Skip to content
2000
image of Orexin Receptor System: Molecular Insights and Therapeutic Implications

Abstract

Neuropeptide neurotransmitters, orexins, are produced in the lateral hypothalamus. They are extensively dispersed throughout the central nervous system, except the cerebellum and peripheral nervous system. Orexin works by attaching themselves to G-protein-coupled receptors: orexin receptor 1 (OXR1) & orexin receptor 2 (OXR2). They play a role in the regulation of energy homeostasis, appetite, sleep-wake cycles, and other disorders like cancer, ischemic stroke, depression, Alzheimer's disease, and narcolepsy. Prepro-orexin peptide undergoes proteolytic breakdown to create these neurotransmitters. Orexin receptor antagonists decrease both non-rapid eye movement and rapid eye movement sleep, which increases awake through the lateral preoptic region. It encourages eating and supports the control of feeding habits, thus can be used in the treatment of obesity. In Alzheimer's disease, orexin enhances tau protein-mediated neurodegeneration and beta-amyloid buildup by interacting with the biomarkers of the illness found in the cerebrospinal fluid (beta-amyloid/tau proteins). It also lessens neuroinflammation, enhances cognitive performance, and prevents the formation of plaque, which contains beta-amyloid and tau proteins.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855312643241004111641
2024-10-16
2024-11-26
Loading full text...

Full text loading...

References

  1. Milbank E. López M. Orexins/hypocretins: Key regulators of energy homeostasis. Front. Endocrinol. (Lausanne) 2019 10 830 10.3389/fendo.2019.00830 31920958
    [Google Scholar]
  2. Dale N.C. Hoyer D. Jacobson L.H. Pfleger K.D.G. Johnstone E.K.M. Orexin signaling: A complex, multifaceted process. Front. Cell. Neurosci. 2022 16 812359 10.3389/fncel.2022.812359 35496914
    [Google Scholar]
  3. Sperandeo R. Orexin system: Network multi-tasking. Acta Med. Mediter. 2018 34 2 349 356
    [Google Scholar]
  4. Kukkonen J.P. Orexin/Hypocretin signaling. Behavioral Neuroscience of Orexin/Hypocretin Lawrence AJ. de Lecea L. 2016 17 50 10.1007/7854_2016_49
    [Google Scholar]
  5. Berteotti C. Liguori C. Pace M. Dysregulation of the orexin/hypocretin system is not limited to narcolepsy but has far‐reaching implications for neurological disorders. Eur. J. Neurosci. 2021 53 4 1136 1154 10.1111/ejn.15077 33290595
    [Google Scholar]
  6. Soya S. Sakurai T. Evolution of orexin neuropeptide system: Structure and function. Front. Neurosci. 2020 14 691 10.3389/fnins.2020.00691 32754010
    [Google Scholar]
  7. Davies J. Chen J. Pink R. Orexin receptors exert a neuroprotective effect in Alzheimer's disease (AD) via heterodimerization with GPR103. Sci. Rep. 2015 5 12584 10.1038/srep12584 26223541
    [Google Scholar]
  8. Imperatore R. Palomba L. Cristino L. Role of orexin-A in hypertension and obesity. Curr. Hypertens. Rep. 2017 19 4 34 10.1007/s11906‑017‑0729‑y 28353077
    [Google Scholar]
  9. Razavi B.M. Hosseinzadeh H. A review of the role of orexin system in pain modulation. Biomed. Pharmacother. 2017 90 187 193 10.1016/j.biopha.2017.03.053 28360013
    [Google Scholar]
  10. Wang C. Wang Q. Ji B. Pan Y. Xu C. Cheng B. Bai B. Chen J. The orexin/receptor system: Molecular mechanism and therapeutic potential for neurological diseases. Front. Mol. Neurosci. 2018 11 220 10.3389/fnmol.2018.00220 30002617
    [Google Scholar]
  11. Karteris E. Chen J. Randeva H.S. Expression of human prepro-orexin and signaling characteristics of orexin receptors in the male reproductive system. J. Clin. Endocrinol. Metab. 2004 89 4 1957 1962 10.1210/jc.2003‑031778 15070969
    [Google Scholar]
  12. Sakurai T. Orexin and orexin receptors. Hypocretins Boston, MA Springer de Lecea L. Sutcliffe JG. 2005 13 23 10.1007/0‑387‑25446‑3_2
    [Google Scholar]
  13. Boss C. Roch C. Recent trends in orexin research—2010 to 2015. Bioorg. Med. Chem. Lett. 2015 25 15 2875 2887 10.1016/j.bmcl.2015.05.012 26045032
    [Google Scholar]
  14. Chieffi S. Carotenuto M. Monda V. Valenzano A. Villano I. Precenzano F. Tafuri D. Salerno M. Filippi N. Nuccio F. Ruberto M. De Luca V. Cipolloni L. Cibelli G. Mollica M.P. Iacono D. Nigro E. Monda M. Messina G. Messina A. Orexin system: the key for a healthy life. Front. Physiol. 2017 8 357 10.3389/fphys.2017.00357 28620314
    [Google Scholar]
  15. Sargin D. The role of the orexin system in stress response. Neuropharmacology 2019 154 68 78 10.1016/j.neuropharm.2018.09.034 30266600
    [Google Scholar]
  16. Berhe D.F. Gebre A.K. Assefa B.T. Orexins role in neurodegenerative diseases: From pathogenesis to treatment. Pharmacol. Biochem. Behav. 2020 194 172929 10.1016/j.pbb.2020.172929 32315694
    [Google Scholar]
  17. Zhang H. Liang B. Li T. Zhou Y. Shang D. Du Z. Orexin A suppresses oxidized LDL induced endothelial cell inflammation via MAPK p38 and NF‐κB signaling pathway. IUBMB Life 2018 70 10 961 968 10.1002/iub.1890 30207631
    [Google Scholar]
  18. Kukkonen J.P. Turunen P.M. Cellular signaling mechanisms of hypocretin/orexin. Front. Neurol. Neurosci. 2021 45 91 102 10.1159/000514962 34052812
    [Google Scholar]
  19. Kukkonen J.P. G-protein-dependency of orexin/hypocretin receptor signalling in recombinant Chinese hamster ovary cells. Biochem. Biophys. Res. Commun. 2016 476 4 379 385 10.1016/j.bbrc.2016.05.130 27237973
    [Google Scholar]
  20. Usui M. Kaneko K. Oi Y. Kobayashi M. Orexin facilitates GABAergic IPSCs via postsynaptic OX1 receptors coupling to the intracellular PKC signalling cascade in the rat cerebral cortex. Neuropharmacology 2019 149 97 112 10.1016/j.neuropharm.2019.02.012 30763655
    [Google Scholar]
  21. Ten-Blanco M. Flores Á. Cristino L. Pereda-Pérez I. Berrendero F. Targeting the orexin/hypocretin system for the treatment of neuropsychiatric and neurodegenerative diseases: From animal to clinical studies. Front. Neuroendocrinol. 2023 69 101066 10.1016/j.yfrne.2023.101066 37015302
    [Google Scholar]
  22. Dustrude E.T. Caliman I.F. Bernabe C.S. Fitz S.D. Grafe L.A. Bhatnagar S. Bonaventure P. Johnson P.L. Molosh A.I. Shekhar A. Orexin depolarizes central amygdala neurons via orexin receptor 1, phospholipase C and sodium-calcium exchanger and modulates conditioned fear. Front. Neurosci. 2018 12 934 10.3389/fnins.2018.00934 30618563
    [Google Scholar]
  23. Sachidanandan D. Reddy H.P. Mani A. Hyde G.J. Bera A.K. The neuropeptide orexin-A inhibits the GABA A receptor by PKC and Ca 2+/CaMKII-dependent phosphorylation of its β 1 subunit. J. Mol. Neurosci. 2017 61 4 459 467 10.1007/s12031‑017‑0886‑0 28105535
    [Google Scholar]
  24. Clark J.W. Brian M.L. Drummond S.P.A. Hoyer D. Jacobson L.H. Effects of orexin receptor antagonism on human sleep architecture: A systematic review. Sleep Med. Rev. 2020 53 101332 10.1016/j.smrv.2020.101332 32505969
    [Google Scholar]
  25. Hoyer D. Jacobson L.H. Orexin receptor antagonists. Curr. Sleep Med. Rep. 2017 3 4 342 353 10.1007/s40675‑017‑0099‑7
    [Google Scholar]
  26. Lebold T.P. Bonaventure P. Shireman B.T. Selective orexin receptor antagonists. Bioorg. Med. Chem. Lett. 2013 23 17 4761 4769 10.1016/j.bmcl.2013.06.057 23891187
    [Google Scholar]
  27. Coleman P.J. Gotter A.L. Herring W.J. Winrow C.J. Renger J.J. The discovery of suvorexant, the first orexin receptor drug for insomnia. Annu. Rev. Pharmacol. Toxicol. 2017 57 1 509 533 10.1146/annurev‑pharmtox‑010716‑104837 27860547
    [Google Scholar]
  28. Yin J. Babaoglu K. Brautigam C.A. Clark L. Shao Z. Scheuermann T.H. Harrell C.M. Gotter A.L. Roecker A.J. Winrow C.J. Renger J.J. Coleman P.J. Rosenbaum D.M. Structure and ligand-binding mechanism of the human OX1 and OX2 orexin receptors. Nat. Struct. Mol. Biol. 2016 23 4 293 299 10.1038/nsmb.3183 26950369
    [Google Scholar]
  29. Herring WJ. Roth T. Krystal AD. Michelson D. Orexin receptor antagonists for the treatment of insomnia and potential treatment of other neuropsychiatric indications. J. Sleep Res. 2019 28 2 e12782 10.1111/jsr.12782 30338596
    [Google Scholar]
  30. Patel K.V. Aspesi A.V. Evoy K.E. Suvorexant: A dual orexin receptor antagonist for the treatment of sleep onset and sleep maintenance insomnia. Ann. Pharmacother. 2015 49 4 477 483 10.1177/1060028015570467 25667197
    [Google Scholar]
  31. Gabelle A. Jaussent I. Hirtz C. Vialaret J. Navucet S. Grasselli C. Robert P. Lehmann S. Dauvilliers Y. Cerebrospinal fluid levels of orexin-A and histamine, and sleep profile within the Alzheimer process. Neurobiol. Aging 2017 53 59 66 10.1016/j.neurobiolaging.2017.01.011 28235679
    [Google Scholar]
  32. Fish P.V. Steadman D. Bayle E.D. Whiting P. New approaches for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2019 29 2 125 133 10.1016/j.bmcl.2018.11.034 30501965
    [Google Scholar]
  33. Cummings J. Lee G. Ritter A. Zhong K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement. (N. Y.) 2018 4 1 195 214 10.1016/j.trci.2018.03.009 29955663
    [Google Scholar]
  34. Liguori C. Orexin and Alzheimer’s disease. Behavioral Neuroscience of Orexin/Hypocretin Springer Cham Lawrence AJ. de Lecea L. 2016 305 322 10.1007/7854_2016_50
    [Google Scholar]
  35. Huang L.K. Chao S.P. Hu C.J. Clinical trials of new drugs for Alzheimer disease. J. Biomed. Sci. 2020 27 1 18 10.1186/s12929‑019‑0609‑7 31906949
    [Google Scholar]
  36. Scheltens P. De Strooper B. Kivipelto M. Holstege H. Chételat G. Teunissen C.E. Cummings J. van der Flier W.M. Alzheimer’s disease. Lancet 2021 397 10284 1577 1590 10.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  37. Musiek E.S. Xiong D.D. Holtzman D.M. Sleep, circadian rhythms, and the pathogenesis of Alzheimer Disease. Exp. Mol. Med. 2015 47 3 e148 e148 10.1038/emm.2014.121 25766617
    [Google Scholar]
  38. Dauvilliers Y.A. Lehmann S. Jaussent I. Gabelle A. Hypocretin and brain β-amyloid peptide interactions in cognitive disorders and narcolepsy. Front. Aging Neurosci. 2014 6 119 10.3389/fnagi.2014.00119 24966833
    [Google Scholar]
  39. Jalilzad M. Jafari A. Babaei P. Neuregulin1β improves both spatial and associative learning and memory in Alzheimer model of rats possibly through signaling pathways other than Erk1/2. Neuropeptides 2019 78 101963 10.1016/j.npep.2019.101963 31522857
    [Google Scholar]
  40. Perez-Leighton C.E. Butterick-Peterson T.A. Billington C.J. Kotz C.M. Role of orexin receptors in obesity: From cellular to behavioral evidence. Int. J. Obes. 2013 37 2 167 174 10.1038/ijo.2012.30 22391883
    [Google Scholar]
  41. Kushner R.F. Kahan S. Introduction: The state of obesity in 2017. Med. Clin. North Am. 2018 102 1 1 11 10.1016/j.mcna.2017.08.003 29156178
    [Google Scholar]
  42. Kakizaki M. Tsuneoka Y. Takase K. Kim S.J. Choi J. Ikkyu A. Abe M. Sakimura K. Yanagisawa M. Funato H. Differential roles of each orexin receptor signaling in obesity. iScience 2019 20 1 13 10.1016/j.isci.2019.09.003 31546102
    [Google Scholar]
  43. Cason A.M. Smith R.J. Tahsili-Fahadan P. Moorman D.E. Sartor G.C. Aston-Jones G. Role of orexin/hypocretin in reward-seeking and addiction: Implications for obesity. Physiol. Behav. 2010 100 5 419 428 10.1016/j.physbeh.2010.03.009 20338186
    [Google Scholar]
  44. Smart D. Haynes A.C. Williams G. Arch J.R.S. Orexins and the treatment of obesity. Eur. J. Pharmacol. 2002 440 2-3 199 212 10.1016/S0014‑2999(02)01429‑2 12007536
    [Google Scholar]
  45. Girault E.M. Yi C.X. Fliers E. Kalsbeek A. Orexins, feeding, and energy balance. Prog. Brain Res. 2012 198 47 64 10.1016/B978‑0‑444‑59489‑1.00005‑7 22813969
    [Google Scholar]
  46. Sakurai T. Roles of orexins in the regulation of body weight homeostasis. Obes. Res. Clin. Pract. 2014 8 5 e414 e420 10.1016/j.orcp.2013.12.001 25263831
    [Google Scholar]
  47. Volkoff H. The neuroendocrine regulation of food intake in fish: A review of current knowledge. Front. Neurosci. 2016 10 540 10.3389/fnins.2016.00540 27965528
    [Google Scholar]
  48. Xiao X. Yeghiazaryan G. Hess S. Klemm P. Sieben A. Kleinridders A. Morgan D.A. Wunderlich F.T. Rahmouni K. Kong D. Scammell T.E. Lowell B.B. Kloppenburg P. Brüning J.C. Hausen A.C. Orexin receptors 1 and 2 in serotonergic neurons differentially regulate peripheral glucose metabolism in obesity. Nat. Commun. 2021 12 1 5249 10.1038/s41467‑021‑25380‑2 34475397
    [Google Scholar]
  49. Duan D. Kim L.J. Jun J.C. Polotsky V.Y. Connecting insufficient sleep and insomnia with metabolic dysfunction. Ann. N. Y. Acad. Sci. 2023 1519 1 94 117 10.1111/nyas.14926 36373239
    [Google Scholar]
  50. Tsang A. Blouet C. A pipeline for identification and validation of brain targets for weight loss. Nat. Rev. Endocrinol. 2023 19 4 190 191 10.1038/s41574‑023‑00803‑w 36697769
    [Google Scholar]
  51. Nixon J.P. Mavanji V. Butterick T.A. Billington C.J. Kotz C.M. Teske J.A. Sleep disorders, obesity, and aging: The role of orexin. Ageing Res. Rev. 2015 20 63 73 10.1016/j.arr.2014.11.001 25462194
    [Google Scholar]
  52. Jin K. Chen B. Han S. Dong J. Cheng S. Qin B. Lu J. Repetitive transcranial magnetic stimulation (rTMS) improves cognitive impairment and intestinal microecological dysfunction induced by high-fat diet in rats. Research (Wash. D.C.) 2024 7 0384 10.34133/research.0384 38826566
    [Google Scholar]
  53. Mavanji V. Pomonis B. Kotz CM. Orexin, serotonin, and energy balance. WIREs Mech. Dis. 2022 14 1 e1536 10.1002/wsbm.1536 35023323
    [Google Scholar]
  54. Al-Kuraishy H. Abdulhadi M. Hussien N. Al-Niemi M. Rasheed H. Al-Gareeb A. Involvement of orexinergic system in psychiatric and neurodegenerative disorders: A scoping review. Brain Circ. 2020 6 2 70 80 10.4103/bc.bc_42_19 33033776
    [Google Scholar]
  55. Dafer R.M. Rao M. Shareef A. Sharma A. Poststroke Depression. Top. Stroke Rehabil. 2008 15 1 13 21 10.1310/tsr1501‑13 18250069
    [Google Scholar]
  56. Nollet M. Leman S. Role of orexin in the pathophysiology of depression: Potential for pharmacological intervention. CNS Drugs 2013 27 6 411 422 10.1007/s40263‑013‑0064‑z 23657787
    [Google Scholar]
  57. Torterolo P. Chase M.H. The hypocretins (orexins) mediate the “phasic” components of REM sleep: A new hypothesis. Sleep Sci. 2014 7 1 19 29 10.1016/j.slsci.2014.07.021 26483897
    [Google Scholar]
  58. Khairuddin S. Aquili L. Heng B.C. Hoo T.L.C. Wong K.H. Lim L.W. Dysregulation of the orexinergic system: A potential neuropeptide target in depression. Neurosci. Biobehav. Rev. 2020 118 384 396 10.1016/j.neubiorev.2020.07.040 32768489
    [Google Scholar]
  59. Lu J. Zhao J. Balesar R. Fronczek R. Zhu Q.B. Wu X.Y. Hu S.H. Bao A.M. Swaab D.F. Sexually dimorphic changes of hypocretin (orexin) in depression. EBioMedicine 2017 18 311 319 10.1016/j.ebiom.2017.03.043 28377228
    [Google Scholar]
  60. Grafe L.A. Bhatnagar S. Orexins and stress. Front. Neuroendocrinol. 2018 51 132 145 10.1016/j.yfrne.2018.06.003 29932958
    [Google Scholar]
  61. Akça Ö.F. Uzun N. Kılınç İ. Orexin A in adolescents with anxiety disorders. Int. J. Psychiatry Clin. Pract. 2020 24 2 127 134 10.1080/13651501.2019.1711425 31913740
    [Google Scholar]
  62. Gorka S.M. Khorrami K.J. Manzler C.A. Phan K.L. Acute orexin antagonism selectively modulates anticipatory anxiety in humans: Implications for addiction and anxiety. Transl. Psychiatry 2022 12 1 308 10.1038/s41398‑022‑02090‑x 35918313
    [Google Scholar]
  63. Ji M.J. Zhang X.Y. Chen Z. Wang J.J. Zhu J.N. Orexin prevents depressive-like behavior by promoting stress resilience. Mol. Psychiatry 2019 24 2 282 293 10.1038/s41380‑018‑0127‑0 30087452
    [Google Scholar]
  64. Sanacora G. Yan Z. Popoli M. The stressed synapse 2.0: Pathophysiological mechanisms in stress-related neuropsychiatric disorders. Nat. Rev. Neurosci. 2022 23 2 86 103 10.1038/s41583‑021‑00540‑x 34893785
    [Google Scholar]
  65. Pitsillou E. Bresnehan S.M. Kagarakis E.A. Wijoyo S.J. Liang J. Hung A. Karagiannis T.C. The cellular and molecular basis of major depressive disorder: Towards a unified model for understanding clinical depression. Mol. Biol. Rep. 2020 47 1 753 770 10.1007/s11033‑019‑05129‑3 31612411
    [Google Scholar]
  66. Bell M. Role of the brain signaling molecule orexin in sleep disturbances and depression. Bachelor of Arts, Carthage College Kenosha, Wisconsin
    [Google Scholar]
  67. Li H. Lu J. Li S. Huang B. Shi G. Mou T. Xu Y. Increased hypocretin (orexin) plasma level in depression, bipolar disorder patients. Front. Psychiatry 2021 12 676336 10.3389/fpsyt.2021.676336 34135789
    [Google Scholar]
  68. Suo L. Chang X. Zhao Y. The orexin-A-regulated Akt/mTOR pathway promotes cell proliferation through inhibiting apoptosis in pancreatic cancer cells. Front. Endocrinol. (Lausanne) 2018 9 647 10.3389/fendo.2018.00647 30429828
    [Google Scholar]
  69. Cengiz M. Karaj V. Kocabasoğlu N. Gozubatik-Celik G. Dirican A. Bayoglu B. Orexin/hypocretin receptor, Orx 1, gene variants are associated with major depressive disorder. Int. J. Psychiatry Clin. Pract. 2019 23 2 114 121 10.1080/13651501.2018.1551549 30596528
    [Google Scholar]
  70. Stanquini L.A. Sartim A.G. Joca S.R.L. Orexin A injection into the ventral medial prefrontal cortex induces antidepressant-like effects: Possible involvement of local Orexin-1 and Trk receptors. Behav. Brain Res. 2020 395 112866 10.1016/j.bbr.2020.112866 32827568
    [Google Scholar]
  71. Clark I.A. Vissel B. Inflammation-sleep interface in brain disease: TNF, insulin, orexin. J. Neuroinflammation 2014 11 1 51 10.1186/1742‑2094‑11‑51 24655719
    [Google Scholar]
  72. Shariq A.S. Rosenblat J.D. Alageel A. Mansur R.B. Rong C. Ho R.C. Ragguett R.M. Pan Z. Brietzke E. McIntyre R.S. Evaluating the role of orexins in the pathophysiology and treatment of depression: A comprehensive review. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019 92 1 7 10.1016/j.pnpbp.2018.12.008 30576764
    [Google Scholar]
  73. Wen J. Zhao Y. Guo L. Orexin A induces autophagy in HCT-116 human colon cancer cells through the ERK signaling pathway. Int. J. Mol. Med. 2016 37 1 126 132 10.3892/ijmm.2015.2409 26572581
    [Google Scholar]
  74. An S-Y. An HK. Kim KS. Lee YC. Kim SH. Induction of autophagy by oleifolioside A in HCT-116 human colorectal cancer cells. Appl. Biol. Chem. 2023 66 10.1186/s13765‑023‑00791‑5
    [Google Scholar]
  75. Fujita K. Nonomura N. Role of androgen receptor in prostate cancer: A review. World J. Mens Health 2019 37 3 288 295 10.5534/wjmh.180040 30209899
    [Google Scholar]
  76. Tan M.H.E. Li J. Xu H.E. Melcher K. Yong E. Androgen receptor: Structure, role in prostate cancer and drug discovery. Acta Pharmacol. Sin. 2015 36 1 3 23 10.1038/aps.2014.18 24909511
    [Google Scholar]
  77. Feng Q. He B. Androgen receptor signaling in the development of castration-resistant prostate cancer. Front. Oncol. 2019 9 858 10.3389/fonc.2019.00858 31552182
    [Google Scholar]
  78. Laburthe M. Voisin T. El Firar A. Orexins/hypocretins and orexin receptors in apoptosis: A mini‐review. Acta Physiol. (Oxf.) 2010 198 3 393 402 10.1111/j.1748‑1716.2009.02035.x 19719798
    [Google Scholar]
  79. Graybill N.L. Weissig V. A review of orexin’s unprecedented potential as a novel, highly-specific treatment for various localized and metastatic cancers. SAGE Open Med. 2017 5 10.1177/2050312117735774 29147564
    [Google Scholar]
  80. Wan X. Liu Y. Zhao Y. Sun X. Fan D. Guo L. Orexin A affects HepG2 human hepatocellular carcinoma cells glucose metabolism via HIF-1α-dependent and -independent mechanism. PLoS One 2017 12 9 e0184213 10.1371/journal.pone.0184213 28886081
    [Google Scholar]
  81. Guo Xin Wen J. Gao Q. Orexin-A/OX1R is involved in regulation of autophagy to promote cortisol secretion in adrenocortical cell. Biochim. Biophys. Acta Mol. Basis Dis. 2024 1870 1 166844 10.1016/j.bbadis.2023.166844 37572990
    [Google Scholar]
  82. Wang C.M. Yang C.Q. Cheng B.H. Chen J. Bai B. Orexin-A protects SH-SY5Y cells against H 2 O 2 -induced oxidative damage via the PI3K/MEK 1/2 /ERK 1/2 signaling pathway. Int. J. Immunopathol. Pharmacol. 2018 32 10.1177/2058738418785739 29983082
    [Google Scholar]
  83. Marcos P. Coveñas R. Involvement of the orexinergic system in cancer: Antitumor strategies and future perspectives. Appl. Sci. 2023 13 13 7596 10.3390/app13137596
    [Google Scholar]
  84. Liu Y. Zhao Y. Guo L. Effects of orexin A on glucose metabolism in human hepatocellular carcinoma in vitro via PI3K/Akt/mTOR-dependent and -independent mechanism. Mol. Cell. Endocrinol. 2016 420 208 216 10.1016/j.mce.2015.11.002 26549689
    [Google Scholar]
  85. Voisin T. Nicole P. Gratio V. Chassac A. Mansour D. Rebours V. Couvelard A. Couvineau A. The orexin-a/ox1r system induces cell death in pancreatic cancer cells resistant to gemcitabine and nab-paclitaxel treatment. Front. Oncol. 2022 12 904327 10.3389/fonc.2022.904327 35747788
    [Google Scholar]
  86. Couvineau A. Dayot S. Nicole P. Gratio V. Rebours V. Couvelard A. Voisin T. The anti-tumoral properties of orexin/hypocretin hypothalamic neuropeptides: An unexpected therapeutic role. Front. Endocrinol. (Lausanne) 2018 9 573 10.3389/fendo.2018.00573 30319552
    [Google Scholar]
  87. Biegańska K. Sokołowska P. Jöhren O. Zawilska J.B. Orexin A suppresses the growth of rat C6 glioma cells via a caspase-dependent mechanism. J. Mol. Neurosci. 2012 48 3 706 712 10.1007/s12031‑012‑9799‑0 22588980
    [Google Scholar]
  88. Greene E.S. Zampiga M. Sirri F. Ohkubo T. Dridi S. Orexin system is expressed in avian liver and regulates hepatic lipogenesis via ERK1/2 activation. Sci. Rep. 2020 10 1 19191 10.1038/s41598‑020‑76329‑2 33154530
    [Google Scholar]
  89. Nicole P. Couvineau P. Jamin N. Voisin T. Couvineau A. Crucial role of the orexin‐B C‐terminus in the induction of OX 1 receptor‐mediated apoptosis: Analysis by alanine scanning, molecular modelling and site‐directed mutagenesis. Br. J. Pharmacol. 2015 172 21 5211 5223 10.1111/bph.13287 26282891
    [Google Scholar]
  90. Laburthe M. Voisin T. The orexin receptor OX 1 R in colon cancer: A promising therapeutic target and a new paradigm in G protein‐coupled receptor signalling through ITIMs. Br. J. Pharmacol. 2012 165 6 1678 1687 10.1111/j.1476‑5381.2011.01510.x 21627633
    [Google Scholar]
  91. Stopa KB. Kusiak AA. Szopa MD. Pancreatic cancer and its microenvironment—recent advances and current controversies. Int. J. Mol. Sci. 2020 21 9 3218 10.3390/ijms21093218 32370075
    [Google Scholar]
  92. Weniger M. Honselmann KC. Liss AS. The extracellular matrix and pancreatic cancer: A complex relationship. Cancers (Basel) 2018 10 9 316 10.3390/cancers10090316 30200666
    [Google Scholar]
  93. OuYang L.Y. Wu X.J. Ye S.B. Zhang R. Li Z.L. Liao W. Pan Z.Z. Zheng L.M. Zhang X.S. Wang Z. Li Q. Ma G. Li J. Tumor-induced myeloid-derived suppressor cells promote tumor progression through oxidative metabolism in human colorectal cancer. J. Transl. Med. 2015 13 1 47 10.1186/s12967‑015‑0410‑7 25638150
    [Google Scholar]
  94. Alain C. Pascal N. Valérie G. Thierry V. Orexins/hypocretins and cancer: A neuropeptide as emerging target. Molecules 2021 26 16 4849 10.3390/molecules26164849 34443437
    [Google Scholar]
  95. Park JK. Doseff AI. Schmittgen TD. MicroRNAs targeting caspase-3 and-7 in PANC-1 cell. Int. J. Mol. Sci. 2018 19 4 1206 10.3390/ijms19041206 29659498
    [Google Scholar]
  96. Nath S. Mandal C. Chatterjee U. Mandal C. Association of cytosolic sialidase Neu2 with plasma membrane enhances Fas-mediated apoptosis by impairing PI3K-Akt/mTOR-mediated pathway in pancreatic cancer cells. Cell Death Dis. 2018 9 2 210 10.1038/s41419‑017‑0191‑4 29434218
    [Google Scholar]
  97. Sakorafas G.H. Tsiotou A.G. Tsiotos G.G. Molecular biology of pancreatic cancer; Oncogenes, tumour suppressor genes, growth factors, and their receptors from a clinical perspective. Cancer Treat. Rev. 2000 26 1 29 52 10.1053/ctrv.1999.0144 10660490
    [Google Scholar]
  98. Morgan R. Hunter K. Pandha H.S. Downstream of the HOX genes: Explaining conflicting tumour suppressor and oncogenic functions in cancer. Int. J. Cancer 2022 150 12 1919 1932 10.1002/ijc.33949 35080776
    [Google Scholar]
  99. Sokołowska P. Urbańska A. Namiecińska M. Biegańska K. Zawilska J.B. Orexins promote survival of rat cortical neurons. Neurosci. Lett. 2012 506 2 303 306 10.1016/j.neulet.2011.11.028 22138089
    [Google Scholar]
  100. Jan C.R. Su J.A. Teng C.C. Sheu M.L. Lin P.Y. Chi M.C. Chang C.H. Liao W.C. Kuo C.C. Chou C.T. Mechanism of maprotiline-induced apoptosis: Role of [Ca2+]i, ERK, JNK and caspase-3 signaling pathways. Toxicology 2013 304 1 12 10.1016/j.tox.2012.11.013 23219590
    [Google Scholar]
  101. Li Y. Yang G-Y. Pathophysiology of ischemic stroke. Translational Research in Stroke Springer Singapore Lapchak P. Yang G.Y. 2017 51 75 10.1007/978‑981‑10‑5804‑2_4
    [Google Scholar]
  102. Ghosh M.K. Chakraborty D. Bhowmik A. Ghosh M.K. Cerebral ischemic stroke cellular fate and therapeutic opportunities. Front. Biosci. 2019 24 3 435 450 10.2741/4727 30468665
    [Google Scholar]
  103. Kitamura E. Hamada J. Kanazawa N. Yonekura J. Masuda R. Sakai F. Mochizuki H. The effect of orexin-A on the pathological mechanism in the rat focal cerebral ischemia. Neurosci. Res. 2010 68 2 154 157 10.1016/j.neures.2010.06.010 20600373
    [Google Scholar]
  104. Krafft P.R. Altay O. Rolland W.B. Duris K. Lekic T. Tang J. Zhang J.H. α7 nicotinic acetylcholine receptor agonism confers neuroprotection through GSK-3β inhibition in a mouse model of intracerebral hemorrhage. Stroke 2012 43 3 844 850 10.1161/STROKEAHA.111.639989 22207510
    [Google Scholar]
  105. Kimura A. Namekata N. Guo X. Harada C. Harada T. Neuroprotection, growth factors and BDNF-TrkB signalling in retinal degeneration. Int. J. Mol. Sci. 2016 17 9 1584 10.3390/ijms17091584 27657046
    [Google Scholar]
  106. Zhao H. Alam A. San C.Y. Eguchi S. Chen Q. Lian Q. Ma D. Molecular mechanisms of brain-derived neurotrophic factor in neuro-protection: Recent developments. Brain Res. 2017 1665 1 21 10.1016/j.brainres.2017.03.029 28396009
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855312643241004111641
Loading
/content/journals/cdth/10.2174/0115748855312643241004111641
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test