Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Atopic dermatitis (AD) is a non-fatal, non-communicable, chronic skin inflammatory condition marked by itching, lesions, and skin barrier dysfunction. As per the International Eczema Council, as of 2022, more than 200 million people were suffering from AD, with the disease burden reported highest in children. Environmental factors, genetic predisposition, and lifestyle have been found to be essential factors in triggering the adverse skin response. In this review, we provide a detailed overview of the pathophysiology of AD, how the skin barrier gets altered from normal condition to AD, and the role of genetic defects in Filaggrin protein, affecting the skin barrier function by altering the skin pH and hydration. Also, we highlight the role of toll-like receptors (TLRs) and the altered skin and gut microbiota in inducing chronic inflammatory responses and playing a significant role in the pathogenesis of the disease. Further, we discuss the role of several chemokines and cytokines, which could serve as important prognosis markers for early detection, monitoring the disease progression, and assessing the response to the treatment. We also report the current treatment regime of multimodal therapeutics ranging from topical emollients to topical, oral, and injectable immune modulatory agents. Besides, we discuss the importance of the gut-skin microbiome axis and the increasingly important role of prebiotics in AD treatment.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855299561240802111649
2024-08-08
2025-04-09
Loading full text...

Full text loading...

References

  1. SarkarR. NarangI. Atopic dermatitis in Indian children: The influence of lower socioeconomic status.Clin. Dermatol.201836558559410.1016/j.clindermatol.2018.05.00930217271
    [Google Scholar]
  2. Guttman-YasskyE. NogralesK.E. KruegerJ.G. Contrasting pathogenesis of atopic dermatitis and psoriasis—Part I: Clinical and pathologic concepts.J. Allergy Clin. Immunol.201112751110111810.1016/j.jaci.2011.01.05321388665
    [Google Scholar]
  3. SilverbergJ.I. Comorbidities and the impact of atopic dermatitis.Ann. Allergy Asthma Immunol.2019123214415110.1016/j.anai.2019.04.02031034875
    [Google Scholar]
  4. SilverbergJ.I. GelfandJ.M. MargolisD.J. BoguniewiczM. FonacierL. GraysonM.H. SimpsonE.L. OngP.Y. Chiesa FuxenchZ.C. Association of atopic dermatitis with allergic, autoimmune, and cardiovascular comorbidities in US adults.Ann. Allergy Asthma Immunol.20181215604612.e310.1016/j.anai.2018.07.04230092266
    [Google Scholar]
  5. PallerA. JaworskiJ.C. SimpsonE.L. BoguniewiczM. RussellJ.J. BlockJ.K. TofteS. DunnJ.D. FeldmanS.R. ClarkA.R. SchwartzG. EichenfieldL.F. Major comorbidities of atopic dermatitis: Beyond allergic disorders.Am. J. Clin. Dermatol.201819682183810.1007/s40257‑018‑0383‑430168085
    [Google Scholar]
  6. CooksonW.O.C.M. UbhiB. LawrenceR. AbecasisG.R. WalleyA.J. CoxH.E. ColemanR. LeavesN.I. TrembathR.C. MoffattM.F. HarperJ.I. Genetic linkage of childhood atopic dermatitis to psoriasis susceptibility loci.Nat. Genet.200127437237310.1038/8686711279517
    [Google Scholar]
  7. ReginaldK. WestritschnigK. WerfelT. HeratizadehA. NovakN. Focke-TejklM. HirschlA.M. LeungD.Y.M. ElisyutinaO. FedenkoE. ValentaR. Immunoglobulin E antibody reactivity to bacterial antigens in atopic dermatitis patients.Clin. Exp. Allergy201141335736910.1111/j.1365‑2222.2010.03655.x21155910
    [Google Scholar]
  8. ReginaldK. WestritschnigK. LinhartB. Focke-TejklM. Jahn-SchmidB. Eckl-DornaJ. HeratizadehA. StöcklingerA. BalicN. SpitzauerS. NiederbergerV. WerfelT. ThalhamerJ. WeidingerS. NovakN. OllertM. HirschlA.M. ValentaR. Staphylococcus aureus fibronectin-binding protein specifically binds IgE from patients with atopic dermatitis and requires antigen presentation for cellular immune responses.J. Allergy Clin. Immunol.201112818291.e810.1016/j.jaci.2011.02.03421513970
    [Google Scholar]
  9. KwonM.S. LimS.K. JangJ.Y. LeeJ. ParkH.K. KimN. YunM. ShinM.Y. JoH.E. OhY.J. RohS.W. ChoiH.J. Lactobacillus sakei WIKIM30 ameliorates atopic dermatitis-like skin lesions by inducing regulatory T cells and altering gut microbiota structure in mice.Front. Immunol.20189AUG190510.3389/fimmu.2018.0190530154801
    [Google Scholar]
  10. GandhiNA BennettBL GrahamNMH PirozziG StahlN YancopoulosGD Targeting key proximal drivers of type 2 inflammation in disease.Nature Rev. Drug Discovery201615355010.1038/nrd4624
    [Google Scholar]
  11. Sroka-TomaszewskaJ. TrzeciakM. Molecular mechanisms of atopic dermatitis pathogenesis.Int. J. Mol. Sci.2021228413010.3390/ijms2208413033923629
    [Google Scholar]
  12. TokuraY. HayanoS. Subtypes of atopic dermatitis: From phenotype to endotype.Allergol. Int.2022711142410.1016/j.alit.2021.07.00334344611
    [Google Scholar]
  13. PalmerC.N.A. IrvineA.D. Terron-KwiatkowskiA. ZhaoY. LiaoH. LeeS.P. GoudieD.R. SandilandsA. CampbellL.E. SmithF.J.D. O’ReganG.M. WatsonR.M. CecilJ.E. BaleS.J. ComptonJ.G. DiGiovannaJ.J. FleckmanP. Lewis-JonesS. ArseculeratneG. SergeantA. MunroC.S. El HouateB. McElreaveyK. HalkjaerL.B. BisgaardH. MukhopadhyayS. McLeanW.H.I. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis.Nat. Genet.200638444144610.1038/ng176716550169
    [Google Scholar]
  14. NuttenS. Atopic dermatitis: Gglobal epidemiology and risk factors.Ann. Nutr. Metab.2015661Suppl. 181610.1159/00037022025925336
    [Google Scholar]
  15. GittlerJ.K. ShemerA. Suárez-FariñasM. Fuentes-DuculanJ. GulewiczK.J. WangC.Q.F. MitsuiH. CardinaleI. de Guzman StrongC. KruegerJ.G. Guttman-YasskyE. Progressive activation of TH2/TH22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis.J. Allergy Clin. Immunol.201213061344135410.1016/j.jaci.2012.07.01222951056
    [Google Scholar]
  16. ThappaD. MalathiM. Is there something called adult onset atopic dermatitis in India?Indian J. Dermatol. Venereol. Leprol.201379214514710.4103/0378‑6323.10763323442451
    [Google Scholar]
  17. LeeH. ShinJ.J. BaeH.C. RyuW.I. SonS.W. Toluene downregulates filaggrin expression via the extracellular signal-regulated kinase and signal transducer and activator of transcription–dependent pathways.J. Allergy Clin. Immunol.20171391355358.e510.1016/j.jaci.2016.06.03627498358
    [Google Scholar]
  18. KimJ. HanY. AhnJ.H. KimS.W. LeeS.I. LeeK.H. AhnK. Airborne formaldehyde causes skin barrier dysfunction in atopic dermatitis.Br. J. Dermatol.2016175235736310.1111/bjd.1435727535603
    [Google Scholar]
  19. ThyssenJ.P. ZirwasM.J. EliasP.M. Potential role of reduced environmental UV exposure as a driver of the current epidemic of atopic dermatitis.J. Allergy Clin. Immunol.201513651163116910.1016/j.jaci.2015.06.04226298230
    [Google Scholar]
  20. RueterK. JonesA.P. SiafarikasA. LimE.M. BearN. NoakesP.S. PrescottS.L. PalmerD.J. Direct infant UV light exposure is associated with eczema and immune development.J. Allergy Clin. Immunol.2019143310121020.e210.1016/j.jaci.2018.08.03730366577
    [Google Scholar]
  21. JiangZ. LiJ. KongN. KimJ.H. KimB.S. LeeM.J. ParkY.M. LeeS.Y. HongS.J. SulJ.H. Accurate diagnosis of atopic dermatitis by combining transcriptome and microbiota data with supervised machine learning.Sci. Rep.202212129010.1038/s41598‑021‑04373‑734997172
    [Google Scholar]
  22. O’ReganG.M. SandilandsA. McLeanW.H.I. IrvineA.D. Filaggrin in atopic dermatitis.J. Allergy Clin. Immunol.20091243Suppl. 2R2R610.1016/j.jaci.2009.07.01319720209
    [Google Scholar]
  23. MatsunagaM.C. IL-4 and IL-13 inhibition in atopic dermatitis.J Drugs Dermatol20161589259R6
    [Google Scholar]
  24. HrestakD. MatijašićM. Čipčić PaljetakH. Ledić DrvarD. Ljubojević HadžavdićS. PerićM. Skin Microbiota in Atopic Dermatitis.Int. J. Mol. Sci.2022237350310.3390/ijms2307350335408862
    [Google Scholar]
  25. YousefH. AlhajjM. SharmaS. Anatomy, Skin (Integument), Epidermis.Treasure Island, FLStatPearls2024
    [Google Scholar]
  26. MenonG.K. ClearyG.W. LaneM.E. The structure and function of the stratum corneum.Int. J. Pharm.201243513910.1016/j.ijpharm.2012.06.00522705878
    [Google Scholar]
  27. ArdaO. GöksügürN. TüzünY. Basic histological structure and functions of facial skin.Clin. Dermatol.201432131310.1016/j.clindermatol.2013.05.02124314373
    [Google Scholar]
  28. SchurerN.Y. EliasP.M. The biochemistry and function of stratum corneum lipids.Adv Lipid Res1991242735610.1016/B978‑0‑12‑024924‑4.50006‑7
    [Google Scholar]
  29. FeingoldK.R. EliasP.M. Role of lipids in the formation and maintenance of the cutaneous permeability barrier.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20141841328029410.1016/j.bbalip.2013.11.00724262790
    [Google Scholar]
  30. LinT.K. CrumrineD. AckermanL.D. SantiagoJ.L. RoelandtT. UchidaY. HupeM. FabriàsG. AbadJ.L. RiceR.H. EliasP.M. Cellular changes that accompany shedding of human corneocytes.J. Invest. Dermatol.2012132102430243910.1038/jid.2012.17322739796
    [Google Scholar]
  31. BraffMH NardoÃA Di Keratinocytes store the antimicrobial peptide cathelicidin in lamellar bodies.J Invest Dermatol20051242394400
    [Google Scholar]
  32. EliasP.M. WakefieldJ.S. Mechanisms of abnormal lamellar body secretion and the dysfunctional skin barrier in patients with atopic dermatitis.J. Allergy Clin. Immunol.20141344781791.e110.1016/j.jaci.2014.05.04825131691
    [Google Scholar]
  33. HardingC.R. AhoS. BoskoC.A. Filaggrin – revisited.Int. J. Cosmet. Sci.201335541242310.1111/ics.1204923517450
    [Google Scholar]
  34. KawasakiH. KuboA. SasakiT. AmagaiM. Loss-of-function mutations within the filaggrin gene and atopic dermatitis.Curr. Probl. Dermatol.201141354610.1159/00032329121576945
    [Google Scholar]
  35. National Library Of MedicineFLG filaggrin [ Homo sapiens (human).2024Available From: https://www.ncbi.nlm.nih.gov/gene/2312
  36. O’ReganG.M. SandilandsA. McLeanW.H.I. IrvineA.D. Filaggrin in atopic dermatitis.J. Allergy Clin. Immunol.2008122468969310.1016/j.jaci.2008.08.00218774165
    [Google Scholar]
  37. Armengot-CarboM. Hernández-MartínÁ. TorreloA. The role of filaggrin in the skin barrier and disease development.Actas Dermosifiliogr.20151062869510.1016/j.adengl.2014.12.00724674607
    [Google Scholar]
  38. MargolisD.J. ApterA.J. GuptaJ. HoffstadO. PapadopoulosM. CampbellL.E. SandilandsA. McLeanW.H.I. RebbeckT.R. MitraN. The persistence of atopic dermatitis and filaggrin (flg) mutations in a US longitudinal cohort.J. Allergy Clin. Immunol.2012130491291710.1016/j.jaci.2012.07.00822951058
    [Google Scholar]
  39. DębińskaA. DanielewiczH. Drabik-ChamerskaA. KalitaD. BoznańskiA. Filaggrin loss-of-function mutations as a predictor for atopic eczema, allergic sensitization and eczema-associated asthma in Polish children population.Adv. Clin. Exp. Med.201726699199810.17219/acem/6143029068602
    [Google Scholar]
  40. ThyssenJ.P. KezicS. Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis.J. Allergy Clin. Immunol.2014134479279910.1016/j.jaci.2014.06.01425065719
    [Google Scholar]
  41. BriotA. DeraisonC. LacroixM. BonnartC. RobinA. BessonC. DubusP. HovnanianA. Kallikrein 5 induces atopic dermatitis–like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome.J. Exp. Med.200920651135114710.1084/jem.2008224219414552
    [Google Scholar]
  42. KawasakiH. NagaoK. KuboA. HataT. ShimizuA. MizunoH. YamadaT. AmagaiM. Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice.J. Allergy Clin. Immunol.2012129615381546.e610.1016/j.jaci.2012.01.06822409988
    [Google Scholar]
  43. Esparza-GordilloJ. MatanovicA. MarenholzI. BauerfeindA. RohdeK. NematK. Lee-KirschM.A. NordenskjöldM. WingeM.C.G. KeilT. KrügerR. LauS. BeyerK. KalbB. NiggemannB. HübnerN. CordellH.J. BradleyM. LeeY.A. Maternal filaggrin mutations increase the risk of atopic dermatitis in children: An effect independent of mutation inheritance.PLoS Genet.2015113e100507610.1371/journal.pgen.100507625757221
    [Google Scholar]
  44. EllinghausD. BaurechtH. Esparza-GordilloJ. RodríguezE. MatanovicA. MarenholzI. HübnerN. SchaarschmidtH. NovakN. MichelS. MaintzL. WerfelT. Meyer-HoffertU. HotzeM. ProkischH. HeimK. HerderC. HirotaT. TamariM. KuboM. TakahashiA. NakamuraY. TsoiL.C. StuartP. ElderJ.T. SunL. ZuoX. YangS. ZhangX. HoffmannP. NöthenM.M. Fölster-HolstR. WinkelmannJ. IlligT. BoehmB.O. DuerrR.H. BüningC. BrandS. GlasJ. McAleerM.A. FahyC.M. KabeschM. BrownS. McLeanW.H.I. IrvineA.D. SchreiberS. LeeY.A. FrankeA. WeidingerS. High-density genotyping study identifies four new susceptibility loci for atopic dermatitis.Nat. Genet.201345780881210.1038/ng.264223727859
    [Google Scholar]
  45. HirotaT. TakahashiA. KuboM. TsunodaT. TomitaK. SakashitaM. YamadaT. FujiedaS. TanakaS. DoiS. MiyatakeA. EnomotoT. NishiyamaC. NakanoN. MaedaK. OkumuraK. OgawaH. IkedaS. NoguchiE. SakamotoT. HizawaN. EbeK. SaekiH. SasakiT. EbiharaT. AmagaiM. TakeuchiS. FurueM. NakamuraY. TamariM. Genome-wide association study identifies eight new susceptibility loci for atopic dermatitis in the Japanese population.Nat. Genet.201244111222122610.1038/ng.243823042114
    [Google Scholar]
  46. NishioY NoguchiE ShibasakiM Association between polymorphisms in the SPINK5 gene and atopic dermatitis in the Japanese.Genes Immun200347515710.1038/sj.gene.6363889
    [Google Scholar]
  47. ZhaoL.P. DiZ. ZhangL. WangL. MaL. LvY. HongY. WeiH. ChenH.D. GaoX.H. Association of SPINK5 gene polymorphisms with atopic dermatitis in Northeast China.J. Eur. Acad. Dermatol. Venereol.201226557257710.1111/j.1468‑3083.2011.04120.x21585560
    [Google Scholar]
  48. PotaczekD.P. NastalekM. OkumuraK. Wojas-PelcA. UndasA. NishiyamaC. An association of TLR2 –16934A>T polymorphism and severity/phenotype of atopic dermatitis.J. Eur. Acad. Dermatol. Venereol.201125671572110.1111/j.1468‑3083.2010.03812.x21134221
    [Google Scholar]
  49. Mrabet-DahbiS. DalpkeA.H. NiebuhrM. FreyM. DraingC. BrandS. HeegK. WerfelT. RenzH. The Toll-like receptor 2 R753Q mutation modifies cytokine production and Toll-like receptor expression in atopic dermatitis.J. Allergy Clin. Immunol.200812141013101910.1016/j.jaci.2007.11.02918234309
    [Google Scholar]
  50. LiangY. ChangC. LuQ. The genetics and epigenetics of atopic dermatitis—filaggrin and other polymorphisms.Clin. Rev. Allergy Immunol.201651331532810.1007/s12016‑015‑8508‑526385242
    [Google Scholar]
  51. RodríguezE. BaurechtH. WahnA.F. KretschmerA. HotzeM. ZeilingerS. KloppN. IlligT. SchrammK. ProkischH. KühnelB. GiegerC. HarderJ. CifuentesL. NovakN. WeidingerS. An integrated epigenetic and transcriptomic analysis reveals distinct tissue-specific patterns of DNA methylation associated with atopic dermatitis.J. Invest. Dermatol.201413471873188310.1038/jid.2014.8724739813
    [Google Scholar]
  52. BrandtEB SivaprasadU Cytokines and atopic dermatitis.Clin cell Immunol.201123178831
    [Google Scholar]
  53. NiebuhrM. LutatC. SigelS. WerfelT. Impaired TLR-2 expression and TLR-2-mediated cytokine secretion in macrophages from patients with atopic dermatitis.Allergy200964111580158710.1111/j.1398‑9995.2009.02050.x19392987
    [Google Scholar]
  54. HasannejadH. TakahashiR. KimishimaM. HayakawaK. ShioharaT. Selective impairment of Toll-like receptor 2–mediated proinflammatory cytokine production by monocytes from patients with atopic dermatitis.J. Allergy Clin. Immunol.20071201697510.1016/j.jaci.2007.04.01017531301
    [Google Scholar]
  55. KuoI.H. Carpenter-MendiniA. YoshidaT. McGirtL.Y. IvanovA.I. BarnesK.C. GalloR.L. BorkowskiA.W. YamasakiK. LeungD.Y. GeorasS.N. De BenedettoA. BeckL.A. Activation of epidermal toll-like receptor 2 enhances tight junction function: Implications for atopic dermatitis and skin barrier repair.J. Invest. Dermatol.2013133498899810.1038/jid.2012.43723223142
    [Google Scholar]
  56. YuY. ZhangY. ZhangJ. DouX. YangH. ShaoY. WangK. YuB. ZhangW. LauH.Y.A. Impaired Toll-like receptor 2-mediated Th1 and Th17/22 cytokines secretion in human peripheral blood mononuclear cells from patients with atopic dermatitis.J. Transl. Med.201513138410.1186/s12967‑015‑0744‑126682905
    [Google Scholar]
  57. CesareA.D. MeglioP.D. NestleF.O. A role for Th17 cells in the immunopathogenesis of atopic dermatitis?J. Invest. Dermatol.2008128112569257110.1038/jid.2008.28318927538
    [Google Scholar]
  58. YamamuraY. NakashimaC. OtsukaA. Interplay of cytokines in the pathophysiology of atopic dermatitis: Insights from Murin models and human.Front. Med. (Lausanne)202411March134217610.3389/fmed.2024.134217638590314
    [Google Scholar]
  59. WojciechowskiR. Nature and nurture: The complex genetics of myopia and refractive error.Clin Genet20117943012010.1111/j.1399‑0004.2010.01592.x.Nature
    [Google Scholar]
  60. LeungD. Pathogenesis of atopic dermatitis.J. Allergy Clin. Immunol.19991043S99S10810.1016/S0091‑6749(99)70051‑510482860
    [Google Scholar]
  61. EBB. U S. Th2 cytokines and atopic dermatitis.J. Clin. Cell. Immunol.20112310.4172/2155‑9899.1000110
    [Google Scholar]
  62. ZhangY. WangH.C. FengC. YanM. Analysis of the Association of Polymorphisms rs5743708 in TLR2 and rs4986790 in TLR4 with Atopic Dermatitis Risk.Immunol. Invest.201948216918010.1080/08820139.2018.150822830273064
    [Google Scholar]
  63. BelderbosM.E. KnolE.F. HoubenM.L. van BleekG.M. WilbrinkB. KimpenJ.L.L. RoversM. BontL. Low neonatal T oll-like receptor 4-mediated interleukin-10 production is associated with subsequent atopic dermatitis.Clin. Exp. Allergy2012421667510.1111/j.1365‑2222.2011.03857.x22092594
    [Google Scholar]
  64. PrescottSL MacaubasC SmallacombeT Reciprocal age-related patterns of allergen-specific T-cell immunity in normal vs. atopic infants.Clin Exp Allergy199828Suppl 5394410.1046/j.1365‑2222.1998.028s5039.x
    [Google Scholar]
  65. PrescottS.L. MacaubasC. SmallacombeT. HoltB.J. SlyP.D. HoltP.G. Development of allergen-specific T-cell memory in atopic and normal children.Lancet1999353914819620010.1016/S0140‑6736(98)05104‑69923875
    [Google Scholar]
  66. LinL. XieM. ChenX. YuY. LiuY. LeiK. WangD. ZengJ. ZhouJ. ZhangL. ZuoD. SunL. Toll-like receptor 4 attenuates a murine model of atopic dermatitis through inhibition of langerin-positive DCs migration.Exp. Dermatol.20182791015102210.1111/exd.1369829851146
    [Google Scholar]
  67. YoonJ. Leyva-CastilloJ.M. WangG. GalandC. OyoshiM.K. KumarL. HoffS. HeR. ChervonskyA. OppenheimJ.J. KuchrooV.K. van den BrinkM.R.M. MalefytR.D.W. TessierP.A. FuhlbriggeR. RosenstielP. TerhorstC. MurphyG. GehaR.S. IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization.J. Exp. Med.2016213102147216610.1084/jem.2015037627551155
    [Google Scholar]
  68. LiuT. BertaT. XuZ.Z. ParkC.K. ZhangL. LüN. LiuQ. LiuY. GaoY.J. LiuY.C. MaQ. DongX. JiR.R. TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice.J. Clin. Invest.201212262195220710.1172/JCI4541422565312
    [Google Scholar]
  69. EdslevSM AgnerT AndersenPS Skin microbiome in atopic dermatitis.Acta Derm Venereol202010012adv0016410.2340/00015555‑3514
    [Google Scholar]
  70. ByrdAL BelkaidY SegreJA The human skin microbiome.Nat Rev Microbiol201816314315510.1038/nrmicro.2017.157
    [Google Scholar]
  71. SalavaA. LauermaA. Role of the skin microbiome in atopic dermatitis.Clin. Transl. Allergy2014413310.1186/2045‑7022‑4‑3325905004
    [Google Scholar]
  72. WollenbergM.S. ClaesenJ. EscapaI.F. AldridgeK.L. FischbachM.A. LemonK.P. Propionibacterium-produced coproporphyrin III induces Staphylococcus aureus aggregation and biofilm formation.MBio201454e01286-1410.1128/mBio.01286‑1425053784
    [Google Scholar]
  73. IwaseT. UeharaY. ShinjiH. TajimaA. SeoH. TakadaK. AgataT. MizunoeY. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization.Nature2010465729634634910.1038/nature0907420485435
    [Google Scholar]
  74. SugimotoS. IwamotoT. TakadaK. OkudaK. TajimaA. IwaseT. MizunoeY. Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction.J. Bacteriol.201319581645165510.1128/JB.01672‑1223316041
    [Google Scholar]
  75. ZippererA. KonnerthM.C. LauxC. BerscheidA. JanekD. WeidenmaierC. BurianM. SchillingN.A. SlavetinskyC. MarschalM. WillmannM. KalbacherH. SchittekB. Brötz-OesterheltH. GrondS. PeschelA. KrismerB. Human commensals producing a novel antibiotic impair pathogen colonization.Nature2016535761351151610.1038/nature1863427466123
    [Google Scholar]
  76. NakatsujiT. ChenT.H. NaralaS. ChunK.A. TwoA.M. YunT. ShafiqF. KotolP.F. BouslimaniA. MelnikA.V. LatifH. KimJ.N. LockhartA. ArtisK. DavidG. TaylorP. StreibJ. DorresteinP.C. GrierA. GillS.R. ZenglerK. HataT.R. LeungD.Y.M. GalloR.L. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis.Sci. Transl. Med.20179378eaah468010.1126/scitranslmed.aah468028228596
    [Google Scholar]
  77. VandecandelaereI. DepuydtP. NelisH.J. CoenyeT. Protease production by Staphylococcus epidermidis and its effect on Staphylococcus aureus biofilms.Pathog. Dis.201470332133110.1111/2049‑632X.1213324436195
    [Google Scholar]
  78. NakatsujiT. GalloR.L. ShafiqF. TongY. ChunK. ButcherA.M. ChengJ.Y. HataT.R. Use of Autologous Bacteriotherapy to Treat Staphylococcus aureus in Patients With Atopic Dermatitis.JAMA Dermatol.2021157897898210.1001/jamadermatol.2021.131134132739
    [Google Scholar]
  79. O’HaraA.M. ShanahanF. The gut flora as a forgotten organ.EMBO Rep.20067768869310.1038/sj.embor.740073116819463
    [Google Scholar]
  80. StefanovicN. FlohrC. IrvineA.D. The exposome in atopic dermatitis.Allergy2020751637410.1111/all.1394631194890
    [Google Scholar]
  81. BuddenKF GellatlySL WoodDLA Emerging pathogenic links between microbiota and the gut–lung axis.Nat Rev Microbiol2016151556310.1038/nrmicro.2016.142
    [Google Scholar]
  82. MarrsT. JoJ.H. PerkinM.R. RivettD.W. WitneyA.A. BruceK.D. LoganK. CravenJ. RadulovicS. VersteegS.A. van ReeR. McLeanW.H.I. StrachanD.P. LackG. KongH.H. FlohrC. Gut microbiota development during infancy: Impact of introducing allergenic foods.J. Allergy Clin. Immunol.20211472613621.e910.1016/j.jaci.2020.09.04233551026
    [Google Scholar]
  83. LeeM.J. KangM.J. LeeS.Y. LeeE. KimK. WonS. SuhD.I. KimK.W. SheenY.H. AhnK. KimB.S. HongS.J. Perturbations of gut microbiome genes in infants with atopic dermatitis according to feeding type.J. Allergy Clin. Immunol.201814141310131910.1016/j.jaci.2017.11.04529339259
    [Google Scholar]
  84. WangM. KarlssonC. OlssonC. AdlerberthI. WoldA.E. StrachanD.P. MartricardiP.M. ÅbergN. PerkinM.R. TripodiS. CoatesA.R. HesselmarB. SaalmanR. MolinG. AhrnéS. Reduced diversity in the early fecal microbiota of infants with atopic eczema.J. Allergy Clin. Immunol.2008121112913410.1016/j.jaci.2007.09.01118028995
    [Google Scholar]
  85. BjörksténB. SeppE. JulgeK. VoorT. MikelsaarM. Allergy development and the intestinal microflora during the first year of life.J. Allergy Clin. Immunol.2001108451652010.1067/mai.2001.11813011590374
    [Google Scholar]
  86. WatanabeS. NarisawaY. AraseS. OkamatsuH. IkenagaT. TajiriY. KumemuraM. Differences in fecal microflora between patients with atopic dermatitis and healthy control subjects.J. Allergy Clin. Immunol.2003111358759110.1067/mai.2003.10512642841
    [Google Scholar]
  87. FangZ. PanT. LiL. WangH. ZhuJ. ZhangH. ZhaoJ. ChenW. LuW. Bifidobacterium longum mediated tryptophan metabolism to improve atopic dermatitis via the gut-skin axis.Gut Microbes2022141204472310.1080/19490976.2022.204472335239463
    [Google Scholar]
  88. HonK.L.E. LeungT.F. MaK.C. LiA.M. WongY. FokT.F. Serum levels of cutaneous T-cell attracting chemokine (CTACK) as a laboratory marker of the severity of atopic dermatitis in children.Clin. Exp. Dermatol.200429329329610.1111/j.1365‑2230.2004.01501.x15115514
    [Google Scholar]
  89. NakazatoJ. KishidaM. KuroiwaR. FujiwaraJ. ShimodaM. ShinomiyaN. Serum levels of Th2 chemokines, CCL17, CCL22, and CCL27, were the important markers of severity in infantile atopic dermatitis.Pediatr. Allergy Immunol.200819760561310.1111/j.1399‑3038.2007.00692.x18266834
    [Google Scholar]
  90. KezicS. O’ReganG.M. LutterR. JakasaI. KosterE.S. SaundersS. CaspersP. KempermanP.M.J.H. PuppelsG.J. SandilandsA. ChenH. CampbellL.E. KrobothK. WatsonR. FallonP.G. McLeanW.H.I. IrvineA.D. Filaggrin loss-of-function mutations are associated with enhanced expression of IL-1 cytokines in the stratum corneum of patients with atopic dermatitis and in a murine model of filaggrin deficiency.J. Allergy Clin. Immunol.2012129410311039.e110.1016/j.jaci.2011.12.98922322004
    [Google Scholar]
  91. HulshofL. OverbeekS.A. WyllieA.L. ChuM.L.J.N. BogaertD. de JagerW. KnippelsL.M.J. SandersE.A.M. van AalderenW.M.C. GarssenJ. van’t LandB. SprikkelmanA.B. Exploring immune development in infants with moderate to severe atopic dermatitis.Front. Immunol.20189MAR63010.3389/fimmu.2018.0063029966024
    [Google Scholar]
  92. KlonowskaJ. GleńJ. NowickiR. TrzeciakM. New cytokines in the pathogenesis of atopic dermatitis—new therapeutic targets.Int. J. Mol. Sci.20181910308610.3390/ijms1910308630304837
    [Google Scholar]
  93. WatanabeN. HanabuchiS. SoumelisV. YuanW. HoS. de Waal MalefytR. LiuY.J. Human thymic stromal lymphopoietin promotes dendritic cell–mediated CD4+ T cell homeostatic expansion.Nat. Immunol.20045442643410.1038/ni104814991051
    [Google Scholar]
  94. ItoT. WangY.H. DuramadO. HoriT. DelespesseG.J. WatanabeN. QinF.X.F. YaoZ. CaoW. LiuY.J. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand.J. Exp. Med.200520291213122310.1084/jem.2005113516275760
    [Google Scholar]
  95. TaylorB.C. ZaphC. TroyA.E. DuY. GuildK.J. ComeauM.R. ArtisD. TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis.J. Exp. Med.2009206365566710.1084/jem.2008149919273626
    [Google Scholar]
  96. DemehriS. LiuZ. LeeJ. LinM.H. CrosbyS.D. RobertsC.J. GrigsbyP.W. MinerJ.H. FarrA.G. KopanR. Notch-deficient skin induces a lethal systemic B-lymphoproliferative disorder by secreting TSLP, a sentinel for epidermal integrity.PLoS Biol.200865e12310.1371/journal.pbio.006012318507503
    [Google Scholar]
  97. YooJ. OmoriM. GyarmatiD. ZhouB. AyeT. BrewerA. ComeauM.R. CampbellD.J. ZieglerS.F. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin.J. Exp. Med.2005202454154910.1084/jem.2004150316103410
    [Google Scholar]
  98. DemehriS. MorimotoM. HoltzmanM.J. KopanR. Skin-derived TSLP triggers progression from epidermal-barrier defects to asthma.PLoS Biol.200975e100006710.1371/journal.pbio.100006719557146
    [Google Scholar]
  99. ZhangZ. HenerP. FrossardN. KatoS. MetzgerD. LiM. ChambonP. Thymic stromal lymphopoietin overproduced by keratinocytes in mouse skin aggravates experimental asthma.Proc. Natl. Acad. Sci. USA200910651536154110.1073/pnas.081266810619188585
    [Google Scholar]
  100. ImaiT. YoshidaT. BabaM. NishimuraM. KakizakiM. YoshieO. Molecular cloning of a novel T cell-directed CC chemokine expressed in thymus by signal sequence trap using Epstein-Barr virus vector.J. Biol. Chem.199627135215142152110.1074/jbc.271.35.215148702936
    [Google Scholar]
  101. CampbellJ.J. HaraldsenG. PanJ. RottmanJ. QinS. PonathP. AndrewD.P. WarnkeR. RuffingN. KassamN. WuL. ButcherE.C. The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells.Nature1999400674677678010.1038/2349510466728
    [Google Scholar]
  102. NickelR. BeckL.A. StellatoC. SchleimerR.P. Chemokines and allergic disease.J. Allergy Clin. Immunol.1999104472374210.1016/S0091‑6749(99)70281‑210518815
    [Google Scholar]
  103. KaplanA.P. Chemokines, chemokine receptors and allergy.Int. Arch. Allergy Immunol.2001124442343110.1159/00005377711340325
    [Google Scholar]
  104. SallustoF. SchaerliP. LoetscherP. SchanielC. LenigD. MackayC.R. QinS. LanzavecchiaA. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation.Eur. J. Immunol.19982892760276910.1002/(SICI)1521‑4141(199809)28:09<2760::AID‑IMMU2760>3.0.CO;2‑N9754563
    [Google Scholar]
  105. van den BergA. VisserL. PoppemaS. High expression of the CC chemokine TARC in Reed-Sternberg cells. A possible explanation for the characteristic T-cell infiltratein Hodgkin’s lymphoma.Am. J. Pathol.199915461685169110.1016/S0002‑9440(10)65424‑710362793
    [Google Scholar]
  106. SekiyaT. MiyamasuM. ImanishiM. YamadaH. NakajimaT. YamaguchiM. FujisawaT. PawankarR. SanoY. OhtaK. IshiiA. MoritaY. YamamotoK. MatsushimaK. YoshieO. HiraiK. Inducible expression of a Th2-type CC chemokine thymus- and activation-regulated chemokine by human bronchial epithelial cells.J. Immunol.200016542205221310.4049/jimmunol.165.4.220510925308
    [Google Scholar]
  107. HiraiS. KageshitaT. KimuraT. TsujisakiM. OkajimaK. ImaiK. OnoT. Soluble intercellular adhesion molecule-1 and soluble E-selectin levels in patients with atopic dermatitis.Br. J. Dermatol.1996134465766110.1111/j.1365‑2133.1996.tb06965.x8733366
    [Google Scholar]
  108. KakinumaT. NakamuraK. WakugawaM. MitsuiH. TadaY. SaekiH. ToriiH. KomineM. AsahinaA. TamakiK. Serum macrophage-derived chemokine (MDC) levels are closely related with the disease activity of atopic dermatitis.Clin. Exp. Immunol.2002127227027310.1046/j.1365‑2249.2002.01727.x11876749
    [Google Scholar]
  109. HirayamaJ. FujisawaT. NagaoM. KuwabaraY. KainumaK. AzumaY. OnoJ. OhtaS. HirayamaM. IzuharaK. Squamous cell carcinoma antigens are sensitive biomarkers for atopic dermatitis in children and adolescents: A cross-sectional study.Asia Pac. Allergy2021114e4210.5415/apallergy.2021.11.e4234786372
    [Google Scholar]
  110. SilvermanG.A. BirdP.I. CarrellR.W. ChurchF.C. CoughlinP.B. GettinsP.G.W. IrvingJ.A. LomasD.A. LukeC.J. MoyerR.W. PembertonP.A. Remold-O’DonnellE. SalvesenG.S. TravisJ. WhisstockJ.C. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature.J. Biol. Chem.200127636332933329610.1074/jbc.R10001620011435447
    [Google Scholar]
  111. ShimuraK. MabuchiS. YokoiT. SasanoT. SawadaK. HamasakiT. KimuraT. Utility of serum squamous cell carcinoma antigen levels at the time of recurrent cervical cancer diagnosis in determining the optimal treatment choice.J. Gynecol. Oncol.201324432132910.3802/jgo.2013.24.4.32124167667
    [Google Scholar]
  112. WilliamsM. SwampillaiA. OsborneM. MawdsleyS. HughesR. HarrisonM. HarveyR. Glynne-JonesR. Squamous cell carcinoma antigen.Cancer2013119132391239810.1002/cncr.2805523576077
    [Google Scholar]
  113. YinM. HouY. ZhangT. CuiC. ZhouX. SunF. LiH. LiX. ZhengJ. ChenX. LiC. NingX. LiK. LouG. Evaluation of chemotherapy response with serum squamous cell carcinoma antigen level in cervical cancer patients: A prospective cohort study.PLoS One201381e5496910.1371/journal.pone.005496923349993
    [Google Scholar]
  114. ChenI.H. LiaoC.T. WangH.M. HuangJ.J. KangC.J. HuangS.F. Using SCC antigen and CRP levels as prognostic biomarkers in recurrent oral cavity squamous cell carcinoma.PLoS One201497e10326510.1371/journal.pone.010326525061977
    [Google Scholar]
  115. IzuharaK. YamaguchiY. OhtaS. NunomuraS. NanriY. AzumaY. NomuraN. NoguchiY. AiharaM. Squamous Cell Carcinoma Antigen 2 (SCCA2, SERPINB4): An Emerging Biomarker for Skin Inflammatory Diseases.Int. J. Mol. Sci.2018194110210.3390/ijms1904110229642409
    [Google Scholar]
  116. MitsuishiK. NakamuraT. SakataY. YuyamaN. ArimaK. SugitaY. SutoH. IzuharaK. OgawaH. The squamous cell carcinoma antigens as relevant biomarkers of atopic dermatitis.Clin. Exp. Allergy200535101327133310.1111/j.1365‑2222.2005.02353.x16238792
    [Google Scholar]
  117. van SantvoortH.C. BesselinkM.G. TimmermanH.M. van MinnenL.P. AkkermansL.M. GooszenH.G. Probiotics in surgery.Surgery200814311710.1016/j.surg.2007.06.00918154927
    [Google Scholar]
  118. EnomotoT. SowaM. NishimoriK. ShimazuS. YoshidaA. YamadaK. FurukawaF. NakagawaT. YanagisawaN. IwabuchiN. OdamakiT. AbeF. NakayamaJ. XiaoJ. Effects of bifidobacterial supplementation to pregnant women and infants in the prevention of allergy development in infants and on fecal microbiota.Allergol. Int.201463457558510.2332/allergolint.13‑OA‑068325056226
    [Google Scholar]
  119. RusuE. EnacheG. CursaruR. AlexescuA. RaduR. OnilaO. CavalliotiT. RusuF. PoseaM. JingaM. RadulianG. Prebiotics and probiotics in atopic dermatitis (Review).Exp. Ther. Med.201918292693110.3892/etm.2019.767831384325
    [Google Scholar]
  120. MaslowskiK.M. VieiraA.T. NgA. KranichJ. SierroF. Di Yu SchilterH.C. RolphM.S. MackayF. ArtisD. XavierR.J. TeixeiraM.M. MackayC.R. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43.Nature200946172681282128610.1038/nature0853019865172
    [Google Scholar]
  121. SchleyP.D. The immune-enhancing effects of dietary fibres and prebiotics.Br J Nutr200287Suppl 2S2213010.1079/BJNBJN/2002541
    [Google Scholar]
  122. KandikattuH.K. Upparahalli VenkateshaiahS. MishraA. Synergy of Interleukin (IL)-5 and IL-18 in eosinophil mediated pathogenesis of allergic diseases.Cytokine Growth Factor Rev.201947839810.1016/j.cytogfr.2019.05.00331126874
    [Google Scholar]
  123. ChoiW.J. KonkitM. KimY. KimM.K. KimW. Oral administration of Lactococcus chungangensis inhibits 2,4-dinitrochlorobenzene-induced atopic-like dermatitis in NC/Nga mice.J. Dairy Sci.20169996889690110.3168/jds.2016‑1130127289147
    [Google Scholar]
  124. SalminenS. ColladoM.C. EndoA. HillC. LebeerS. QuigleyE.M.M. SandersM.E. ShamirR. SwannJ.R. SzajewskaH. VinderolaG. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics.Nat. Rev. Gastroenterol. Hepatol.202118964966710.1038/s41575‑021‑00440‑633948025
    [Google Scholar]
  125. GibsonG.R. RoberfroidM.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics.J. Nutr.199512561401141210.1093/jn/125.6.14017782892
    [Google Scholar]
  126. Davani-DavariD. NegahdaripourM. KarimzadehI. SeifanM. MohkamM. MasoumiS. BerenjianA. GhasemiY. Prebiotics: Definition, types, sources, mechanisms, and clinical applications.Foods2019839210.3390/foods803009230857316
    [Google Scholar]
  127. De PreterV. VanhoutteT. HuysG. SwingsJ. RutgeertsP. VerbekeK. Baseline microbiota activity and initial bifidobacteria counts influence responses to prebiotic dosing in healthy subjects.Aliment. Pharmacol. Ther.200827650451310.1111/j.1365‑2036.2007.03588.x18081736
    [Google Scholar]
  128. KimS. HanS.Y. LeeJ. KimN.R. LeeB.R. KimH. KwonM. AhnK. NohY. KimS.J. LeeP. KimD. KimB.E. KimJ. Bifidobacterium longum and galactooligosaccharide improve skin barrier dysfunction and atopic dermatitis-like skin.Allergy Asthma Immunol. Res.202214554956410.4168/aair.2022.14.5.54936174995
    [Google Scholar]
  129. KogaY. TokunagaS. NaganoJ. SatoF. KonishiK. TochioT. MurakamiY. MasumotoN. TezukaJ. SudoN. KuboC. ShibataR. Age-associated effect of kestose on Faecalibacterium prausnitzii and symptoms in the atopic dermatitis infants.Pediatr. Res.201680684485110.1038/pr.2016.16727537603
    [Google Scholar]
  130. KangM. JungJ.H. KimJ.Y. HongS.H. HerY. Therapeutic and preventive effect of orally administered prebiotics on atopic dermatitis in a mouse model.Allergy Asthma Immunol. Res.202315330331510.4168/aair.2023.15.3.30337075794
    [Google Scholar]
  131. NaikP.P. Treatment-resistant atopic dermatitis: Novel therapeutics, digital tools, and precision medicine.Asia Pac. Allergy2022122e2010.5415/apallergy.2022.12.e2035571547
    [Google Scholar]
  132. Renert-YuvalY. Guttman-YasskyE. New treatments for atopic dermatitis targeting beyond IL-4/IL-13 cytokines.Ann. Allergy Asthma Immunol.20201241283510.1016/j.anai.2019.10.00531622669
    [Google Scholar]
  133. KimN.S. MaliyarK. OliveiraL. O’TooleA. GooderhamM.J. Real-world experience of dupilumab in the treatment of moderate-to-severe atopic dermatitis.Int. J. Dermatol.20205910e361e36310.1111/ijd.1505332772360
    [Google Scholar]
  134. JohnsonB.B. FrancoA.I. BeckL.A. PrezzanoJ.C. Treatment resistant atopic dermatitis: Challenges and solutions.Clin. Cosmet. Investig. Dermatol.20191218119210.2147/CCID.S16381430962700
    [Google Scholar]
  135. NezamololamaN. FieldhouseK. MetzgerK. GooderhamM. Emerging systemic JAK inhibitors in the treatment of atopic dermatitis: A review of abrocitinib, baricitinib, and upadacitinib.Drugs Context202091710.7573/dic.2020‑8‑533240390
    [Google Scholar]
  136. SimpsonE.L. LacourJ.P. SpelmanL. GalimbertiR. EichenfieldL.F. BissonnetteR. KingB.A. ThyssenJ.P. SilverbergJ.I. BieberT. KabashimaK. TsunemiY. CostanzoA. Guttman-YasskyE. BeckL.A. JanesJ.M. DeLozierA.M. GamaloM. BrinkerD.R. CardilloT. NunesF.P. PallerA.S. WollenbergA. ReichK. Baricitinib in patients with moderate-to-severe atopic dermatitis and inadequate response to topical corticosteroids: Results from two randomized monotherapy phase III trials.Br. J. Dermatol.2020183224225510.1111/bjd.1889831995838
    [Google Scholar]
  137. FreitasE Guttman-YasskyE TorresT. Tralokinumab for the treatment of atopic dermatitis.Am J Clin Dermatol2021225262563810.1007/s40257‑021‑00613‑8
    [Google Scholar]
  138. ClinicalTrials.govSearch of: Nemolizumab - List Results.2024Available From: https://clinicaltrials.gov/ct2/results?term=Nemolizumab&Search=Apply&age_v=&gndr=&type=&rslt=
  139. ClinicalTrials.govLong-term safety and efficacy study of Lebrikizumab (LY3650150) in participants with moderate-to-severe Atopic Dermatitis (ADjoin) (ADjoin).2024Available From: https://clinicaltrials.gov/ct2/show/NCT04392154?term=Lebrikizumab&draw=2
  140. ClinicalTrials.govSearch of: Risankizumab | Atopic Dermatitis - List Results.2024Available From: https://clinicaltrials.gov/ct2/results?term=Risankizumab&cond=Atopic+Dermatitis&draw=2&rank=1#rowId0
  141. McKeageK DugganS. Risankizumab: First global approval.Drugs201979889390010.1007/s40265‑019‑01136‑7
    [Google Scholar]
  142. SunY. LenonG.B. YangA.W.H. AmadoJ.R.R. Phellodendri cortex: A phytochemical, pharmacological, and pharmacokinetic review.Evid. Based Complement. Alternat. Med.2019201914510.1155/2019/762192931057654
    [Google Scholar]
  143. ParkG. KimH.G. LimS. LeeW. SimY. OhM.S. Coriander alleviates 2,4-dinitrochlorobenzene-induced contact dermatitis-like skin lesions in mice.J. Med. Food201417886286810.1089/jmf.2013.291024963872
    [Google Scholar]
  144. YangJ.H. YooJ.M. ChoW.K. MaJ.Y. Ethanol extract of sanguisorbae radix inhibits mast cell degranulation and suppresses 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions.Mediators Inflamm.201620161810.1155/2016/294739027065570
    [Google Scholar]
  145. IsolauriE. ArvolaT. SÜtasY. MoilanenE. SalminenS. Probiotics in the management of atopic eczema.Clin. Exp. Allergy200030111605161010.1046/j.1365‑2222.2000.00943.x11069570
    [Google Scholar]
  146. LeeB. BaeE.A. TrinhH.T. ShinY.W. PhuongT.T. BaeK.H. KimD.H. Inhibitory effect of schizandrin on passive cutaneous anaphylaxis reaction and scratching behaviors in mice.Biol. Pharm. Bull.20073061153115610.1248/bpb.30.115317541172
    [Google Scholar]
  147. ChaH.Y. AhnS. CheonJ.H. ParkI.S. KimJ.T. KimK. Hataedock treatment has preventive therapeutic effects in atopic dermatitis-induced NC/Nga mice under high-fat diet conditions.Evid. Based Complement. Alternat. Med.2016201611310.1155/2016/173976027313639
    [Google Scholar]
  148. WangX. JiangX. YuX. LiuH. TaoY. JiangG. HongM. Cimifugin suppresses allergic inflammation by reducing epithelial derived initiative key factors via regulating tight junctions.J. Cell. Mol. Med.201721112926293610.1111/jcmm.1320428597545
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855299561240802111649
Loading
/content/journals/cdth/10.2174/0115748855299561240802111649
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test