Skip to content
2000
image of A Comprehensive and Concise Review on Significance of Potent Peptide; Amyloid Beta (Aβ) in Progression of Alzheimer’s Disease

Abstract

Background

A condition associated with neurodegeneration is termed Alzheimer's, characterized by mental as well as memory deterioration. Amyloid beta (Aβ) is a type of peptide that accumulates within the central nervous system and causes plaque, cerebral amyloid angiopathy (CAA), and neurodegeneration (loss of acetylcholine). These peptide forms have a major impact on neuronal damage.

Objective

Our goal is to provide an overview of Aβ's potential involvement in developing Alzheimer's condition.

Methods

An extensive literature review was done using the standard keywords “amyloid beta”, “amyloid beta precursor protein”, “secretase”, and “Alzheimer’s disease” from the databases SCOPUS, PubMed, Elsevier, and Web of Science.

Conclusion

Amyloid-β precursor protein (AβPP) is converted to Aβ through a series of divisions by β and γ secretases, which are found in lipid rafts. The control of these elements is believed to have a significant role in Aβ production throughout the aetiology of Alzheimer's disease (AD). In conclusion, research on Aβ aggregation and clearance has been active in preventing and curing Alzheimer's disorders. Thus, the purpose of this article was to describe the pharmacological function of Aβ peptide plus its process of aggregation.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855299317241014051505
2024-10-23
2024-11-23
Loading full text...

Full text loading...

References

  1. Selkoe D.J. Alzheimer’s disease is a synaptic failure. Science 2002 298 5594 789 791 10.1126/science.1074069 12399581
    [Google Scholar]
  2. Attems J. Jellinger K. Thal D.R. Van Nostrand W. Review: Sporadic cerebral amyloid angiopathy. Neuropathol. Appl. Neurobiol. 2011 37 1 75 93 10.1111/j.1365‑2990.2010.01137.x 20946241
    [Google Scholar]
  3. World population ageing. Available from: https://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2015_Report.pdf
  4. Pearson H.A. Peers C. Physiological roles for amyloid β peptides. J. Physiol. 2006 575 1 5 10 10.1113/jphysiol.2006.111203 16809372
    [Google Scholar]
  5. Muller U.C. Zheng H. Cold spring harborperspect. Med (N.Y.) 2012 2 a006288
    [Google Scholar]
  6. Zheng H. Koo E.H. Biology and pathophysiology of the amyloid precursor protein. Mol. Neurodegener. 2011 6 1 27 10.1186/1750‑1326‑6‑27 21527012
    [Google Scholar]
  7. LaFerla F.M. Green K.N. Oddo S. Intracellular amyloid-β in Alzheimer’s disease. Nat. Rev. Neurosci. 2007 8 7 499 509 10.1038/nrn2168 17551515
    [Google Scholar]
  8. Campion D. Pottier C. Nicolas G. Le Guennec K. Rovelet-Lecrux A. Alzheimer disease: Modeling an Aβ-centered biological network. Mol. Psychiatry 2016 21 7 861 871 10.1038/mp.2016.38 27021818
    [Google Scholar]
  9. Vetrivel K.S. Thinakaran G. Membrane rafts in Alzheimer’s disease beta-amyloid production. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2010 1801 8 860 867 10.1016/j.bbalip.2010.03.007 20303415
    [Google Scholar]
  10. Pike L.J. Lipid rafts: Bringing order to chaos. J. Lipid Res. 2003 44 4 655 667 10.1194/jlr.R200021‑JLR200 12562849
    [Google Scholar]
  11. De Strooper B. Vassar R. Golde T. The secretases: Enzymes with therapeutic potential in Alzheimer disease. Nat. Rev. Neurol. 2010 6 2 99 107 10.1038/nrneurol.2009.218 20139999
    [Google Scholar]
  12. Haass C. Kaether C. Thinakaran G. Sisodia S. Trafficking and proteolytic processing of APP. Cold Spring Harb. Perspect. Med. 2012 2 5 a006270 10.1101/cshperspect.a006270 22553493
    [Google Scholar]
  13. Yoon S.S. AhnJo S-M. Mechanisms of amyloid-β peptide clearance: Potential therapeutic targets for Alzheimer’s disease. Biomol. Ther. (Seoul) 2012 20 3 245 255 10.4062/biomolther.2012.20.3.245 24130920
    [Google Scholar]
  14. Okada H. Zhang W. Peterhoff C. Hwang J.C. Nixon R.A. Ryu S.H. Kim T.W. Proteomic identification of sorting nexin 6 as a negative regulator of BACE1-mediated APP processing. FASEB J. 24 8 2783 2994 10.1096/fj.09‑146357 20354142
    [Google Scholar]
  15. Riddell D.R. Christie G. Hussain I. Dingwall C. Compartmentalization of β-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts. Curr. Biol. 2001 11 16 1288 1293 10.1016/S0960‑9822(01)00394‑3 11525745
    [Google Scholar]
  16. Kojro E. Gimpl G. Lammich S. März W. Fahrenholz F. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the α-secretase ADAM 10. Proc. Natl. Acad. Sci. USA 2001 98 10 5815 5820 10.1073/pnas.081612998 11309494
    [Google Scholar]
  17. Kojro E. Füger P. Prinzen C. Statins and the squalene synthase inhibitor zaragozic acid stimulate the non-amyloidogenic pathway of amyloid-β protein precursor processing by suppression of cholesterol synthesis. J. Alzheimers Dis. 2010 20 4 1215 1231 10.3233/JAD‑2010‑091621 20413873
    [Google Scholar]
  18. Cai Z. Zhao B. Ratka A. Oxidative stress and β-amyloid protein in Alzheimer’s disease. Neuromolecular Med. 2011 13 4 223 250 10.1007/s12017‑011‑8155‑9 21901428
    [Google Scholar]
  19. Tamagno E. Guglielmotto M. Monteleone D. Tabaton M. Amyloid-β production: Major link between oxidative stress and BACE1. Neurotox. Res. 2012 22 3 208 219 10.1007/s12640‑011‑9283‑6 22002808
    [Google Scholar]
  20. Oda A. Tamaoka A. Araki W. Oxidative stress up‐regulates presenilin 1 in lipid rafts in neuronal cells. J. Neurosci. Res. 2010 88 5 1137 1145 10.1002/jnr.22271 19885829
    [Google Scholar]
  21. Tanzi R.E. Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: A genetic perspective. Cell 2005 120 4 545 555 10.1016/j.cell.2005.02.008 15734686
    [Google Scholar]
  22. Gardella J.E. Ghiso J. Gorgone G.A. Marratta D. Kaplan A.P. Frangione B. Gorevic P.D. Intact Alzheimer amyloid precursor protein (APP) is present in platelet membranes and is encoded by platelet mRNA. Biochem. Biophys. Res. Commun. 1990 173 3 1292 1298 10.1016/S0006‑291X(05)80927‑1 1702629
    [Google Scholar]
  23. Kucheryavykh L.Y. Dávila-Rodríguez J. Rivera-Aponte D.E. Zueva L.V. Washington A.V. Sanabria P. Inyushin M.Y. Platelets are responsible for the accumulation of β-amyloid in blood clots inside and around blood vessels in mouse brain after thrombosis. Brain Res. Bull. 2017 128 98 105 10.1016/j.brainresbull.2016.11.008 27908798
    [Google Scholar]
  24. Padovani A. Borroni B. Colciaghi F. Pettenati C. Cottini E. Agosti C. Lenzi G.L. Caltagirone C. Trabucchi M. Cattabeni F. Di Luca M. Abnormalities in the pattern of platelet amyloid precursor protein forms in patients with mild cognitive impairment and Alzheimer disease. Arch. Neurol. 2002 59 1 71 75 10.1001/archneur.59.1.71 11790233
    [Google Scholar]
  25. Colciaghi F. Marcello E. Borroni B. Zimmermann M. Caltagirone C. Cattabeni F. Padovani A. Di Luca M. Platelet APP, ADAM 10 and BACE alterations in the early stages of Alzheimer disease. Neurology 2004 62 3 498 501 10.1212/01.WNL.0000106953.49802.9C 14872043
    [Google Scholar]
  26. Werring D.J. Gregoire S.M. Cipolotti L. Cerebral microbleeds and vascular cognitive impairment. J. Neurol. Sci. 2010 299 1-2 131 135 10.1016/j.jns.2010.08.034 20850134
    [Google Scholar]
  27. Tang K. Hynan L.S. Baskin F. Rosenberg R.N. Platelet amyloid precursor protein processing: A bio-marker for Alzheimer’s disease. J. Neurol. Sci. 2006 240 1-2 53 58 10.1016/j.jns.2005.09.002 16256140
    [Google Scholar]
  28. Zhang W. Huang W. Jing F. Contribution of blood platelets to vascular pathology in Alzheimer’s disease. J. Blood Med. 2013 4 141 147 10.2147/JBM.S45071 24235853
    [Google Scholar]
  29. Puzzo D. Arancio O. Amyloid-β peptide: Dr. Jekyll or Mr. Hyde? J. Alzheimers Dis. 2013 33 Suppl 1 S111 S120 22735675
    [Google Scholar]
  30. Clarke D.L. Johansson C.B. Wilbertz J. Veress B. Nilsson E. Karlstrom H. Generalized potential of adult neural stem cells. Science 2000 288 1660 1663 10.1126/science.288.5471.1660 10834848
    [Google Scholar]
  31. Citri A. Malenka R.C. Synaptic plasticity: Multiple forms, functions, and mechanisms. Neuropsychopharmacology 2008 33 1 18 41 10.1038/sj.npp.1301559 17728696
    [Google Scholar]
  32. Shankar G.M. Walsh D.M. Alzheimer’s disease: Synaptic dysfunction and Aβ. Mol. Neurodegener. 2009 4 1 48 10.1186/1750‑1326‑4‑48 19930651
    [Google Scholar]
  33. Parihar M.S. Brewer G.J. Amyloid-β as a modulator of synaptic plasticity. J. Alzheimers Dis. 2010 22 3 741 763 10.3233/JAD‑2010‑101020 20847424
    [Google Scholar]
  34. Zou K. Gong J.S. Yanagisawa K. Michikawa M. A novel function of monomeric amyloid beta-protein serving as an antioxidant molecule against metal-induced oxidative damage. J. Neurosci. 2002 22 12 4833 4841 10.1523/JNEUROSCI.22‑12‑04833.2002 12077180
    [Google Scholar]
  35. Fonseca M.B. Solá S. Xavier J.M. Dionísio P.A. Rodrigues C.M.P. Amyloid β peptides promote autophagy-dependent differentiation of mouse neural stem cells: Aβ-mediated neural differentiation. Mol. Neurobiol. 2013 48 3 829 840 10.1007/s12035‑013‑8471‑1 23729317
    [Google Scholar]
  36. Giuffrida M.L. Caraci F. Pignataro B. Cataldo S. De Bona P. Bruno V. Molinaro G. Pappalardo G. Messina A. Palmigiano A. Garozzo D. Nicoletti F. Rizzarelli E. Copani A. Beta-amyloid monomers are neuroprotective. J. Neurosci. 2009 29 34 10582 10587 10.1523/JNEUROSCI.1736‑09.2009 19710311
    [Google Scholar]
  37. Bhaskar K. Miller M. Chludzinski A. Herrup K. Zagorski M. Lamb B.T. The PI3K-Akt-mTOR pathway regulates Aβ oligomer induced neuronal cell cycle events. Mol. Neurodegener. 2009 4 1 14 10.1186/1750‑1326‑4‑14 19291319
    [Google Scholar]
  38. Zhan X.Q. Yao J.J. Liu D.D. Ma Q. Mei Y.A. Aβ40 modulates GABA A receptor α6 subunit expression and rat cerebellar granule neuron maturation through the ERK/mTOR pathway. J. Neurochem. 2014 128 3 350 362 10.1111/jnc.12471 24118019
    [Google Scholar]
  39. Sadigh-Eteghad S. Talebi M. Farhoudi M. Golzari S.E.J. Sabermarouf B. Mahmoudi J. Beta-amyloid exhibits antagonistic effects on alpha 7 nicotinic acetylcholine receptors in orchestrated manner. J. Med. Hypotheses Ideas 2014 8 2 49 52 10.1016/j.jmhi.2014.01.001
    [Google Scholar]
  40. Demuro A. Parker I. Stutzmann G.E. Calcium signaling and amyloid toxicity in Alzheimer disease. J. Biol. Chem. 2010 285 17 12463 12468 10.1074/jbc.R109.080895 20212036
    [Google Scholar]
  41. Garcia-Osta A. Alberini C.M. Amyloid beta mediates memory formation. Learn. Mem. 2009 16 4 267 272 10.1101/lm.1310209 19318468
    [Google Scholar]
  42. Unnikrishnan M.K. Rao M.N.A. Antiinflammatory activity of methionine, methionine sulfoxide and methionine sulfone. Agents Actions 1990 31 1-2 110 112 10.1007/BF02003229 2285015
    [Google Scholar]
  43. Miners J.S. Barua N. Kehoe P.G. Gill S. Love S. Aβ-degrading enzymes: Potential for treatment of Alzheimer disease. J. Neuropathol. Exp. Neurol. 2011 70 11 944 959 10.1097/NEN.0b013e3182345e46 22002425
    [Google Scholar]
  44. Bulloj A. Leal M.C. Surace E.I. Zhang X. Xu H. Ledesma M.D. Castaño E.M. Morelli L. Detergent resistant membrane-associated IDE in brain tissue and cultured cells: Relevance to Aβ and insulin degradation. Mol. Neurodegener. 2008 3 1 22 10.1186/1750‑1326‑3‑22 19117523
    [Google Scholar]
  45. Pacheco-Quinto J. Herdt A. Eckman C.B. Eckman E.A. Endothelin-converting enzymes and related metalloproteases in Alzheimer’s disease. J. Alzheimers Dis. 2013 33 Suppl 1 01 S101 S110 10.3233/JAD‑2012‑129043 22903130
    [Google Scholar]
  46. Abdul-Hay S.O. Sahara T. McBride M. Kang D. Leissring M.A. Identification of BACE2 as an avid ß-amyloid-degrading protease. Mol. Neurodegener. 2012 7 1 46 10.1186/1750‑1326‑7‑46 22986058
    [Google Scholar]
  47. Ferreira S.T. Klein W.L. The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol. Learn. Mem. 2011 96 4 529 543 10.1016/j.nlm.2011.08.003 21914486
    [Google Scholar]
  48. Nalivaeva N.N. Beckett C. Belyaev N.D. Turner A.J. Are amyloid-degrading enzymes viable therapeutic targets in Alzheimer's disease? J. Neurochem. 2012 20 Suppl 1 167 185 10.1111/j.1471‑4159.2011.07510.x 22122230
    [Google Scholar]
  49. Sato K. Tanabe C. Yonemura Y. Watahiki H. Zhao Y. Yagishita S. Ebina M. Suo S. Futai E. Murata M. Ishiura S. Localization of mature neprilysin in lipid rafts. J. Neurosci. Res. 2012 90 4 870 877 10.1002/jnr.22796 22183801
    [Google Scholar]
  50. Hama E. Shirotani K. Iwata N. Saido T.C. Effects of neprilysin chimeric proteins targeted to subcellular compartments on amyloid beta peptide clearance in primary neurons. J. Biol. Chem. 2004 279 29 30259 30264 10.1074/jbc.M401891200 15100223
    [Google Scholar]
  51. Huang S.M. Mouri A. Kokubo H. Nakajima R. Suemoto T. Higuchi M. Staufenbiel M. Noda Y. Yamaguchi H. Nabeshima T. Saido T.C. Iwata N. Neprilysin-sensitive synapse-associated amyloid-beta peptide oligomers impair neuronal plasticity and cognitive function. J. Biol. Chem. 2006 281 26 17941 17951 10.1074/jbc.M601372200 16636059
    [Google Scholar]
  52. Vekrellis K. Ye Z. Qiu W.Q. Walsh D. Hartley D. Chesneau V. Rosner M.R. Selkoe D.J. Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J. Neurosci. 2000 20 5 1657 1665 10.1523/JNEUROSCI.20‑05‑01657.2000 10684867
    [Google Scholar]
  53. Conicella A.E. Fawzi N.L. The C-terminal threonine of Aβ43 nucleates toxic aggregation via structural and dynamical changes in monomers and protofibrils. Biochemistry 2014 53 19 3095 3105 10.1021/bi500131a 24773532
    [Google Scholar]
  54. Araki W. Beta- and gamma-secretasesand lipid rafts. Opne Biol J 2010 3 16 20
    [Google Scholar]
  55. Rushworth J.V. Hooper N.M. Lipid Rafts: Linking Alzheimer’s amyloid-β production, aggregation, and toxicity at neuronal membranes. Int. J. Alzheimers Dis. 2011 2011 1 603052 10.4061/2011/603052 21234417
    [Google Scholar]
  56. Bush A. I. The metallobiology of Alzheimer's disease. Trends Neurosci. 2003 26 4 207 214 10.1016/S0166‑2236(03)00067‑5 12689772
    [Google Scholar]
  57. Butterfield DA. Swomley AM. Sultana R. Amyloid β-peptide (1–42)-induced oxidative stress in Alzheimer disease: Importance in disease pathogenesis and progression. Antioxid. Redox Signal 2013 19 8 823 835 10.1089/ars.2012.5027 23249141
    [Google Scholar]
  58. Tu S. Okamoto S. Lipton S.A. Xu H. Oligomeric Aβ-induced synaptic dysfunction in Alzheimer’s disease. Mol. Neurodegener. 2014 9 1 48 10.1186/1750‑1326‑9‑48 25394486
    [Google Scholar]
  59. Härd T. Amyloid fibrils: Formation, polymorphism, and inhibition. J. Phys. Chem. Lett. 2014 5 3 607 614 10.1021/jz4027612 26276617
    [Google Scholar]
  60. Gurry T. Stultz C.M. Mechanism of amyloid-β fibril elongation. Biochemistry 2014 53 44 6981 6991 10.1021/bi500695g 25330398
    [Google Scholar]
  61. Cohen S.I.A. Linse S. Luheshi L.M. Hellstrand E. White D.A. Rajah L. Otzen D.E. Vendruscolo M. Dobson C.M. Knowles T.P.J. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl. Acad. Sci. USA 2013 110 24 9758 9763 10.1073/pnas.1218402110 23703910
    [Google Scholar]
  62. Adler J. Scheidt H.A. Krüger M. Thomas L. Huster D. Local interactions influence the fibrillation kinetics, structure and dynamics of Aβ(1–40) but leave the general fibril structure unchanged. Phys. Chem. Chem. Phys. 2014 16 16 7461 7471 10.1039/C3CP54501F 24626742
    [Google Scholar]
  63. Karran E. Mercken M. Strooper B.D. The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 2011 10 9 698 712 10.1038/nrd3505 21852788
    [Google Scholar]
  64. Hayden E.Y. Teplow D.B. Amyloid β-protein oligomers and Alzheimer’s disease. Alzheimers Res. Ther. 2013 5 6 60 10.1186/alzrt226 24289820
    [Google Scholar]
  65. Carrillo-Mora P. Luna R. Colín-Barenque L. Amyloid beta: Multiple mechanisms of toxicity and only some protective effects? Oxid. Med. Cell. Longev. 2014 2014 1 15 10.1155/2014/795375 24683437
    [Google Scholar]
  66. Butterfield D.A. Sultana R. J. Amino Acids 2011 2011 10
    [Google Scholar]
  67. Maiti P. Lomakin A. Benedek G.B. Bitan G. Despite its role in assembly, methionine 35 is not necessary for amyloid β‐protein toxicity. J. Neurochem. 2010 113 5 1252 1262 10.1111/j.1471‑4159.2010.06692.x 20345758
    [Google Scholar]
  68. Al-Hilaly Y.K. Williams T.L. Stewart-Parker M. Ford L. Skaria E. Cole M. Bucher W.G. Morris K.L. Sada A.A. Thorpe J.R. Serpell L.C. A central role for dityrosine crosslinking of Amyloid-β in Alzheimer’s disease. Acta Neuropathol. Commun. 2013 1 1 83 10.1186/2051‑5960‑1‑83 24351276
    [Google Scholar]
  69. Ni R. Marutle A. Nordberg A. Modulation of α7 nicotinic acetylcholine receptor and fibrillar amyloid-β interactions in Alzheimer’s disease brain. J. Alzheimers Dis. 2013 33 3 841 851 10.3233/JAD‑2012‑121447 23042213
    [Google Scholar]
  70. Hedskog S. Zhang S. Ankarcrona M. Strategic role for mitochondria in Alzheimer's disease and cancer. Antioxid. Redox Signal. 2012 16 1476 1491 10.1089/ars.2011.4259 21902456
    [Google Scholar]
  71. Shi C. Zhu X. Wang J. Long D. Intromitochondrial IκB/NF-κB signaling pathway is involved in amyloid β peptide-induced mitochondrial dysfunction. J. Bioenerg. Biomembr. 2014 46 5 371 376 10.1007/s10863‑014‑9567‑7 25052843
    [Google Scholar]
  72. Wang H. Fan L. Wang H. Ma X. Du Z. Amyloid β regulates the expression and function of AIP1. J. Mol. Neurosci. 2015 55 1 227 232 10.1007/s12031‑014‑0310‑y 24985705
    [Google Scholar]
  73. Rajasekhar K. Chakrabarti M. Govindaraju T. Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer’s disease. Chem. Commun. (Camb.) 2015 51 70 13434 13450 10.1039/C5CC05264E 26247608
    [Google Scholar]
  74. Cai Z. Yan L-J. Ratka A. Telomere shortening and Alzheimer's disease. Neuromolecular Med. 2013 15 25 48 10.1007/s12017‑012‑8207‑9 23161153
    [Google Scholar]
  75. Kawahara M. Kuroda Y. Molecular mechanism of neurodegeneration induced by Alzheimer’s β-amyloid protein: Channel formation and disruption of calcium homeostasis. Brain Res. Bull. 2000 53 4 389 397 10.1016/S0361‑9230(00)00370‑1 11136994
    [Google Scholar]
  76. Zhao L.N. Long H.W. Mu Y. Chew L.Y. The toxicity of amyloid β oligomers. Int. J. Mol. Sci. 2012 13 6 7303 7327 10.3390/ijms13067303 22837695
    [Google Scholar]
  77. Tofoleanu F. Buchete N.V. Alzheimer Aβ peptide interactions with lipid membranes. Prion 2012 6 4 339 345 10.4161/pri.21022 22874669
    [Google Scholar]
  78. Nixon R.A. Autophagy, amyloidogenesis and Alzheimer disease. J. Cell Sci. 2007 120 23 4081 4091 10.1242/jcs.019265 18032783
    [Google Scholar]
  79. Zhu X.C. Yu J.T. Jiang T. Tan L. Autophagy modulation for Alzheimer’s disease therapy. Mol. Neurobiol. 2013 48 3 702 714 10.1007/s12035‑013‑8457‑z 23625314
    [Google Scholar]
  80. Fleming A. Noda T. Yoshimori T. Rubinsztein D.C. Chemical modulators of autophagy as biological probes and potential therapeutics. Nat. Chem. Biol. 2011 7 1 9 17 10.1038/nchembio.500 21164513
    [Google Scholar]
  81. Hochfeld W.E. Lee S. Rubinsztein D.C. Therapeutic induction of autophagy to modulate neurodegenerative disease progression. Acta Pharmacol. Sin. 2013 34 5 600 604 10.1038/aps.2012.189 23377551
    [Google Scholar]
  82. Spilman P. Podlutskaya N. Hart M.J. Debnath J. Gorostiza O. Bredesen D. Richardson A. Strong R. Galvan V. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. PLoS One 2010 5 4 e9979 10.1371/journal.pone.0009979 20376313
    [Google Scholar]
  83. Du J. Liang Y. Xu F. Sun B. Wang Z. Trehalose rescues Alzheimer’s disease phenotypes in APP/PS1 transgenic mice. J. Pharm. Pharmacol. 2013 65 12 1753 1756 10.1111/jphp.12108 24236985
    [Google Scholar]
  84. Bates K.A. Verdile G. Li Q-X. Ames D. Hudson P. Masters C.L. Martins R.N. Clearance mechanisms of Alzheimer’s amyloid-β peptide: implications for therapeutic design and diagnostic tests. Mol. Psychiatry 2009 14 5 469 486 10.1038/mp.2008.96 18794889
    [Google Scholar]
  85. Saura J. Petegnief V. Wu X. Liang Y. Paul S.M. Microglial apolipoprotein E and astroglial apolipoprotein J expression in vitro: Opposite effects of lipopolysaccharide. J. Neurochem. 2003 85 6 1455 1467 10.1046/j.1471‑4159.2003.01788.x 12787065
    [Google Scholar]
  86. Wildsmith K.R. Holley M. Savage J.C. Skerrett R. Landreth G.E. Evidence for impaired amyloid β clearance in Alzheimer’s disease. Alzheimers Res. Ther. 2013 5 4 33 10.1186/alzrt187 23849219
    [Google Scholar]
  87. Li HQ. Chen C. Dou Y. P2Y4 receptor-mediated pinocytosis contributes to amyloid beta-induced self-uptake by microglia. Mol. Cell Biol. 2013 33 21 4282-93 4293 10.1128/MCB.00544‑13 24001770
    [Google Scholar]
  88. Lee S.J. Seo B.R. Koh J.Y. Metallothionein-3 modulates the amyloid β endocytosis of astrocytes through its effects on actin polymerization. Mol. Brain 2015 8 1 84 10.1186/s13041‑015‑0173‑3 26637294
    [Google Scholar]
  89. Paresce D.M. Ghosh R.N. Maxfield F.R. Microglial cells internalize aggregates of the Alzheimer’s disease amyloid β-protein via a scavenger receptor. Neuron 1996 17 3 553 565 10.1016/S0896‑6273(00)80187‑7 8816718
    [Google Scholar]
  90. Bu G. Apolipoprotein E and its receptors in Alzheimer’s disease: Pathways, pathogenesis and therapy. Nat. Rev. Neurosci. 2009 10 5 333 344 10.1038/nrn2620 19339974
    [Google Scholar]
  91. Koffie R.M. Hashimoto T. Tai H.C. Kay K.R. Serrano-Pozo A. Joyner D. Hou S. Kopeikina K.J. Frosch M.P. Lee V.M. Holtzman D.M. Hyman B.T. Spires-Jones T.L. Apolipoprotein E4 effects in Alzheimer’s disease are mediated by synaptotoxic oligomeric amyloid-β. Brain 2012 135 7 2155 2168 10.1093/brain/aws127 22637583
    [Google Scholar]
  92. Molecule of the month. Semagacestat. Drug News Perspect. 2008 21 7 390 19259551
    [Google Scholar]
  93. Poli G. Corda E. Lucchini B. Puricelli M. Martino P.A. Dall’Ara P. Villetti G. Bareggi S.R. Corona C. Costassa E.V. Gazzuola P. Iulini B. Mazza M. Acutis P. Mantegazza P. Casalone C. Imbimbo B.P. Therapeutic effect of CHF5074, a new γ-secretase modulator, in a mouse model of scrapie. Prion 2012 6 1 62 72 10.4161/pri.6.1.18317 22453180
    [Google Scholar]
  94. Godyń J. Jończyk J. Panek D. Malawska B. Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol. Rep. 2016 68 1 127 138 10.1016/j.pharep.2015.07.006 26721364
    [Google Scholar]
  95. Eketjäll S. Janson J. Kaspersson K. Bogstedt A. Jeppsson F. Fälting J. Haeberlein S.B. Kugler A.R. Alexander R.C. Cebers G. AZD3293: A novel, orally active BACE1 inhibitor with high potency and permeability and markedly slow off-rate kinetics. J. Alzheimers Dis. 2016 50 4 1109 1123 10.3233/JAD‑150834 26890753
    [Google Scholar]
  96. Frisardi V. Solfrizzi V. Imbimbo B. Capurso C. D’Introno A. Colacicco A. Vendemiale G. Seripa D. Pilotto A. Capurso A. Panza F. Towards disease-modifying treatment of Alzheimer’s disease: drugs targeting beta-amyloid. Curr. Alzheimer Res. 2010 7 1 40 55 10.2174/156720510790274400 19939231
    [Google Scholar]
  97. Durães F. Pinto M. Sousa E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals (Basel) 2018 11 2 44 10.3390/ph11020044 29751602
    [Google Scholar]
  98. Kim T.W. Drug repositioning approaches for the discovery of new therapeutics for Alzheimer’s disease. Neurotherapeutics 2015 12 1 132 142 10.1007/s13311‑014‑0325‑7 25549849
    [Google Scholar]
  99. Shoaib M. Kamal M.A. Rizvi S.M.D. Repurposed drugs as potential therapeutic candidates for the management of Alzheimer’s Disease. Curr. Drug Metab. 2017 18 9 842 852 28595531
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855299317241014051505
Loading
/content/journals/cdth/10.2174/0115748855299317241014051505
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: amyloid beta precursor protein ; peptide ; alzheimer’s disease ; Amyloid beta ; secretase
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test