizers for enhancing lung cancer radiotherapy.Int. J. Nanomedicine2023181949196410.2147/IJN.S398254 37070100
    [Google Scholar]
  105. MaJ. WenC. ChenM. ZhangW. WangL. YinH. Ce6/PTX2-NP/G@NHs confer radiosensitivity in non-small cell lung cancer via promotion of apoptotic body-mediated neighboring effects.ACS Biomater. Sci. Eng.2023952793280510.1021/acsbiomaterials.2c01549 37066871
    [Google Scholar]
  106. ZhangL. ZhouC. ZhouY. P-Y/G@NHs sensitizes non-small cell lung cancer cells to radiotherapy via blockage of the PI3K/AKT signaling pathway.Bioorg. Chem.202313110631710.1016/j.bioorg.2022.106317 36525920
    [Google Scholar]
  107. AhnH.K. JungM. SymS.J. A phase II trial of Cremorphor EL-free paclitaxel (Genexol-PM) and gemcitabine in patients with advanced non-small cell lung cancer.Cancer Chemother. Pharmacol.201474227728210.1007/s00280‑014‑2498‑5 24906423
    [Google Scholar]
  108. ShahH. NgT.L. A narrative review from gut to lungs: non-small cell lung cancer and the gastrointestinal microbiome.Transl. Lung Cancer Res.202312490992610.21037/tlcr‑22‑595 37197624
    [Google Scholar]
  109. LevyB.P. FelipE. ReckM. YangJ.C. CappuzzoF. YoneshimaY. ZhouC. RawatS. XieJ. BasakP. XuL. SandsJ. TROPION-Lung08: phase III study of datopotamab deruxtecan plus pembrolizumab as first-line therapy for advanced NSCLC.Future Oncol.202319211461147210.2217/fon‑2023‑0230
    [Google Scholar]
  110. ZhouH. ForveilleS. SauvatA. The oncolytic peptide LTX-315 triggers immunogenic cell death.Cell Death Dis.201673e213410.1038/cddis.2016.47 26962684
    [Google Scholar]
  111. HagopianG. GrantC. NagasakaM. Proteolysis targeting chimeras in non-small cell lung cancer.Cancer Treat. Rev.202311710256110.1016/j.ctrv.2023.102561 37178629
    [Google Scholar]
  112. RamalingamS.S. VansteenkisteJ. PlanchardD. FLAURA InvestigatorsOverall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC.N. Engl. J. Med.20203821415010.1056/NEJMoa1913662 31751012
    [Google Scholar]
  113. SoriaJ.C. OheY. VansteenkisteJ. FLAURA InvestigatorsOsimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer.N. Engl. J. Med.2018378211312510.1056/NEJMoa1713137 29151359
    [Google Scholar]
  114. ChakrabortyS. PandyaK. AggarwalD. Establishing prospective IVIVC for generic pharmaceuticals: Methodologies assessment.Open Drug Del J2014511710.2174/1874126601405010001
    [Google Scholar]
  115. Halamoda-KenzaouiB. BaconnierS. BastogneT. Bridging communities in the field of nanomedicine.Regul. Toxicol. Pharmacol.201910618719610.1016/j.yrtph.2019.04.011 31051191
    [Google Scholar]
  116. AlshawwaS.Z. KassemA.A. FaridR.M. MostafaS.K. LabibG.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence.Pharmaceutics202214488310.3390/pharmaceutics14040883 35456717
    [Google Scholar]
  117. HaripriyaaM. SuthindhiranK. Pharmacokinetics of nanoparticles: Current knowledge, future directions and its implications in drug delivery.Future J Pharma Sci20239111310.1186/s43094‑023‑00569‑y
    [Google Scholar]
  118. AbdifetahO. Na-BangchangK. Pharmacokinetic studies of nanoparticles as a delivery system for conventional drugs and herb-derived compounds for cancer therapy: A systematic review.Int. J. Nanomedicine2019145659567710.2147/IJN.S213229 31632004
    [Google Scholar]
  119. KumarM. KulkarniP. LiuS. ChemuturiN. ShahD.K. Nanoparticle biodistribution coefficients: A quantitative approach for understanding the tissue distribution of nanoparticles.Adv. Drug Deliv. Rev.202319411470810.1016/j.addr.2023.114708 36682420
    [Google Scholar]
  120. WeiY. QuanL. ZhouC. ZhanQ. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application.Nanomedicine201813121495151210.2217/nnm‑2018‑0040 29972677
    [Google Scholar]
  121. BehzadiS. SerpooshanV. TaoW. Cellular uptake of nanoparticles: Journey inside the cell.Chem. Soc. Rev.201746144218424410.1039/C6CS00636A 28585944
    [Google Scholar]
  122. LiuY. YangG. JinS. XuL. ZhaoC.X. Development of high‐drug‐loading nanoparticles.ChemPlusChem20208592143215710.1002/cplu.202000496 32864902
    [Google Scholar]
  123. PaliwalR. BabuR.J. PalakurthiS. Nanomedicine scale-up technologies: Feasibilities and challenges.AAPS PharmSciTech20141561527153410.1208/s12249‑014‑0177‑9 25047256
    [Google Scholar]
  124. HerdianaY. WathoniN. ShamsuddinS. MuchtaridiM. Scale-up polymeric-based nanoparticles drug delivery systems: Development and challenges.OpenNano2022710004810.1016/j.onano.2022.100048
    [Google Scholar]
  125. Ag SeleciD. SeleciM. WalterJ.G. StahlF. ScheperT. Niosomes as nanoparticular drug carriers: Fundamentals and recent applications.J. Nanomater.2016201611310.1155/2016/7372306
    [Google Scholar]
  126. BhattH. GhoshB. BiswasS. Stimuli-responsive nanomedicine for treating non-cancer diseases. ZhuL. Stimuli-Responsive Nanomedicine.NY, USAJenny Stanford Publishing202110.1201/9780429295294‑11
    [Google Scholar]
  127. BommareddyP.K. ShettigarM. KaufmanH.L. Integrating oncolytic viruses in combination cancer immunotherapy.Nat. Rev. Immunol.201818849851310.1038/s41577‑018‑0014‑6 29743717
    [Google Scholar]
  128. KureshiR. BahriM. SpanglerJ.B. Reprogramming immune proteins as therapeutics using molecular engineering.Curr. Opin. Chem. Eng.201819273410.1016/j.coche.2017.12.003
    [Google Scholar]
  129. JunnuthulaV. KolimiP. NyavanandiD. SampathiS. VoraL.K. DyawanapellyS. Polymeric micelles for breast cancer therapy: Recent updates, clinical translation and regulatory considerations.Pharmaceutics2022149186010.3390/pharmaceutics14091860 36145608
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855282418240220112042
Loading
/content/journals/cdth/10.2174/0115748855282418240220112042
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): dendrimers; liposomes; Lung cancer; nanoemulsion; nanotechnology; NSCLC; PROTACs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test