Skip to content
2000
Volume 20, Issue 9
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Neuropeptide neurotransmitters, orexins, are produced in the lateral hypothalamus. They are extensively dispersed throughout the central nervous system, except the cerebellum and peripheral nervous system. Orexin works by attaching themselves to G-protein-coupled receptors: orexin receptor 1 (OXR1) & orexin receptor 2 (OXR2). They play a role in the regulation of energy homeostasis, appetite, sleep-wake cycles, and other disorders like cancer, ischemic stroke, depression, Alzheimer's disease, and narcolepsy. Prepro-orexin peptide undergoes proteolytic breakdown to create these neurotransmitters. Orexin receptor antagonists decrease both non-rapid eye movement and rapid eye movement sleep, which increases awake through the lateral preoptic region. It encourages eating and supports the control of feeding habits, thus can be used in the treatment of obesity. In Alzheimer's disease, orexin enhances tau protein-mediated neurodegeneration and beta-amyloid buildup by interacting with the biomarkers of the illness found in the cerebrospinal fluid (beta-amyloid/tau proteins). It also lessens neuroinflammation, enhances cognitive performance, and prevents the formation of plaque, which contains beta-amyloid and tau proteins.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855312643241004111641
2024-10-16
2026-02-07
Loading full text...

Full text loading...

References

  1. MilbankE. LópezM. Orexins/hypocretins: Key regulators of energy homeostasis.Front. Endocrinol. (Lausanne)20191083010.3389/fendo.2019.0083031920958
    [Google Scholar]
  2. DaleN.C. HoyerD. JacobsonL.H. PflegerK.D.G. JohnstoneE.K.M. Orexin signaling: A complex, multifaceted process.Front. Cell. Neurosci.20221681235910.3389/fncel.2022.81235935496914
    [Google Scholar]
  3. SperandeoR. Orexin system: Network multi-tasking.Acta Med. Mediter.2018342349356
    [Google Scholar]
  4. KukkonenJ.P. Orexin/Hypocretin signaling.Behavioral Neuroscience of Orexin/Hypocretin LawrenceAJ. de LeceaL. 2016175010.1007/7854_2016_49
    [Google Scholar]
  5. BerteottiC. LiguoriC. PaceM. Dysregulation of the orexin/hypocretin system is not limited to narcolepsy but has far-reaching implications for neurological disorders.Eur. J. Neurosci.20215341136115410.1111/ejn.1507733290595
    [Google Scholar]
  6. SoyaS. SakuraiT. Evolution of orexin neuropeptide system: Structure and function.Front. Neurosci.20201469110.3389/fnins.2020.0069132754010
    [Google Scholar]
  7. DaviesJ. ChenJ. PinkR. Orexin receptors exert a neuroprotective effect in Alzheimer's disease (AD) via heterodimerization with GPR103.Sci. Rep.201551258410.1038/srep1258426223541
    [Google Scholar]
  8. ImperatoreR. PalombaL. CristinoL. Role of orexin-A in hypertension and obesity.Curr. Hypertens. Rep.20171943410.1007/s11906‑017‑0729‑y28353077
    [Google Scholar]
  9. RazaviB.M. HosseinzadehH. A review of the role of orexin system in pain modulation.Biomed. Pharmacother.20179018719310.1016/j.biopha.2017.03.05328360013
    [Google Scholar]
  10. WangC. WangQ. JiB. PanY. XuC. ChengB. BaiB. ChenJ. The orexin/receptor system: Molecular mechanism and therapeutic potential for neurological diseases.Front. Mol. Neurosci.20181122010.3389/fnmol.2018.0022030002617
    [Google Scholar]
  11. KarterisE. ChenJ. RandevaH.S. Expression of human prepro-orexin and signaling characteristics of orexin receptors in the male reproductive system.J. Clin. Endocrinol. Metab.20048941957196210.1210/jc.2003‑03177815070969
    [Google Scholar]
  12. SakuraiT. Orexin and orexin receptors.HypocretinsBoston, MASpringer de LeceaL. SutcliffeJG. 2005132310.1007/0‑387‑25446‑3_2
    [Google Scholar]
  13. BossC. RochC. Recent trends in orexin research—2010 to 2015.Bioorg. Med. Chem. Lett.201525152875288710.1016/j.bmcl.2015.05.01226045032
    [Google Scholar]
  14. ChieffiS. CarotenutoM. MondaV. ValenzanoA. VillanoI. PrecenzanoF. TafuriD. SalernoM. FilippiN. NuccioF. RubertoM. De LucaV. CipolloniL. CibelliG. MollicaM.P. IaconoD. NigroE. MondaM. MessinaG. MessinaA. Orexin system: the key for a healthy life.Front. Physiol.2017835710.3389/fphys.2017.0035728620314
    [Google Scholar]
  15. SarginD. The role of the orexin system in stress response.Neuropharmacology2019154687810.1016/j.neuropharm.2018.09.03430266600
    [Google Scholar]
  16. BerheD.F. GebreA.K. AssefaB.T. Orexins role in neurodegenerative diseases: From pathogenesis to treatment.Pharmacol. Biochem. Behav.202019417292910.1016/j.pbb.2020.17292932315694
    [Google Scholar]
  17. ZhangH. LiangB. LiT. ZhouY. ShangD. DuZ. Orexin A suppresses oxidized LDL induced endothelial cell inflammation via MAPK p38 and NF-κB signaling pathway.IUBMB Life2018701096196810.1002/iub.189030207631
    [Google Scholar]
  18. KukkonenJ.P. TurunenP.M. Cellular signaling mechanisms of hypocretin/orexin.Front. Neurol. Neurosci.2021459110210.1159/00051496234052812
    [Google Scholar]
  19. KukkonenJ.P. G-protein-dependency of orexin/hypocretin receptor signalling in recombinant Chinese hamster ovary cells.Biochem. Biophys. Res. Commun.2016476437938510.1016/j.bbrc.2016.05.13027237973
    [Google Scholar]
  20. UsuiM. KanekoK. OiY. KobayashiM. Orexin facilitates GABAergic IPSCs via postsynaptic OX1 receptors coupling to the intracellular PKC signalling cascade in the rat cerebral cortex.Neuropharmacology20191499711210.1016/j.neuropharm.2019.02.01230763655
    [Google Scholar]
  21. Ten-BlancoM. FloresÁ. CristinoL. Pereda-PérezI. BerrenderoF. Targeting the orexin/hypocretin system for the treatment of neuropsychiatric and neurodegenerative diseases: From animal to clinical studies.Front. Neuroendocrinol.20236910106610.1016/j.yfrne.2023.10106637015302
    [Google Scholar]
  22. DustrudeE.T. CalimanI.F. BernabeC.S. FitzS.D. GrafeL.A. BhatnagarS. BonaventureP. JohnsonP.L. MoloshA.I. ShekharA. Orexin depolarizes central amygdala neurons via orexin receptor 1, phospholipase C and sodium-calcium exchanger and modulates conditioned fear.Front. Neurosci.20181293410.3389/fnins.2018.0093430618563
    [Google Scholar]
  23. SachidanandanD. ReddyH.P. ManiA. HydeG.J. BeraA.K. The neuropeptide orexin-A inhibits the GABA A receptor by PKC and Ca 2+/CaMKII-dependent phosphorylation of its β 1 subunit.J. Mol. Neurosci.201761445946710.1007/s12031‑017‑0886‑028105535
    [Google Scholar]
  24. ClarkJ.W. BrianM.L. DrummondS.P.A. HoyerD. JacobsonL.H. Effects of orexin receptor antagonism on human sleep architecture: A systematic review.Sleep Med. Rev.20205310133210.1016/j.smrv.2020.10133232505969
    [Google Scholar]
  25. HoyerD. JacobsonL.H. Orexin receptor antagonists.Curr. Sleep Med. Rep.20173434235310.1007/s40675‑017‑0099‑7
    [Google Scholar]
  26. LeboldT.P. BonaventureP. ShiremanB.T. Selective orexin receptor antagonists.Bioorg. Med. Chem. Lett.201323174761476910.1016/j.bmcl.2013.06.05723891187
    [Google Scholar]
  27. ColemanP.J. GotterA.L. HerringW.J. WinrowC.J. RengerJ.J. The discovery of suvorexant, the first orexin receptor drug for insomnia.Annu. Rev. Pharmacol. Toxicol.201757150953310.1146/annurev‑pharmtox‑010716‑10483727860547
    [Google Scholar]
  28. YinJ. BabaogluK. BrautigamC.A. ClarkL. ShaoZ. ScheuermannT.H. HarrellC.M. GotterA.L. RoeckerA.J. WinrowC.J. RengerJ.J. ColemanP.J. RosenbaumD.M. Structure and ligand-binding mechanism of the human OX1 and OX2 orexin receptors.Nat. Struct. Mol. Biol.201623429329910.1038/nsmb.318326950369
    [Google Scholar]
  29. HerringWJ. RothT. KrystalAD. MichelsonD. Orexin receptor antagonists for the treatment of insomnia and potential treatment of other neuropsychiatric indications.J. Sleep Res.2019282e1278210.1111/jsr.1278230338596
    [Google Scholar]
  30. PatelK.V. AspesiA.V. EvoyK.E. Suvorexant: A dual orexin receptor antagonist for the treatment of sleep onset and sleep maintenance insomnia.Ann. Pharmacother.201549447748310.1177/106002801557046725667197
    [Google Scholar]
  31. GabelleA. JaussentI. HirtzC. VialaretJ. NavucetS. GrasselliC. RobertP. LehmannS. DauvilliersY. Cerebrospinal fluid levels of orexin-A and histamine, and sleep profile within the Alzheimer process.Neurobiol. Aging201753596610.1016/j.neurobiolaging.2017.01.01128235679
    [Google Scholar]
  32. FishP.V. SteadmanD. BayleE.D. WhitingP. New approaches for the treatment of Alzheimer’s disease.Bioorg. Med. Chem. Lett.201929212513310.1016/j.bmcl.2018.11.03430501965
    [Google Scholar]
  33. CummingsJ. LeeG. RitterA. ZhongK. Alzheimer’s disease drug development pipeline: 2018.Alzheimers Dement. (N. Y.)20184119521410.1016/j.trci.2018.03.00929955663
    [Google Scholar]
  34. LiguoriC. Orexin and Alzheimer’s disease.Behavioral Neuroscience of Orexin/HypocretinSpringerCham LawrenceAJ. de LeceaL. 201630532210.1007/7854_2016_50
    [Google Scholar]
  35. HuangL.K. ChaoS.P. HuC.J. Clinical trials of new drugs for Alzheimer disease.J. Biomed. Sci.20202711810.1186/s12929‑019‑0609‑731906949
    [Google Scholar]
  36. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑433667416
    [Google Scholar]
  37. MusiekE.S. XiongD.D. HoltzmanD.M. Sleep, circadian rhythms, and the pathogenesis of Alzheimer Disease.Exp. Mol. Med.2015473e148e14810.1038/emm.2014.12125766617
    [Google Scholar]
  38. DauvilliersY.A. LehmannS. JaussentI. GabelleA. Hypocretin and brain β-amyloid peptide interactions in cognitive disorders and narcolepsy.Front. Aging Neurosci.2014611910.3389/fnagi.2014.0011924966833
    [Google Scholar]
  39. JalilzadM. JafariA. BabaeiP. Neuregulin1β improves both spatial and associative learning and memory in Alzheimer model of rats possibly through signaling pathways other than Erk1/2.Neuropeptides20197810196310.1016/j.npep.2019.10196331522857
    [Google Scholar]
  40. Perez-LeightonC.E. Butterick-PetersonT.A. BillingtonC.J. KotzC.M. Role of orexin receptors in obesity: From cellular to behavioral evidence.Int. J. Obes.201337216717410.1038/ijo.2012.3022391883
    [Google Scholar]
  41. KushnerR.F. KahanS. Introduction: The state of obesity in 2017.Med. Clin. North Am.2018102111110.1016/j.mcna.2017.08.00329156178
    [Google Scholar]
  42. KakizakiM. TsuneokaY. TakaseK. KimS.J. ChoiJ. IkkyuA. AbeM. SakimuraK. YanagisawaM. FunatoH. Differential roles of each orexin receptor signaling in obesity.iScience20192011310.1016/j.isci.2019.09.00331546102
    [Google Scholar]
  43. CasonA.M. SmithR.J. Tahsili-FahadanP. MoormanD.E. SartorG.C. Aston-JonesG. Role of orexin/hypocretin in reward-seeking and addiction: Implications for obesity.Physiol. Behav.2010100541942810.1016/j.physbeh.2010.03.00920338186
    [Google Scholar]
  44. SmartD. HaynesA.C. WilliamsG. ArchJ.R.S. Orexins and the treatment of obesity.Eur. J. Pharmacol.20024402-319921210.1016/S0014‑2999(02)01429‑212007536
    [Google Scholar]
  45. GiraultE.M. YiC.X. FliersE. KalsbeekA. Orexins, feeding, and energy balance.Prog. Brain Res.2012198476410.1016/B978‑0‑444‑59489‑1.00005‑722813969
    [Google Scholar]
  46. SakuraiT. Roles of orexins in the regulation of body weight homeostasis.Obes. Res. Clin. Pract.201485e414e42010.1016/j.orcp.2013.12.00125263831
    [Google Scholar]
  47. VolkoffH. The neuroendocrine regulation of food intake in fish: A review of current knowledge.Front. Neurosci.20161054010.3389/fnins.2016.0054027965528
    [Google Scholar]
  48. XiaoX. YeghiazaryanG. HessS. KlemmP. SiebenA. KleinriddersA. MorganD.A. WunderlichF.T. RahmouniK. KongD. ScammellT.E. LowellB.B. KloppenburgP. BrüningJ.C. HausenA.C. Orexin receptors 1 and 2 in serotonergic neurons differentially regulate peripheral glucose metabolism in obesity.Nat. Commun.2021121524910.1038/s41467‑021‑25380‑234475397
    [Google Scholar]
  49. DuanD. KimL.J. JunJ.C. PolotskyV.Y. Connecting insufficient sleep and insomnia with metabolic dysfunction.Ann. N. Y. Acad. Sci.2023151919411710.1111/nyas.1492636373239
    [Google Scholar]
  50. TsangA. BlouetC. A pipeline for identification and validation of brain targets for weight loss.Nat. Rev. Endocrinol.202319419019110.1038/s41574‑023‑00803‑w36697769
    [Google Scholar]
  51. NixonJ.P. MavanjiV. ButterickT.A. BillingtonC.J. KotzC.M. TeskeJ.A. Sleep disorders, obesity, and aging: The role of orexin.Ageing Res. Rev.201520637310.1016/j.arr.2014.11.00125462194
    [Google Scholar]
  52. JinK. ChenB. HanS. DongJ. ChengS. QinB. LuJ. Repetitive transcranial magnetic stimulation (rTMS) improves cognitive impairment and intestinal microecological dysfunction induced by high-fat diet in rats.Research (Wash. D.C.)20247038410.34133/research.038438826566
    [Google Scholar]
  53. MavanjiV. PomonisB. KotzCM. Orexin, serotonin, and energy balance.WIREs Mech. Dis.2022141e153610.1002/wsbm.153635023323
    [Google Scholar]
  54. Al-KuraishyH. AbdulhadiM. HussienN. Al-NiemiM. RasheedH. Al-GareebA. Involvement of orexinergic system in psychiatric and neurodegenerative disorders: A scoping review.Brain Circ.202062708010.4103/bc.bc_42_1933033776
    [Google Scholar]
  55. DaferR.M. RaoM. ShareefA. SharmaA. Poststroke Depression.Top. Stroke Rehabil.2008151132110.1310/tsr1501‑1318250069
    [Google Scholar]
  56. NolletM. LemanS. Role of orexin in the pathophysiology of depression: Potential for pharmacological intervention.CNS Drugs201327641142210.1007/s40263‑013‑0064‑z23657787
    [Google Scholar]
  57. TorteroloP. ChaseM.H. The hypocretins (orexins) mediate the “phasic” components of REM sleep: A new hypothesis.Sleep Sci.201471192910.1016/j.slsci.2014.07.02126483897
    [Google Scholar]
  58. KhairuddinS. AquiliL. HengB.C. HooT.L.C. WongK.H. LimL.W. Dysregulation of the orexinergic system: A potential neuropeptide target in depression.Neurosci. Biobehav. Rev.202011838439610.1016/j.neubiorev.2020.07.04032768489
    [Google Scholar]
  59. LuJ. ZhaoJ. BalesarR. FronczekR. ZhuQ.B. WuX.Y. HuS.H. BaoA.M. SwaabD.F. Sexually dimorphic changes of hypocretin (orexin) in depression.EBioMedicine20171831131910.1016/j.ebiom.2017.03.04328377228
    [Google Scholar]
  60. GrafeL.A. BhatnagarS. Orexins and stress.Front. Neuroendocrinol.20185113214510.1016/j.yfrne.2018.06.00329932958
    [Google Scholar]
  61. AkçaÖ.F. UzunN. Kılınçİ. Orexin A in adolescents with anxiety disorders.Int. J. Psychiatry Clin. Pract.202024212713410.1080/13651501.2019.171142531913740
    [Google Scholar]
  62. GorkaS.M. KhorramiK.J. ManzlerC.A. PhanK.L. Acute orexin antagonism selectively modulates anticipatory anxiety in humans: Implications for addiction and anxiety.Transl. Psychiatry202212130810.1038/s41398‑022‑02090‑x35918313
    [Google Scholar]
  63. JiM.J. ZhangX.Y. ChenZ. WangJ.J. ZhuJ.N. Orexin prevents depressive-like behavior by promoting stress resilience.Mol. Psychiatry201924228229310.1038/s41380‑018‑0127‑030087452
    [Google Scholar]
  64. SanacoraG. YanZ. PopoliM. The stressed synapse 2.0: Pathophysiological mechanisms in stress-related neuropsychiatric disorders.Nat. Rev. Neurosci.20222328610310.1038/s41583‑021‑00540‑x34893785
    [Google Scholar]
  65. PitsillouE. BresnehanS.M. KagarakisE.A. WijoyoS.J. LiangJ. HungA. KaragiannisT.C. The cellular and molecular basis of major depressive disorder: Towards a unified model for understanding clinical depression.Mol. Biol. Rep.202047175377010.1007/s11033‑019‑05129‑331612411
    [Google Scholar]
  66. BellM. Role of the brain signaling molecule orexin in sleep disturbances and depression. Bachelor of Arts, Carthage College Kenosha, Wisconsin, 2020.
    [Google Scholar]
  67. LiH. LuJ. LiS. HuangB. ShiG. MouT. XuY. Increased hypocretin (orexin) plasma level in depression, bipolar disorder patients.Front. Psychiatry20211267633610.3389/fpsyt.2021.67633634135789
    [Google Scholar]
  68. (a BaiBo Dual-agonist occupancy of orexin receptor 1 and cholecystokinin A receptor heterodimers decreases G-protein–dependent signaling and migration in the human colon cancer cell line HT-29.Biochimica et Biophysica Acta (BBA)-Molecular Cell Research18647201711531164
    [Google Scholar]
  69. (b SuoL ChangX ZhaoY The orexin-A-regulated Akt/mTOR pathway promotes cell proliferation through inhibiting apoptosis in pancreatic cancer cells.Front Endocrinol (Lausanne)2018964710.3389/fendo.2018.0064730429828
    [Google Scholar]
  70. CengizM. KarajV. KocabasoğluN. Gozubatik-CelikG. DiricanA. BayogluB. Orexin/hypocretin receptor, Orx 1 , gene variants are associated with major depressive disorder.Int. J. Psychiatry Clin. Pract.201923211412110.1080/13651501.2018.155154930596528
    [Google Scholar]
  71. StanquiniL.A. SartimA.G. JocaS.R.L. Orexin A injection into the ventral medial prefrontal cortex induces antidepressant-like effects: Possible involvement of local Orexin-1 and Trk receptors.Behav. Brain Res.202039511286610.1016/j.bbr.2020.11286632827568
    [Google Scholar]
  72. ClarkI.A. VisselB. Inflammation-sleep interface in brain disease: TNF, insulin, orexin.J. Neuroinflammation20141115110.1186/1742‑2094‑11‑5124655719
    [Google Scholar]
  73. ShariqA.S. RosenblatJ.D. AlageelA. MansurR.B. RongC. HoR.C. RagguettR.M. PanZ. BrietzkeE. McIntyreR.S. Evaluating the role of orexins in the pathophysiology and treatment of depression: A comprehensive review.Prog. Neuropsychopharmacol. Biol. Psychiatry2019921710.1016/j.pnpbp.2018.12.00830576764
    [Google Scholar]
  74. WenJ. ZhaoY. GuoL. Orexin A induces autophagy in HCT-116 human colon cancer cells through the ERK signaling pathway.Int. J. Mol. Med.201637112613210.3892/ijmm.2015.240926572581
    [Google Scholar]
  75. AnS-Y. AnHK. KimKS. LeeYC. KimSH. Induction of autophagy by oleifolioside A in HCT-116 human colorectal cancer cells.Appl. Biol. Chem.20236610.1186/s13765‑023‑00791‑5
    [Google Scholar]
  76. FujitaK. NonomuraN. Role of androgen receptor in prostate cancer: A review.World J. Mens Health201937328829510.5534/wjmh.18004030209899
    [Google Scholar]
  77. TanM.H.E. LiJ. XuH.E. MelcherK. YongE. Androgen receptor: Structure, role in prostate cancer and drug discovery.Acta Pharmacol. Sin.201536132310.1038/aps.2014.1824909511
    [Google Scholar]
  78. FengQ. HeB. Androgen receptor signaling in the development of castration-resistant prostate cancer.Front. Oncol.2019985810.3389/fonc.2019.0085831552182
    [Google Scholar]
  79. LaburtheM. VoisinT. El FirarA. Orexins/hypocretins and orexin receptors in apoptosis: A mini-review.Acta Physiol. (Oxf.)2010198339340210.1111/j.1748‑1716.2009.02035.x19719798
    [Google Scholar]
  80. GraybillN.L. WeissigV. A review of orexin’s unprecedented potential as a novel, highly-specific treatment for various localized and metastatic cancers.SAGE Open Med.20175: 205031211773577410.1177/205031211773577429147564
    [Google Scholar]
  81. WanX. LiuY. ZhaoY. SunX. FanD. GuoL. Orexin A affects HepG2 human hepatocellular carcinoma cells glucose metabolism via HIF-1α-dependent and -independent mechanism.PLoS One2017129e018421310.1371/journal.pone.018421328886081
    [Google Scholar]
  82. GuoXin WenJ. GaoQ. Orexin-A/OX1R is involved in regulation of autophagy to promote cortisol secretion in adrenocortical cell.Biochim. Biophys. Acta Mol. Basis Dis.20241870116684410.1016/j.bbadis.2023.16684437572990
    [Google Scholar]
  83. WangC.M. YangC.Q. ChengB.H. ChenJ. BaiB. Orexin-A protects SH-SY5Y cells against H2O2 -induced oxidative damage via the PI3K/MEK1/2/ERK1/2 signaling pathway.Int. J. Immunopathol. Pharmacol.20183210.1177/205873841878573929983082
    [Google Scholar]
  84. (a ThierryVoisin Aberrant expression of OX1 receptors for orexins in colon cancers and liver metastases: an openable gate to apoptosis.Cancer research 71.9;201133413351
    [Google Scholar]
  85. (b MarcosP CoveñasR Involvement of the orexinergic system in cancer: Antitumor strategies and future perspectivesAppl Sci.20231313759610.3390/app13137596
    [Google Scholar]
  86. LiuY. ZhaoY. GuoL. Effects of orexin A on glucose metabolism in human hepatocellular carcinoma in vitro via PI3K/Akt/mTOR-dependent and -independent mechanism.Mol. Cell. Endocrinol.201642020821610.1016/j.mce.2015.11.00226549689
    [Google Scholar]
  87. VoisinT. NicoleP. GratioV. ChassacA. MansourD. ReboursV. CouvelardA. CouvineauA. The orexin-a/ox1r system induces cell death in pancreatic cancer cells resistant to gemcitabine and nab-paclitaxel treatment.Front. Oncol.20221290432710.3389/fonc.2022.90432735747788
    [Google Scholar]
  88. CouvineauA. DayotS. NicoleP. GratioV. ReboursV. CouvelardA. VoisinT. The anti-tumoral properties of orexin/hypocretin hypothalamic neuropeptides: An unexpected therapeutic role.Front. Endocrinol. (Lausanne)2018957310.3389/fendo.2018.0057330319552
    [Google Scholar]
  89. BiegańskaK. SokołowskaP. JöhrenO. ZawilskaJ.B. Orexin A suppresses the growth of rat C6 glioma cells via a caspase-dependent mechanism.J. Mol. Neurosci.201248370671210.1007/s12031‑012‑9799‑022588980
    [Google Scholar]
  90. GreeneE.S. ZampigaM. SirriF. OhkuboT. DridiS. Orexin system is expressed in avian liver and regulates hepatic lipogenesis via ERK1/2 activation.Sci. Rep.20201011919110.1038/s41598‑020‑76329‑233154530
    [Google Scholar]
  91. NicoleP. CouvineauP. JaminN. VoisinT. CouvineauA. Crucial role of the orexin-B C-terminus in the induction of OX 1 receptor-mediated apoptosis: Analysis by alanine scanning, molecular modelling and site-directed mutagenesis.Br. J. Pharmacol.2015172215211522310.1111/bph.1328726282891
    [Google Scholar]
  92. LaburtheM. VoisinT. The orexin receptor OX 1 R in colon cancer: A promising therapeutic target and a new paradigm in G protein-coupled receptor signalling through ITIMs.Br. J. Pharmacol.201216561678168710.1111/j.1476‑5381.2011.01510.x21627633
    [Google Scholar]
  93. StopaKB. KusiakAA. SzopaMD. Pancreatic cancer and its microenvironment—recent advances and current controversies.Int. J. Mol. Sci.2020219321810.3390/ijms2109321832370075
    [Google Scholar]
  94. WenigerM. HonselmannKC. LissAS. The extracellular matrix and pancreatic cancer: A complex relationship.Cancers (Basel)201810931610.3390/cancers1009031630200666
    [Google Scholar]
  95. OuYangL.Y. WuX.J. YeS.B. ZhangR. LiZ.L. LiaoW. PanZ.Z. ZhengL.M. ZhangX.S. WangZ. LiQ. MaG. LiJ. Tumor-induced myeloid-derived suppressor cells promote tumor progression through oxidative metabolism in human colorectal cancer.J. Transl. Med.20151314710.1186/s12967‑015‑0410‑725638150
    [Google Scholar]
  96. AlainC. PascalN. ValérieG. ThierryV. Orexins/hypocretins and cancer: A neuropeptide as emerging target.Molecules20212616484910.3390/molecules2616484934443437
    [Google Scholar]
  97. ParkJK. DoseffAI. SchmittgenTD. MicroRNAs targeting caspase-3 and-7 in PANC-1 cell.Int. J. Mol. Sci.2018194120610.3390/ijms1904120629659498
    [Google Scholar]
  98. NathS. MandalC. ChatterjeeU. MandalC. Association of cytosolic sialidase Neu2 with plasma membrane enhances Fas-mediated apoptosis by impairing PI3K-Akt/mTOR-mediated pathway in pancreatic cancer cells.Cell Death Dis.20189221010.1038/s41419‑017‑0191‑429434218
    [Google Scholar]
  99. SakorafasG.H. TsiotouA.G. TsiotosG.G. Molecular biology of pancreatic cancer; Oncogenes, tumour suppressor genes, growth factors, and their receptors from a clinical perspective.Cancer Treat. Rev.2000261295210.1053/ctrv.1999.014410660490
    [Google Scholar]
  100. MorganR. HunterK. PandhaH.S. Downstream of the HOX genes: Explaining conflicting tumour suppressor and oncogenic functions in cancer.Int. J. Cancer2022150121919193210.1002/ijc.3394935080776
    [Google Scholar]
  101. SokołowskaP. UrbańskaA. NamiecińskaM. BiegańskaK. ZawilskaJ.B. Orexins promote survival of rat cortical neurons.Neurosci. Lett.2012506230330610.1016/j.neulet.2011.11.02822138089
    [Google Scholar]
  102. (a Harada Shinichi YamazakiYui ShogoTokuyama RETRACTION: Orexin-A Suppresses Postischemic Glucose Intolerance and Neuronal Damage through Hypothalamic Brain-Derived Neurotrophic Factor.Journal of Pharmacology and Experimental Therapeutics344.12013276285
    [Google Scholar]
  103. (b) JanCR SuJA TengCC Mechanism of maprotiline-induced apoptosis: Role of [Ca2+]i, ERK, JNK and caspase-3 signaling pathways.Toxicology201330411210.1016/j.tox.2012.11.01323219590
    [Google Scholar]
  104. LiY. YangG-Y. Pathophysiology of ischemic stroke.Translational Research in StrokeSpringerSingapore LapchakP. YangG.Y. 2017517510.1007/978‑981‑10‑5804‑2_4
    [Google Scholar]
  105. GhoshM.K. ChakrabortyD. BhowmikA. GhoshM.K. Cerebral ischemic stroke cellular fate and therapeutic opportunities.Front. Biosci.201924343545010.2741/472730468665
    [Google Scholar]
  106. KitamuraE. HamadaJ. KanazawaN. YonekuraJ. MasudaR. SakaiF. MochizukiH. The effect of orexin-A on the pathological mechanism in the rat focal cerebral ischemia.Neurosci. Res.201068215415710.1016/j.neures.2010.06.01020600373
    [Google Scholar]
  107. KrafftP.R. AltayO. RollandW.B. DurisK. LekicT. TangJ. ZhangJ.H. α7 nicotinic acetylcholine receptor agonism confers neuroprotection through GSK-3β inhibition in a mouse model of intracerebral hemorrhage.Stroke201243384485010.1161/STROKEAHA.111.63998922207510
    [Google Scholar]
  108. (a IrvingEA Increased cortical expression of the orexin-1 receptor following permanent middle cerebral artery occlusion in the rat.Neuroscience letters 324.1;20025356
    [Google Scholar]
  109. (b KimuraN NamekataA GuoX HaradaC HaradaT Neuroprotection, growth factors and BDNF-TrkB signalling in retinal degeneration.Int J Mol Sci2016179158410.3390/ijms1709158427657046
    [Google Scholar]
  110. ZhaoH. AlamA. SanC.Y. EguchiS. ChenQ. LianQ. MaD. Molecular mechanisms of brain-derived neurotrophic factor in neuro-protection: Recent developments.Brain Res.2017166512110.1016/j.brainres.2017.03.02928396009
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855312643241004111641
Loading
/content/journals/cdth/10.2174/0115748855312643241004111641
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test