Skip to content
2000
image of Current Nanotechnological Strategies for Delivery of Anti-Retroviral Drugs: Overview and Future Prospects

Abstract

Globally, over forty million people are living with Human Immunodeficiency Viral (HIV) infections. Highly Active Antiretroviral Therapy (HAART) consists of two or three Antiretroviral (ARV) drugs and has been used for more than a decade to prolong the life of AIDS-diagnosed patients. The persistent use of HAART is essential for effectively suppressing HIV replication. Frequent use of multiple medications at relatively high dosages is a major reason for patient noncompliance and an obstacle to achieving efficient pharmacological treatment. Despite strict compliance with the HAART regimen, the eradication of HIV from the host remains unattainable. Anatomical and Intracellular viral reservoirs are responsible for persistent infection. Elimination of the virus from these reservoirs is critical for successful long-term therapy. Therefore, innovative approaches are required to design safe and effective therapies. Nanotechnology has revolutionized HIV drug delivery by addressing key challenges, including improving drug solubility, targeting specific cells, extending drug release, protecting drugs from degradation, overcoming biological barriers, enabling combination therapy, and enhancing vaccine delivery. Several nanocarrier systems, such as dendrimers, nanoemulsions, liposomes, solid nanoparticles (SLNs), and nanostructured lipid carriers, have been proposed to treat HIV infection. Additionally, nanosuspensions of antiretroviral drugs offer promising strategies for improving treatment outcomes. While these advancements have significantly improved HIV management strategies, challenges remain, including unexpected toxicity, avoiding harmful biological interactions, and costs associated with the large-scale production of nanopharmaceuticals.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855331460241017100207
2024-10-29
2024-11-23
Loading full text...

Full text loading...

References

  1. - Global HIV & AIDS statistics — Geneva: UNAIDS 2023 Available from: https://reliefweb.int/report/world/global-hiv-aids-statistics-fact-sheet-2023 https://www.unaids.org/en/resources/fact-sheet
  2. Trovato M. D’Apice L. Prisco A. De Berardinis P. HIV vaccination: A Roadmap among advancements and concerns. Int. J. Mol. Sci. 2018 19 4 1241 10.3390/ijms19041241 29671786
    [Google Scholar]
  3. Rotheram-Borus M.J. Swendeman D. Chovnick G. The past, present, and future of HIV prevention: Integrating behavioral, biomedical, and structural intervention strategies for the next generation of HIV prevention. Annu. Rev. Clin. Psychol. 2009 5 1 143 167 10.1146/annurev.clinpsy.032408.153530 19327028
    [Google Scholar]
  4. Ryder M.I. Shiboski C. Yao T.J. Moscicki A.B. Current trends and new developments in HIV research and periodontal diseases. Periodontol. 2000 2020 82 1 65 77 10.1111/prd.12321 31850628
    [Google Scholar]
  5. World Health Organization Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. 2016 Available from: http://www.who.int/hiv/pub/arv/arv-2016/en/
  6. Thoueille P. Choong E. Cavassini M. Buclin T. Decosterd L.A. Long-acting antiretrovirals: a new era for the management and prevention of HIV infection. J. Antimicrob. Chemother. 2022 77 2 290 302 10.1093/jac/dkab324 34499731
    [Google Scholar]
  7. Shattock R.J. Rosenberg Z. Microbicides: Topical prevention against HIV. Cold Spring Harb. Perspect. Med. 2012 2 2 a007385 10.1101/cshperspect.a007385 22355798
    [Google Scholar]
  8. Cohen YZ Caskey M Broadly neutralizing antibodies for treatment and prevention of HIV-1 infection Curr Opin HIV AIDS 2018 13 4 366 73 10.1097/COH.0000000000000475
    [Google Scholar]
  9. Sheykhhasan M Foroutan A. Manoochehri H. Khoei SG. Poondla N. Could gene therapy cure HIV? Life Sci. 2021 277 119451 10.3390/v7072804 26193303
    [Google Scholar]
  10. Herrera-Carrillo E. Berkhout B. Bone marrow gene therapy for HIV/AIDS. Viruses 2015 7 7 3910 3936 10.3390/v7072804 26193303
    [Google Scholar]
  11. Mohamed H. Gurrola T. Berman R. Collins M. Sariyer I.K. Nonnemacher M.R. Wigdahl B. Targeting CCR5 as a component of an HIV-1 therapeutic strategy. Front. Immunol. 2022 12 816515 10.3389/fimmu.2021.816515 35126374
    [Google Scholar]
  12. Camarasa M.J. Velázquez S. San-Félix A. Pérez-Pérez M.J. Gago F. Dimerization inhibitors of HIV-1 reverse transcriptase, protease and integrase: A single mode of inhibition for the three HIV enzymes? Antiviral Res. 2006 71 2-3 260 267 10.1016/j.antiviral.2006.05.021 16872687
    [Google Scholar]
  13. Schatz M. Marty L. Ounadjela C. Tong P.B.V. Cardace I. Mettling C. . A tripartite complex HIV-1 Tat-Cyclophilin A-Capsid protein enables tat encapsidation that is required for HIV-1 infectivity. J Virol. 2023 97 4 278 10.1128/jvi.00278‑23
    [Google Scholar]
  14. De Clercq E. Suramin: A potent inhibitor of the reverse transcriptase of RNA tumor viruses. Cancer Lett. 1979 8 1 9 22 10.1016/0304‑3835(79)90017‑X 92362
    [Google Scholar]
  15. Mitsuya H. Broder S. Inhibition of the in vitro infectivity and cytopathic effect of human T-lymphotrophic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV) by 2′,3′-dideoxynucleosides. Proc. Natl. Acad. Sci. USA 1986 83 6 1911 1915 10.1073/pnas.83.6.1911 3006077
    [Google Scholar]
  16. Mallayasamy S. Penzak S.R. Pharmacogenomic considerations in the treatment of HIV infection. : Pharmacogenomics Elsevier 2019 227 245
    [Google Scholar]
  17. Sarma A. Das M.K. Nose to brain delivery of antiretroviral drugs in the treatment of neuroAIDS. Mol. Biomed. 2020 1 1 15 10.1186/s43556‑020‑00019‑8 34765998
    [Google Scholar]
  18. Menéndez-Arias L. Delgado R. Update and latest advances in antiretroviral therapy. Trends Pharmacol. Sci. 2022 43 1 16 29 10.1016/j.tips.2021.10.004 34742581
    [Google Scholar]
  19. Roehr B. FDA approves first drug to prevent HIV infection. BMJ 2012 345 jul17 2 e4879 10.1136/bmj.e4879 22807165
    [Google Scholar]
  20. Muoio D. FDA approves Descovy for treatment of HIV. Infectious Diseases in Children. 2016 29 5 8
    [Google Scholar]
  21. D’Angelo A.B. Westmoreland D.A. Carneiro P.B. Johnson J. Grov C. Why are patients switching from tenofovir disoproxil fumarate/emtricitabine (Truvada) to tenofovir Alafenamide/Emtricitabine (Descovy) for pre-exposure prophylaxis? AIDS Patient Care STDS 2021 35 8 327 334 10.1089/apc.2021.0033 34375141
    [Google Scholar]
  22. Prather C. Jeon C. Cabotegravir: The first long-acting injectable for HIV pre-exposure prophylaxis. Am. J. Health Syst. Pharm. 2022 79 21 1898 1905 10.1093/ajhp/zxac201 35894204
    [Google Scholar]
  23. Centers for disease control and prevention Available from: https://www. cdc.gov/hiv/risk/prep/
  24. Baeten J.M. Hendrix C.W. Hillier S.L. Topical microbicides in HIV prevention: State of the promise. Annu. Rev. Med. 2020 71 1 361 377 10.1146/annurev‑med‑090518‑093731 31613684
    [Google Scholar]
  25. Abdool Karim Q. Abdool Karim S.S. Frohlich J.A. Grobler A.C. Baxter C. Mansoor L.E. Kharsany A.B.M. Sibeko S. Mlisana K.P. Omar Z. Gengiah T.N. Maarschalk S. Arulappan N. Mlotshwa M. Morris L. Taylor D. CAPRISA 004 Trial Group Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science 2010 329 5996 1168 1174 10.1126/science.1193748 20643915
    [Google Scholar]
  26. Hargrave A. Mustafa A.S. Hanif A. Tunio J.H. Hanif S.N.M. Current status of HIV-1 vaccines. Vaccines 2021 9 9 1026 10.3390/vaccines9091026 34579263
    [Google Scholar]
  27. Korber B. Gaschen B. Yusim K. Thakallapally R. Kesmir C. Detours V. Evolutionary and immunological implications of contemporary HIV-1 variation. Br. Med. Bull. 2001 58 1 19 42 10.1093/bmb/58.1.19 11714622
    [Google Scholar]
  28. Hemelaar J. The origin and diversity of the HIV-1 pandemic. Trends Mol. Med. 2012 18 3 182 192 10.1016/j.molmed.2011.12.001 22240486
    [Google Scholar]
  29. Shiver J.W. Fu T.M. Chen L. Casimiro D.R. Davies M.E. Evans R.K. Zhang Z.Q. Simon A.J. Trigona W.L. Dubey S.A. Huang L. Harris V.A. Long R.S. Liang X. Handt L. Schleif W.A. Zhu L. Freed D.C. Persaud N.V. Guan L. Punt K.S. Tang A. Chen M. Wilson K.A. Collins K.B. Heidecker G.J. Fernandez V.R. Perry H.C. Joyce J.G. Grimm K.M. Cook J.C. Keller P.M. Kresock D.S. Mach H. Troutman R.D. Isopi L.A. Williams D.M. Xu Z. Bohannon K.E. Volkin D.B. Montefiori D.C. Miura A. Krivulka G.R. Lifton M.A. Kuroda M.J. Schmitz J.E. Letvin N.L. Caulfield M.J. Bett A.J. Youil R. Kaslow D.C. Emini E.A. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 2002 415 6869 331 335 10.1038/415331a 11797011
    [Google Scholar]
  30. Casimiro D.R. Wang F. Schleif W.A. Liang X. Zhang Z.Q. Tobery T.W. Davies M.E. McDermott A.B. O’Connor D.H. Fridman A. Bagchi A. Tussey L.G. Bett A.J. Finnefrock A.C. Fu T. Tang A. Wilson K.A. Chen M. Perry H.C. Heidecker G.J. Freed D.C. Carella A. Punt K.S. Sykes K.J. Huang L. Ausensi V.I. Bachinsky M. Sadasivan-Nair U. Watkins D.I. Emini E.A. Shiver J.W. Attenuation of simian immunodeficiency virus SIVmac239 infection by prophylactic immunization with dna and recombinant adenoviral vaccine vectors expressing Gag. J. Virol. 2005 79 24 15547 15555 10.1128/JVI.79.24.15547‑15555.2005 16306625
    [Google Scholar]
  31. Steinbrook R. One step forward, two steps back--will there ever be an AIDS vaccine? N. Engl. J. Med. 2007 357 26 2653 2655 10.1056/NEJMp0708117 18160684
    [Google Scholar]
  32. Zhernov Y. Petrova V. Simanduyev M. Vysochanskaya S. Fadeeva I. Riabova K. Preventive and therapeutic vaccines against HIV: From new mechanisms to clinical trials 2023 Available from:https://www.preprints.org/manuscript/202310.1996/v1
  33. Barouch D.H. Tomaka F.L. Wegmann F. Stieh D.J. Alter G. Robb M.L. Michael N.L. Peter L. Nkolola J.P. Borducchi E.N. Chandrashekar A. Jetton D. Stephenson K.E. Li W. Korber B. Tomaras G.D. Montefiori D.C. Gray G. Frahm N. McElrath M.J. Baden L. Johnson J. Hutter J. Swann E. Karita E. Kibuuka H. Mpendo J. Garrett N. Mngadi K. Chinyenze K. Priddy F. Lazarus E. Laher F. Nitayapan S. Pitisuttithum P. Bart S. Campbell T. Feldman R. Lucksinger G. Borremans C. Callewaert K. Roten R. Sadoff J. Scheppler L. Weijtens M. Feddes-de Boer K. van Manen D. Vreugdenhil J. Zahn R. Lavreys L. Nijs S. Tolboom J. Hendriks J. Euler Z. Pau M.G. Schuitemaker H. Evaluation of a mosaic HIV-1 vaccine in a multicentre, randomised, double-blind, placebo-controlled, phase 1/2a clinical trial (APPROACH) and in rhesus monkeys (NHP 13-19). Lancet 2018 392 10143 232 243 10.1016/S0140‑6736(18)31364‑3 30047376
    [Google Scholar]
  34. del Moral-Sánchez I. Russell R.A. Schermer E.E. Cottrell C.A. Allen J.D. Torrents de la Peña A. LaBranche C.C. Kumar S. Crispin M. Ward A.B. Montefiori D.C. Sattentau Q.J. Sliepen K. Sanders R.W. High thermostability improves neutralizing antibody responses induced by native-like HIV-1 envelope trimers. NPJ Vaccines 2022 7 1 27 10.1038/s41541‑022‑00446‑4 35228534
    [Google Scholar]
  35. Sanders R.W. Moore J.P. Native‐like Env trimers as a platform for HIV ‐1 vaccine design. Immunol. Rev. 2017 275 1 161 182 10.1111/imr.12481 28133806
    [Google Scholar]
  36. Albert-Ludwigs-Universität Freiburg Germany, Fortner A, victor babes national institute of pathology, bucharest, romania, bucur o, victor babes national institute of pathology, bucharest, romania, viron molecular medicine institute, boston, ma 02108, usa. mrna-based vaccine technology for HIV. Discoveries (Craiova) 2022 10 2 e150 10.15190/d.2022.9 36438441
    [Google Scholar]
  37. Li D. Liu C. Li Y. Tenchov R. Sasso J.M. Zhang D. Li D. Zou L. Wang X. Zhou Q. Messenger RNA-based therapeutics and vaccines: What’s beyond COVID-19? ACS Pharmacol. Transl. Sci. 2023 6 7 943 969 10.1021/acsptsci.3c00047 37470024
    [Google Scholar]
  38. Mu Z. Haynes B.F. Cain D.W. HIV mRNA vaccines—progress and future paths. Vaccines 2021 9 2 134 10.3390/vaccines9020134 33562203
    [Google Scholar]
  39. Guardo A.C. Joe P.T. Miralles L. Bargalló M.E. Mothe B. Krasniqi A. Heirman C. García F. Thielemans K. Brander C. Aerts J.L. Plana M. iHIVARNA consortium Preclinical evaluation of an mRNA HIV vaccine combining rationally selected antigenic sequences and adjuvant signals (HTI-TriMix). AIDS 2017 31 3 321 332 10.1097/QAD.0000000000001276 27677160
    [Google Scholar]
  40. Giacalone G. Hillaireau H. Fattal E. Improving bioavailability and biodistribution of anti-HIV chemotherapy. Eur. J. Pharm. Sci. 2015 75 40 53 10.1016/j.ejps.2015.04.011 25937367
    [Google Scholar]
  41. Schrager L.K. D’Souza M.P. Cellular and anatomical reservoirs of HIV-1 in patients receiving potent antiretroviral combination therapy. JAMA 1998 280 1 67 71 10.1001/jama.280.1.67 9660366
    [Google Scholar]
  42. Nastri B.M. Pagliano P. Zannella C. Folliero V. Masullo A. Rinaldi L. Galdiero M. Franci G. HIV and drug-resistant subtypes. Microorganisms 2023 11 1 221 10.3390/microorganisms11010221 36677513
    [Google Scholar]
  43. McCluskey S.M. Siedner M.J. Marconi V.C. Management of virologic failure and HIV drug resistance. Infect. Dis. Clin. North Am. 2019 33 3 707 742 10.1016/j.idc.2019.05.004 31255384
    [Google Scholar]
  44. Busari A. Oreagba I. Oshikoya K. Kayode M. Olayemi S. Olayemi SundayO. High risk of drug–drug interactions among hospitalized patients with kidney diseases at a nigerian teaching hospital:A call for action. Niger. Med. J. 2019 60 6 317 325 10.4103/nmj.NMJ_2_19 32180663
    [Google Scholar]
  45. Clarke A. Stein C.R. Townsend M.L. Drug-drug interactions with HIV antiretroviral therapy. US Pharm. 2008 33 4
    [Google Scholar]
  46. Kunimoto Y. Matamura R. Ikeda H. Fujii S. Kimyo T. Kitagawa M. Nakata H. Kobune M. Miyamoto A. Fukudo M. Potential drug–drug interactions in the era of integrase strand transfer inhibitors: A cross-sectional single-center study in Japan. J. Pharm. Health Care Sci. 2021 7 1 43 10.1186/s40780‑021‑00226‑7 34847955
    [Google Scholar]
  47. Cunha R.F. Simões S. Carvalheiro M. Pereira J.M.A. Costa Q. Ascenso A. Novel antiretroviral therapeutic strategies for HIV. Molecules 2021 26 17 5305 10.3390/molecules26175305 34500737
    [Google Scholar]
  48. Wang E.C. Wang A.Z. Nanoparticles and their applications in cell and molecular biology. Integr. Biol. 2014 6 1 9 26 10.1039/c3ib40165k 24104563
    [Google Scholar]
  49. Singh P. Pandit S. Mokkapati V.R.S.S. Garg A. Ravikumar V. Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci. 2018 19 7 1979 10.3390/ijms19071979 29986450
    [Google Scholar]
  50. Cha B.G. Kim J. Functional mesoporous silica nanoparticles for bio‐imaging applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019 11 1 e1515 10.1002/wnan.1515 29566308
    [Google Scholar]
  51. Tăbăran A.F. Matea C.T. Mocan T. Tăbăran A. Mihaiu M. Iancu C. Mocan L. Silver nanoparticles for the therapy of tuberculosis. Int. J. Nanomedicine 2020 15 2231 2258 10.2147/IJN.S241183 32280217
    [Google Scholar]
  52. Godbole M.D. Sabale P.M. Mathur V.B. Development of lamivudine liposomes by three-level factorial design approach for optimum entrapment and enhancing tissue targeting. J. Microencapsul. 2020 37 6 431 444 10.1080/02652048.2020.1778806 32543317
    [Google Scholar]
  53. Yadavar-Nikravesh M.S. Ahmadi S. Milani A. Akbarzadeh I. Khoobi M. Vahabpour R. Bolhassani A. Bakhshandeh H. Construction and characterization of a novel Tenofovir-loaded PEGylated niosome conjugated with TAT peptide for evaluation of its cytotoxicity and anti-HIV effects. Adv. Powder Technol. 2021 32 9 3161 3173 10.1016/j.apt.2021.05.047
    [Google Scholar]
  54. Chiappetta D.A. Hocht C. Taira C. Sosnik A. Oral pharmacokinetics of the anti-HIV efavirenz encapsulated within polymeric micelles. Biomaterials 2011 32 9 2379 2387 10.1016/j.biomaterials.2010.11.082 21186055
    [Google Scholar]
  55. Ali AH Enhancement of solubility and improvement of dissolution rate of atorvastatin calcium prepared as nanosuspension. Iraqi J Pharm Sci 2019 28 2 46 57 10.31351/vol28iss2pp46‑57
    [Google Scholar]
  56. Jassim Z.E. Rajab N.A. Review on preparation, characterization, and pharmaceutical application of nanosuspension as an approach of solubility and dissolution enhancement. J. Pharm. Res. 2018 12 771 774
    [Google Scholar]
  57. Alwan RM Nanosuspensions of selexipag: Formulation, characterization, and in vitro Evaluation. . Iraqi J Pharm Sci 2021 31 1 144 153 10.31351/vol30iss1pp144‑153
    [Google Scholar]
  58. Ramesh Y. Sarayu B. Hari Chandana G. Neelima O. Sana S. Formulation and evaluation of lamivudine nanosuspension. J. Drug Deliv. Ther. 2021 11 4-S 71 77 10.22270/jddt.v11i4‑S.4961
    [Google Scholar]
  59. Usach I. Melis V. Peris J.E. Non‐nucleoside reverse transcriptase inhibitors: A review on pharmacokinetics, pharmacodynamics, safety and tolerability. J. Int. AIDS Soc. 2013 16 1 18567 10.7448/IAS.16.1.18567 24008177
    [Google Scholar]
  60. Sukumaran S.K. Venkatasubramaniyan C. Design and development of chitosan based etravirine nanosuspension. Nanomedicine Res J [Internet] 2022 7 3 10.22034/nmrj.2022.03.007
    [Google Scholar]
  61. Aggarwal N. Sachin Nabi B. Aggarwal S. Baboota S. Ali J. Nano-based drug delivery system: A smart alternative towards eradication of viral sanctuaries in management of NeuroAIDS. Drug Deliv. Transl. Res. 2022 12 1 27 48 10.1007/s13346‑021‑00907‑8 33486689
    [Google Scholar]
  62. Kakad S.P. Gangurde T.D. Kshirsagar S.J. Mundhe V.G. Nose to brain delivery of nanosuspensions with first line antiviral agents is alternative treatment option to Neuro-AIDS treatment. Heliyon 2022 8 7 e09925 10.1016/j.heliyon.2022.e09925 35879999
    [Google Scholar]
  63. Dalpiaz A. Pavan B. Nose-to-brain delivery of antiviral drugs: A way to overcome their active efflux? Pharmaceutics 2018 10 2 39 10.3390/pharmaceutics10020039 29587409
    [Google Scholar]
  64. Kakad S. Kshirsagar S. Nose to brain delivery of Efavirenz nanosuspension for effective neuro AIDS therapy: in-vitro, in-vivo and pharmacokinetic assessment. Heliyon 2021 7 11 e08368 10.1016/j.heliyon.2021.e08368 34901485
    [Google Scholar]
  65. Galdiero S. Tarallo Carberry Falanga Vitiello Galdiero S. Weck Dendrimers functionalized with membrane-interacting peptides for viral inhibition. Int. J. Nanomedicine 2013 521 521 10.2147/IJN.S37739
    [Google Scholar]
  66. Arshad P. Dineshkumar P. Naga Jyothi K. Karthik M. Saravanan G. Dendrimers as a novel carrier in Anti-HIV therapy. J. Drug Deliv. Ther. 2019 9 5-s 195 200 10.22270/jddt.v9i5‑s.3650
    [Google Scholar]
  67. Pandita D. Madaan K. Kumar S. Poonia N. Lather V. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci. 2014 6 3 139 150 10.4103/0975‑7406.130965 25035633
    [Google Scholar]
  68. Zhao H. Li J. Xi F. Jiang L. Polyamidoamine dendrimers inhibit binding of Tat peptide to TAR RNA. FEBS Lett. 2004 563 1-3 241 245 10.1016/S0014‑5793(04)00284‑4 15063756
    [Google Scholar]
  69. Kharwade R. More S. Suresh E. Warokar A. Mahajan N. Mahajan U. Improvement in Bioavailability and pharmacokinetic characteristics of efavirenz with booster dose of ritonavir in PEGylated PAMAM G4 dendrimers. AAPS PharmSciTech 2022 23 6 177 10.1208/s12249‑022‑02315‑8 35750994
    [Google Scholar]
  70. Guerrero-Beltrán C. Prieto A. Leal M. Jiménez J.L. Muñoz-Fernández M.Á. Combination of G2-S16 dendrimer/dapivirine antiretroviral as a new HIV-1 microbicide. Future Med. Chem. 2019 11 23 3005 3013 10.4155/fmc‑2018‑0539 31710246
    [Google Scholar]
  71. Kharwade R. Mahajan N. More S. Warokar A. Mendhi S. Dhobley A. Palve D. Effect of PEGylation on drug uptake, biodistribution, and tissue toxicity of efavirenz–ritonavir loaded PAMAM G4 dendrimers. Pharm. Dev. Technol. 2023 28 2 200 218 10.1080/10837450.2023.2173230 36695103
    [Google Scholar]
  72. Sadeq Z.A. Review on Nanoemulsion: Preparation and evaluation. IJDDT 2020 10 1 187 189 10.25258/ijddt.10.1.33
    [Google Scholar]
  73. B. Hamed S Formulation and characterization of felodipine as an oral nanoemulsions Iraqi J Pharm Sci 2021 30 1 209 217 10.31351/vol30iss1pp209‑217
    [Google Scholar]
  74. Muhammed S.A. Al-Kinani K.K. Formulation and in vitro evaluation of meloxicam as a self-microemulsifying drug delivery system. F1000 Res. 2023 12 315 10.12688/f1000research.130749.1 37359788
    [Google Scholar]
  75. Sadoon NA Formulation and characterization of isradipine as oral nanoemulsion. Iraqi J Pharm Sci 2020 29 1 143 153 10.31351/vol29iss1pp143‑153
    [Google Scholar]
  76. Sabri LA Comparison between conventional and supersaturable self-nanoemulsion loaded with nebivolol: Preparation and In-vitro/Ex-vivo evaluation Iraqi J Pharm Sci 2020 29 1 216 265 10.31351/vol29iss1pp216‑225
    [Google Scholar]
  77. Taher S.S. Al-Kinani K.K. Hammoudi Z.M. Ghareeb M. Co-surfactant effect of polyethylene glycol 400 on microemulsion using BCS class II model drug. J. Adv. Pharm. Educ. Res. 2022 12 1 63 69 10.51847/1h17TZqgyI
    [Google Scholar]
  78. Desai J. Thakkar H. Enhanced oral bioavailability and brain uptake of Darunavir using lipid nanoemulsion formulation. Colloids Surf. B Biointerfaces 2019 175 143 149 10.1016/j.colsurfb.2018.11.057 30529999
    [Google Scholar]
  79. Singh G. Pai R.S. Optimized self-nanoemulsifying drug delivery system of atazanavir with enhanced oral bioavailability: in vitro/in vivo characterization. Expert Opin. Drug Deliv. 2014 11 7 1023 1032 10.1517/17425247.2014.913566 24820316
    [Google Scholar]
  80. Karami Z. Saghatchi Zanjani M.R. Rezaee S. Rostamizadeh K. Hamidi M. Neuropharmacokinetic evaluation of lactoferrin-treated indinavir-loaded nanoemulsions: Remarkable brain delivery enhancement. Drug Dev. Ind. Pharm. 2019 45 5 736 744 10.1080/03639045.2019.1569039 30640551
    [Google Scholar]
  81. Rodriques P.B. Prajapati B.G. Formulation and evaluation of dolutegravir sodium nanoemulsion for the treatment of HIV. Pharmacophore 2022 13 6 1 8 10.51847/gnVuQuUCIf
    [Google Scholar]
  82. Nair A.B. Chaudhary S. Jacob S. Patel D. Shinu P. Shah H. Chaudhary A. Aldhubiab B. Almuqbil R.M. Alnaim A.S. Alqattan F. Shah J. Intranasal administration of dolutegravir-loaded nanoemulsion-based in situ gel for enhanced bioavailability and direct brain targeting. Gels 2023 9 2 130 10.3390/gels9020130 36826300
    [Google Scholar]
  83. Mazonde P. Khamanga S.M.M. Walker R.B. Design, optimization, manufacture and characterization of efavirenz-loaded flaxseed oil nanoemulsions. Pharmaceutics 2020 12 9 797 10.3390/pharmaceutics12090797 32842501
    [Google Scholar]
  84. Shanta Taher S. Sadeq Z.A. Al-Kinani K.K. Alwan Z.S. Solid lipid nanoparticles as a promising approach for delivery of anticancer agents: Review article. Vojen. Zdrav. Listy 2022 91 3 197 207 10.31482/mmsl.2021.042
    [Google Scholar]
  85. Gaur P.K. Mishra S. Bajpai M. Mishra A. Enhanced oral bioavailability of efavirenz by solid lipid nanoparticles: In vitro drug release and pharmacokinetics studies. BioMed Res. Int. 2014 2014 1 9 10.1155/2014/363404 24967360
    [Google Scholar]
  86. Raina H. Kaur S. Jindal A.B. Development of efavirenz loaded solid lipid nanoparticles: Risk assessment, quality-by-design (QbD) based optimisation and physicochemical characterisation. J. Drug Deliv. Sci. Technol. 2017 39 180 191 10.1016/j.jddst.2017.02.013
    [Google Scholar]
  87. Ravi P.R. Vats R. Dalal V. Murthy A.N. A hybrid design to optimize preparation of lopinavir loaded solid lipid nanoparticles and comparative pharmacokinetic evaluation with marketed lopinavir/ritonavir coformulation. J. Pharm. Pharmacol. 2014 66 7 912 926 10.1111/jphp.12217 24697749
    [Google Scholar]
  88. Kumar S. Narayan R. Ahammed V. Nayak Y. Naha A. Nayak U.Y. Development of ritonavir solid lipid nanoparticles by Box Behnken design for intestinal lymphatic targeting. J. Drug Deliv. Sci. Technol. 2018 44 181 189 10.1016/j.jddst.2017.12.014
    [Google Scholar]
  89. K.S J Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells. Mater. Sci. Eng. C 2016 66 40 50 10.1016/j.msec.2016.03.031
    [Google Scholar]
  90. Gupta S. Kesarla R. Chotai N. Misra A. Omri A. Systematic approach for the formulation and optimization of solid lipid nanoparticles of efavirenz by high pressure homogenization using design of experiments for brain targeting and enhanced bioavailability. BioMed Res. Int. 2017 2017 1 18 10.1155/2017/5984014 28243600
    [Google Scholar]
  91. Viegas C. Patrício A.B. Prata J.M. Nadhman A. Chintamaneni P.K. Fonte P. Solid lipid nanoparticles vs. nanostructured lipid carriers: A comparative review. Pharmaceutics 2023 15 6 1593 10.3390/pharmaceutics15061593 37376042
    [Google Scholar]
  92. Mathur P. Sharma S. Rawal S. Patel B. Patel M.M. Fabrication, optimization, and in vitro evaluation of docetaxel-loaded nanostructured lipid carriers for improved anticancer activity. J. Liposome Res. 2020 30 2 182 196 10.1080/08982104.2019.1614055 31060404
    [Google Scholar]
  93. Hashim AAJ Anastrozole loaded nanostructured lipid carriers: Preparation and evaluation Iraqi J Pharm 2021 30 185 195 10.31351/vol30iss2pp185‑195
    [Google Scholar]
  94. Pokharkar V. Patil-Gadhe A. Palla P. Efavirenz loaded nanostructured lipid carrier engineered for brain targeting through intranasal route: In-vivo pharmacokinetic and toxicity study. Biomed. Pharmacother. 2017 94 150 164 10.1016/j.biopha.2017.07.067 28759752
    [Google Scholar]
  95. Khan S.A. Rehman S. Nabi B. Iqubal A. Nehal N. Fahmy U.A. Kotta S. Baboota S. Md S. Ali J. Boosting the brain delivery of atazanavir through nanostructured lipid carrier-based approach for mitigating NeuroAIDS. Pharmaceutics 2020 12 11 1059 10.3390/pharmaceutics12111059 33172119
    [Google Scholar]
  96. Sarma A. Das M.K. Formulation by design (FbD) approach to develop tenofovir disoproxil fumarate loaded nanostructured lipid carriers (NLCs) for the aptness of nose to brain delivery. J. Drug Deliv. Ther. 2019 9 2 148 159 10.22270/jddt.v9i2.2391
    [Google Scholar]
  97. Gurumukhi V.C. Bari S.B. Development of ritonavir-loaded nanostructured lipid carriers employing quality by design (QbD) as a tool: Characterizations, permeability, and bioavailability studies. Drug Deliv. Transl. Res. 2022 12 7 1753 1773 10.1007/s13346‑021‑01083‑5 34671949
    [Google Scholar]
  98. Jitta S.R. Bhaskaran N.A. Salwa Kumar L. Anti-oxidant containing nanostructured lipid carriers of Ritonavir: Development, optimization, and In Vitro and In Vivo evaluations. AAPS PharmSciTech 2022 23 4 88 10.1208/s12249‑022‑02240‑w 35296970
    [Google Scholar]
  99. Crintea A. Dutu A.G. Sovrea A. Constantin A.M. Samasca G. Masalar A.L. Ifju B. Linga E. Neamti L. Tranca R.A. Fekete Z. Silaghi C.N. Craciun A.M. Nanocarriers for drug delivery: An overview with emphasis on vitamin D and K transportation. Nanomaterials 2022 12 8 1376 10.3390/nano12081376 35458084
    [Google Scholar]
  100. Mallipeddi R. Rohan L.C. Progress in antiretroviral drug delivery using nanotechnology. Int. J. Nanomedicine 2010 5 533 547 20957115
    [Google Scholar]
  101. Dhingra A.K. Chopra B. Kriplani P. Dass R. Guarve K. Green nanotechnology–based drug delivery systems. Encyclopedia of Green Materials Springer Nature Singapore Singapore 2023 1 5
    [Google Scholar]
  102. Dhingra A.K. Chopra B. Kriplani P. Dass R. Guarve K. GGreen formulation, characterization, antifungal and biological safety evaluation of terbinafine HCl niosomes and niosomal gels manufactured by eco-friendly green method J. Biomater. Sci. Polym. Ed. 2023 33 18 2325 2352
    [Google Scholar]
  103. Hashemi S.M.H. Enayatifard R. Akbari J. Saeedi M. Seyedabadi M. Morteza-Semnani K. Babaei A. Asare-Addo K. Nokhodchi A. Venlafaxine HCl encapsulated in Niosome: Green and eco-friendly formulation for the management of pain. AAPS PharmSciTech 2022 23 5 149 10.1208/s12249‑022‑02299‑5 35595933
    [Google Scholar]
  104. Guedes M.D.V. Marques M.S. Berlitz S.J. Facure M.H.M. Correa D.S. Steffens C. Contri R.V. Külkamp-Guerreiro I.C. Lamivudine and zidovudine-loaded nanostructures: Green chemistry preparation for pediatric oral administration. Nanomaterials 2023 13 4 770 10.3390/nano13040770 36839138
    [Google Scholar]
  105. Fotooh Abadi L. Damiri F. Zehravi M. Joshi R. Pai R. Berrada M. Massoud E.E.S. Rahman M.H. Rojekar S. Cavalu S. Novel nanotechnology-based approaches for targeting HIV reservoirs. Polymers 2022 14 15 3090 10.3390/polym14153090 35956604
    [Google Scholar]
  106. Jena R. Vishwas S. Kumar R. Kaur J. Khursheed R. Gulati M. Singh T.G. Vanathi B.M. Alam A. Kumar B. Chaitanya M.V.N.L. Gupta S. Negi P. Pandey N.K. Bhatt S. Gupta G. Chellappan D.K. Oliver B.G. Dua K. Singh S.K. Treatment strategies for HIV infection with emphasis on role of CRISPR/Cas9 gene: Success so far and road ahead. Eur. J. Pharmacol. 2022 931 175173 10.1016/j.ejphar.2022.175173 35940236
    [Google Scholar]
  107. Foulkes R. Man E. Thind J. Yeung S. Joy A. Hoskins C. The regulation of nanomaterials and nanomedicines for clinical application: Current and future perspectives. Biomater. Sci. 2020 8 17 4653 4664 10.1039/D0BM00558D 32672255
    [Google Scholar]
  108. Al-Kinani K.K. Jassim Z.E. Taher S.S. Hussein A.A. Comparative biosimilar quality studies between a rituximab product and MabThera. J. Adv. Pharm. Educ. Res. 2021 11 4 41 49 10.51847/EZJq1qE89A
    [Google Scholar]
  109. Raval M. Chavda P. Patel P. Regulatory aspects of nanomaterials: Current and future perspective. Role of Nanotechnology in Cancer Therapy. Patel P. BENTHAM SCIENCE PUBLISHERS 2023 255 277 10.2174/9789815079999123010013
    [Google Scholar]
  110. Bioavailability of MK-1439 experimental nano formulations in healthy adults (MK-1439-046). NCT02549040 2019
  111. PK of Efavirenz & Lopinavir Nano-formulations in Healthy PK of efavirenz & lopinavir nano-formulations in healthy (MK-1439-046). NCT02631473 2016
/content/journals/cdth/10.2174/0115748855331460241017100207
Loading

  • Article Type:
    Review Article
Keywords: HAART ; nanotechnology ; nanocarriers ; HIV
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test