Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

It was asserted that the manufacturing of liposomes, which was first disclosed in 1961, was a useful technology for drug encapsulation. Furthermore, there are several cosmetic items on the market now that include liposomes. The liposomes are novel drug carrier systems due to their similarity in lipid composition with the epidermal membrane. As a result, they penetrate the epidermis to a greater extent, showing enhanced skin absorption and increased effectiveness of the encapsulated drug molecule.

This review briefly addresses the skin's anatomy, skin conditions, and the topical delivery of drugs for the treatment of skin diseases with emphasis on psoriasis by utilizing liposomes and other vesicular drug delivery systems along with challenges and opportunities in the treatment of skin diseases.

When compared to alternative distribution methods, their resemblance to biological membranes enables entry into the epidermal barrier. Liposomes are good at penetrating the skin more deeply and reducing therapeutic side effects, which offers hope for the successful treatment of skin problems.

Applying liposomes topically has several benefits, including better skin bioavailability and targeting, increased skin hydration by surface adhesiveness, protection of skin structure from external stress, and prolonged dermal release. Further, they have got potential to target the encapsulated drug molecule into pilosebaceous structure, making them an ideal candidate for the treatment of hair follicles and sebaceous gland disorder.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855297829240227072642
2024-03-12
2025-06-17
Loading full text...

Full text loading...

References

  1. WhitcherJ.P. SrinivasanM. UpadhyayM.P. Corneal blindness: A global perspective.Bull. World Health Organ.2001793214221 11285665
    [Google Scholar]
  2. LimH.W. CollinsS.A.B. ResneckJ.S.Jr The burden of skin disease in the United States.J. Am. Acad. Dermatol.2017765958972.e210.1016/j.jaad.2016.12.043 28259441
    [Google Scholar]
  3. van ManenJ.G. BindelsP.J. DekkerF.W. IJzermansC.J. van der ZeeJ.S. SchadéE. Risk of depression in patients with chronic obstructive pulmonary disease and its determinants.Thorax200257541241610.1136/thorax.57.5.412 11978917
    [Google Scholar]
  4. BhattK. AgolliA. PatelM.H. High mortality co-infections of COVID-19 patients: Mucormycosis and other fungal infections.Discoveries202191e12610.15190/d.2021.5 34036149
    [Google Scholar]
  5. RobsonK.J. PietteW.W. Cutaneous manifestations of systemic diseases.Med. Clin. North Am.199882613591379vi-vii.10.1016/S0025‑7125(05)70419‑3 9889752
    [Google Scholar]
  6. DziałoM. MierziakJ. KorzunU. PreisnerM. SzopaJ. KulmaA. The potential of plant phenolics in prevention and therapy of skin disorders.Int. J. Mol. Sci.201617216010.3390/ijms17020160 26901191
    [Google Scholar]
  7. GelmanA.B. NortonS.A. Valdes-RodriguezR. YosipovitchG. A review of skin conditions in modern warfare and peacekeeping operations.Mil. Med.20151801323710.7205/MILMED‑D‑14‑00240 25562855
    [Google Scholar]
  8. RamanunnyA.K. WadhwaS. GulatiM. Nanocarriers for treatment of dermatological diseases: Principle, perspective and practices.Eur. J. Pharmacol.202189017369110.1016/j.ejphar.2020.173691 33129787
    [Google Scholar]
  9. PatelD. PatelB. ThakkarH. Lipid based nanocarriers: Promising drug delivery system for topical application.Eur. J. Lipid Sci. Technol.20211235200026410.1002/ejlt.202000264
    [Google Scholar]
  10. PonchelG. IracheJ. Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract.Adv. Drug Deliv. Rev.1998342-319121910.1016/S0169‑409X(98)00040‑4 10837678
    [Google Scholar]
  11. FraunfelderF.T. FraunfelderF.W. ChambersW.A. Drug-induced ocular side effects.In: Clinical Ocular Toxicology.Elsevier20141411
    [Google Scholar]
  12. ParedesA.J. McKennaP.E. RamöllerI.K. Microarray patches: Poking a hole in the challenges faced when delivering poorly soluble drugs.Adv. Funct. Mater.2021311200579210.1002/adfm.202005792
    [Google Scholar]
  13. JaliliA. BewleyA. SticherlingM. GoldS.L. Short term and long-term efficacy of calcipotriene/betamethasone dipropionate foam combination.Clin. Cosmet. Investig. Dermatol.20221580981410.2147/CCID.S361884 35531463
    [Google Scholar]
  14. BloomT. KuzelT.M. QuerfeldC. GuitartJ. RosenS.T. Cutaneous T-cell lymphomas: A review of new discoveries and treatments.Curr. Treat. Options Oncol.201213110212110.1007/s11864‑011‑0179‑8 22311555
    [Google Scholar]
  15. SharadhaM. GowdaD.V. GuptaV. AkhilaA.R. An overview on topical drug delivery system–updated review.Int J Res Pharm Sci2020111368385
    [Google Scholar]
  16. GuptaM. AgrawalU. VyasS.P. Nanocarrier-based topical drug delivery for the treatment of skin diseases.Expert Opin. Drug Deliv.20129778380410.1517/17425247.2012.686490 22559240
    [Google Scholar]
  17. SklarL.R. BurnettC.T. WaibelJ.S. MoyR.L. OzogD.M. Laser assisted drug delivery: A review of an evolving technology.Lasers Surg. Med.201446424926210.1002/lsm.22227 24664987
    [Google Scholar]
  18. MukherjeeS. RayS. ThakurR.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system.Indian J. Pharm. Sci.200971434935810.4103/0250‑474X.57282 20502539
    [Google Scholar]
  19. PugliaC. BoninaF. Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals.Expert Opin. Drug Deliv.20129442944110.1517/17425247.2012.666967 22394125
    [Google Scholar]
  20. SindhuR.K. ChitkaraM. KaurG. Skin penetration enhancer’s in transdermal drug delivery systems.Res J Pharm Technol20171061809181510.5958/0974‑360X.2017.00319.5
    [Google Scholar]
  21. MottalebA.M.M.A. NeumannD. LamprechtA. Lipid nanocapsules for dermal application: A comparative study of lipid-based versus polymer-based nanocarriers.Eur. J. Pharm. Biopharm.2011791364210.1016/j.ejpb.2011.04.009 21558002
    [Google Scholar]
  22. MoR. JiangT. DiJ. TaiW. GuZ. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery.Chem. Soc. Rev.201443103595362910.1039/c3cs60436e 24626293
    [Google Scholar]
  23. AkhtarN. KhanR.A. Liposomal systems as viable drug delivery technology for skin cancer sites with an outlook on lipid-based delivery vehicles and diagnostic imaging inputs for skin conditions’.Prog. Lipid Res.20166419223010.1016/j.plipres.2016.08.005 27697511
    [Google Scholar]
  24. GarcêsA. AmaralM.H. LoboS.J.M. SilvaA.C. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review.Eur. J. Pharm. Sci.201811215916710.1016/j.ejps.2017.11.023 29183800
    [Google Scholar]
  25. JenningV. GyslerA. KortingS.M. GohlaS.H. Vitamin A loaded solid lipid nanoparticles for topical use: Occlusive properties and drug targeting to the upper skin.Eur. J. Pharm. Biopharm.200049321121810.1016/S0939‑6411(99)00075‑2 10799811
    [Google Scholar]
  26. YilmazC.C.N. KarasuluH.Y. YilmazO. Nano-scaled dispersed systems used in drug-delivery applications.In: Polymeric Nanomaterials in Nanotherapeutics.Elsevier2019437468
    [Google Scholar]
  27. TernulloS. de WeerdL. HolsæterA.M. FlatenG.E. BasnetS.N. Going skin deep: A direct comparison of penetration potential of lipid-based nanovesicles on the isolated perfused human skin flap model.Eur. J. Pharm. Biopharm.2017121142310.1016/j.ejpb.2017.09.006 28916504
    [Google Scholar]
  28. SalaM. DiabR. ElaissariA. FessiH. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications.Int. J. Pharm.20185351-211710.1016/j.ijpharm.2017.10.046 29111097
    [Google Scholar]
  29. ZhangJ. PurdonC.H. SmithE.W. Solid lipid nanoparticles for topical drug delivery.Am. J. Drug Deliv.20064421522010.2165/00137696‑200604040‑00004
    [Google Scholar]
  30. GhanmiA. AbbasI.A. An analytical study on the fractional transient heating within the skin tissue during the thermal therapy.J. Therm. Biol.2019828222923310.1016/j.jtherbio.2019.04.003 31128652
    [Google Scholar]
  31. AlzahraniF.S. AbbasI.A. Analytical estimations of temperature in a living tissue generated by laser irradiation using experimental data.J. Therm. Biol.20198510242110.1016/j.jtherbio.2019.102421 31657762
    [Google Scholar]
  32. HobinyA. AbbasI. Analytical solutions of fractional bioheat model in a spherical tissue.Mech. Based Des. Struct. Mach.202149343043910.1080/15397734.2019.1702055
    [Google Scholar]
  33. MarinM. HobinyA. AbbasI. Finite element analysis of nonlinear bioheat model in skin tissue due to external thermal sources.Mathematics2021913145910.3390/math9131459
    [Google Scholar]
  34. SugiharaH. TodaS. MiyabaraS. Reconstruction of the skin in three-dimensional collagen gel matrix culture.In Vitro Cell. Dev. Biol.1991272142146
    [Google Scholar]
  35. AliS.M. BonnierF. LambkinH. A comparison of Raman, FTIR and ATR-FTIR micro spectroscopy for imaging human skin tissue sections.Anal. Methods2013592281229110.1039/c3ay40185e
    [Google Scholar]
  36. AliS. ShabbirM. ShahidN. The structure of skin and transdermal drug delivery system-A Review.Res J Pharm Technol20158210310910.5958/0974‑360X.2015.00019.0
    [Google Scholar]
  37. de SouzaI.M.F. VitralG.L.N. CaliariM.V. ReisZ.S.N. Association between the chronology of gestation and the morphometrical skin characteristics at childbirth: A development of predictive model.BMJ Health Care Inform.2021281e10047610.1136/bmjhci‑2021‑100476 34876452
    [Google Scholar]
  38. GilaberteY. Prieto-TorresL. PastushenkoI. JuarranzÁ. Anatomy and function of the skin.In: nanoscience in dermatology. Academic press2016
    [Google Scholar]
  39. TanwarH. SachdevaR. Transdermal drug delivery system.Int. J. Pharma Sci.2016762274
    [Google Scholar]
  40. SharmaB. SharmaA. Future prospect of nanotechnology in development of anti-ageing Formulations.Int. J. Pharm. Pharm. Sci.2012435766
    [Google Scholar]
  41. ChopraH. DeyP.S. DasD. Curcumin nanoparticles as promising therapeutic agents for drug targets.Molecules20212616499810.3390/molecules26164998
    [Google Scholar]
  42. BehlT. KumarK. BriscC. Exploring the multifocal role of phytochemicals as immunomodulators.Biomed. Pharmacother.2021133110959
    [Google Scholar]
  43. ShrivastavS. SindhuR. KumarS. KumarP. Anti-psoriatic and phytochemical evaluation of Thespesia populnea bark extracts.Int. J. Pharm. Pharm. Sci.2009117685
    [Google Scholar]
  44. ArdaO. GöksügürN. TüzünY. Basic histological structure and functions of facial skin.Clin. Dermatol.201432131310.1016/j.clindermatol.2013.05.021 24314373
    [Google Scholar]
  45. BablerW.J. Embryologic development of epidermal ridges and their configurations.Birth Defects Orig. Artic. Ser.199127295112 1786361
    [Google Scholar]
  46. MichelM. L’HeureuxN. PouliotR. XuW. AugerF.A. GermainL. Characterization of a new tissue-engineered human skin equivalent with hair.In Vitro Cell. Dev. Biol. Anim.199935631832610.1007/s11626‑999‑0081‑x 10476918
    [Google Scholar]
  47. KuoS.H. ShenC.J. ShenC.F. ChengC.M. Role of Ph value in clinically relevant diagnosis.Diagnostics202010210710.3390/diagnostics10020107 32079129
    [Google Scholar]
  48. SteccoC. Functional atlas of the human fascial system.1st edChurchill Livingstone2014
    [Google Scholar]
  49. NeutelingsT. NusgensB.V. LiuY. Skin physiology in microgravity: A 3-month stay aboard iss induces dermal atrophy and affects cutaneous muscle and hair follicles cycling in mice.NPJ Micrograv.20151119
    [Google Scholar]
  50. AlexanderC.M. KaszaI. YenC.L.E. Dermal white adipose tissue: A new component of the thermogenic response.J. Lipid Res.201556112061206910.1194/jlr.R062893 26405076
    [Google Scholar]
  51. SenC.K. GordilloG.M. RoyS. Human skin wounds: A major and snowballing threat to public health and the economy.Wound Repair Regen.200917676377110.1111/j.1524‑475X.2009.00543.x 19903300
    [Google Scholar]
  52. UtianW.H. Psychosocial and socioeconomic burden of vasomotor symptoms in menopause: A comprehensive review.Health Qual. Life Outcomes2005314710.1186/1477‑7525‑3‑47 16083502
    [Google Scholar]
  53. WeberM.W. MulhollandE.K. JaffarS. TroedssonH. GoveS. GreenwoodB.M. Evaluation of an algorithm for the integrated management of childhood illness in an area with seasonal malaria in the Gambia.Bull. World Health Organ.199775S12532 9529715
    [Google Scholar]
  54. JuraboevAb The formation of general cultural attitudes towards the environment among students as a factor in the development of a healthy lifestyle.ARES202014
    [Google Scholar]
  55. AkashM.S.H. RehmanK. FiayyazF. SabirS. KhurshidM. Diabetes-associated infections: Development of antimicrobial resistance and possible treatment strategies.Arch. Microbiol.2020202595396510.1007/s00203‑020‑01818‑x 32016521
    [Google Scholar]
  56. StockflethE. UlrichC. MeyerT. ChristophersE. Epithelial malignancies in organ transplant patients: Clinical presentation and new methods of treatment.In cancers of the skin.Berlin, HeidelbergSpringer2002251258
    [Google Scholar]
  57. KrajnikM. ZyliczZ. Understanding pruritus in systemic disease.J. Pain Symptom Manage.200121215116810.1016/S0885‑3924(00)00256‑6 11226766
    [Google Scholar]
  58. HayR.J. JohnsN.E. WilliamsH.C. The global burden of skin disease in 2010: An analysis of the prevalence and impact of skin conditions.J. Invest. Dermatol.201413461527153410.1038/jid.2013.446 24166134
    [Google Scholar]
  59. MyersS.S. PatzJ.A. Emerging threats to human health from global environmental change.Annu. Rev. Environ. Resour.200934122325210.1146/annurev.environ.033108.102650
    [Google Scholar]
  60. SethD. CheldizeK. BrownD. FreemanE.E. Global burden of skin disease: Inequities and innovations.Curr. Dermatol. Rep.20176320421010.1007/s13671‑017‑0192‑7 29226027
    [Google Scholar]
  61. FlohrC. HayR. Putting the burden of skin diseases on the global map.Br. J. Dermatol.2021184218919010.1111/bjd.19704 33544440
    [Google Scholar]
  62. JadhavN. NadkarniN. PatilS. A study on the association of psoriasis with metabolic disorders.J. Assoc. Physicians India20196745254 31309797
    [Google Scholar]
  63. GisondiP. BellinatoF. GirolomoniG. Topographic differential diagnosis of chronic plaque psoriasis: Challenges and tricks.J. Clin. Med.2020911359410.3390/jcm9113594 33171581
    [Google Scholar]
  64. BakshiH. NagpalM. SinghM. DhingraG.A. AggarwalG. Treatment of psoriasis: A comprehensive review of entire therapies.Curr. Drug Saf.20201528210410.2174/22123911MTAziOTU84 31994468
    [Google Scholar]
  65. MillanM.J. AgidY. BrüneM. Cognitive dysfunction in psychiatric disorders: Characteristics, causes and the quest for improved therapy.Nat. Rev. Drug Discov.201211214116810.1038/nrd3628 22293568
    [Google Scholar]
  66. MattsonM.P. Metal-catalyzed disruption of membrane protein and lipid signaling in the pathogenesis of neurodegenerative disorders.Ann. N. Y. Acad. Sci.200410121375010.1196/annals.1306.004 15105254
    [Google Scholar]
  67. YamanakaK. YamamotoO. HondaT. Pathophysiology of psoriasis: A review.J. Dermatol.202148672273110.1111/1346‑8138.15913 33886133
    [Google Scholar]
  68. KimJ. KruegerJ.G. The immunopathogenesis of psoriasis.Dermatol. Clin.2015331132310.1016/j.det.2014.09.002 25412780
    [Google Scholar]
  69. RosesR.E. XuS. XuM. KoldovskyU. KoskiG. CzernieckiB.J. Differential production of IL-23 and IL-12 by myeloid-derived dendritic cells in response to TLR agonists.J. Immunol.200818175120512710.4049/jimmunol.181.7.5120 18802116
    [Google Scholar]
  70. ArmstrongA.W. ReadC. Pathophysiology, clinical presentation, and treatment of psoriasis: A Review.JAMA2020323191945196010.1001/jama.2020.4006 32427307
    [Google Scholar]
  71. SilvermanS.Jr GorskyM. NurL.F. GiannottiK. A prospective study of findings and management in 214 patients with oral lichen planus.Oral Surg. Oral Med. Oral Pathol.199172666567010.1016/0030‑4220(91)90007‑Y 1812447
    [Google Scholar]
  72. TagamiH. Location‐related differences in structure and function of the stratum corneum with special emphasis on those of the facial skin.Int. J. Cosmet. Sci.200830641343410.1111/j.1468‑2494.2008.00459.x 19099543
    [Google Scholar]
  73. LaxminarayanR. DuseA. WattalC. Antibiotic resistance—The need for global solutions.Lancet Infect. Dis.201313121057109810.1016/S1473‑3099(13)70318‑9 24252483
    [Google Scholar]
  74. WolffK. StuetzA. Pimecrolimus for the treatment of inflammatory skin disease.Expert Opin. Pharmacother.20045364365510.1517/14656566.5.3.643 15013932
    [Google Scholar]
  75. OertelW. RossJ.S. EggertK. AdlerG. Rationale for transdermal drug administration in Alzheimer disease.Neurology200769S1S4S910.1212/01.wnl.0000281845.40390.8b 17646621
    [Google Scholar]
  76. CrossS.E. RobertsM.S. Defining a model to predict the distribution of topically applied growth factors and other solutes in excisional full-thickness wounds.J. Invest. Dermatol.19991121364110.1046/j.1523‑1747.1999.00473.x 9886261
    [Google Scholar]
  77. KaurI.P. GargA. SinglaA.K. AggarwalD. Vesicular systems in ocular drug delivery: An overview.Int. J. Pharm.2004269111410.1016/j.ijpharm.2003.09.016 14698571
    [Google Scholar]
  78. GisondiP. AltomareG. AyalaF. Italian guidelines on the systemic treatments of moderate‐to‐severe plaque psoriasis.J. Eur. Acad. Dermatol. Venereol.2017315774790
    [Google Scholar]
  79. LeeH. SongC. HongY.S. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module.Sci. Adv.201733e160131410.1126/sciadv.1601314 28345030
    [Google Scholar]
  80. GrumezescuAM Nano materials for drug delivery and therapy.William andrew2019
    [Google Scholar]
  81. StefanovS.R. AndonovaV.Y. Lipid nanoparticulate drug delivery systems: Recent advances in the treatment of skin disorders.Pharmaceuticals20211411108310.3390/ph14111083 34832865
    [Google Scholar]
  82. SinghviG. HejmadyS. RapalliV.K. DubeyS.K. DubeyS. Nanocarriers for topical delivery in psoriasis.In: In delivery of drugs.Elsevier20207596
    [Google Scholar]
  83. GüngörS. ErdalM.S. AksuB. New formulation strategies in topical antifungal therapy.J Cosmet Dermatolog Sci Applicat201331566510.4236/jcdsa.2013.31A009
    [Google Scholar]
  84. ChatelainE. IosetJ.R. Drug discovery and development for neglected diseases: The DNDi model.Drug Des. Devel. Ther.20115175181 21552487
    [Google Scholar]
  85. KumarA. ChenF. MozhiA. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation.Nanoscale20135188307832510.1039/c3nr01525d 23860639
    [Google Scholar]
  86. BrownM.B. MartinG.P. JonesS.A. AkomeahF.K. Dermal and transdermal drug delivery systems: Current and future prospects.Drug Deliv.200613317518710.1080/10717540500455975 16556569
    [Google Scholar]
  87. AnirudhanT.S. NimaJ. DivyaP.L. Synthesis, characterization and in vitro cytotoxicity analysis of a novel cellulose based drug carrier for the controlled delivery of 5-fluorouracil, an anticancer drug.Appl. Surf. Sci.2015355647310.1016/j.apsusc.2015.07.077
    [Google Scholar]
  88. O’ConnellJ.F. WilliamsG. Passengers’ perceptions of low cost airlines and full service carriers: A case study involving Ryanair, Aer Lingus, Air Asia and Malaysia Airlines.J. Air Transp. Manage.200511425927210.1016/j.jairtraman.2005.01.007
    [Google Scholar]
  89. GaoP. NieX. ZouM. ShiY. ChengG. Recent advances in materials for extended-release antibiotic delivery system.J. Antibiot.201164962563410.1038/ja.2011.58 21811264
    [Google Scholar]
  90. AriasJl. Micro-and nano-particulate drug delivery systems for cancer treatment.Pharmacol. Res.20092227
    [Google Scholar]
  91. YuY.Q. YangX. WuX.F. FanY.B. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: Novel strategies for effective transdermal applications.Front. Bioeng. Biotechnol.2021964655410.3389/fbioe.2021.646554 33855015
    [Google Scholar]
  92. SunM.C. XuX.L. LouX.F. DuY.Z. Recent progress and future directions: The nano-drug delivery system for the treatment of vitiligo.Int. J. Nanomedicine2020153267327910.2147/IJN.S245326 32440123
    [Google Scholar]
  93. SoleymaniS. IranpanahA. NajafiF. Implications of grape extract and its nanoformulated bioactive agent resveratrol against skin disorders.Arch. Dermatol. Res.2019311857758810.1007/s00403‑019‑01930‑z 31115657
    [Google Scholar]
  94. BogeL. HallstenssonK. RingstadL. Cubosomes for topical delivery of the antimicrobial peptide LL-37.Eur. J. Pharm. Biopharm.2019134606710.1016/j.ejpb.2018.11.009 30445164
    [Google Scholar]
  95. BaveloniF.G. RiccioB.V.F. Di FilippoL.D. FernandesM.A. MeneguinA.B. ChorilliM. Nanotechnology-based drug delivery systems as potential for skin application: A review.Curr. Med. Chem.202128163216324810.2174/0929867327666200831125656 32867631
    [Google Scholar]
  96. KurangiB. JalalpureS. JagwaniS. Formulation and evaluation of resveratrol loaded cubosomal nano formulation for topical delivery.Curr. Drug Deliv.202118560761910.2174/1567201817666200902150646 32881670
    [Google Scholar]
  97. BadieH. AbbasH. Novel small self-assembled resveratrol-bearing cubosomes and hexosomes: Preparation, charachterization, and ex vivo permeation.Drug Dev. Ind. Pharm.201844122013202510.1080/03639045.2018.1508220 30095009
    [Google Scholar]
  98. AhmadU. AhmadZ. KhanA. AkhtarJ. SinghS. AhmadF. Strategies in development and delivery of nanotechnology based cosmetic products.Drug Res.2018681054555210.1055/a‑0582‑9372 29579762
    [Google Scholar]
  99. SunQ. ChenJ.F. RouthA.F. Coated colloidosomesas novel drug delivery carriers.Exp Opin Drugs2019169903906 31119644
    [Google Scholar]
  100. BieberichE. Sphingolipids and lipid rafts: Novel concepts and methods of analysis.Chem. Phys. Lipids201821611413110.1016/j.chemphyslip.2018.08.003 30194926
    [Google Scholar]
  101. NeupaneY.R. MahtabA. SiddiquiL. Biocompatible nanovesicular drug delivery systems with targeting potential for autoimmune diseases.Curr. Pharm. Des.202026425488550210.2174/1381612826666200523174108 32445443
    [Google Scholar]
  102. ShettyK. SherjeA.P. Nano intervention in topical delivery of corticosteroid for psoriasis and atopic dermatitis—A systematic review.J. Mater. Sci. Mater. Med.20213288810.1007/s10856‑021‑06558‑y 34331599
    [Google Scholar]
  103. VazzanaM. FangueiroJ.F. FaggioC. Archaeosomes for skin injuries.Carrier-Mediated Dermal Delivery.Jenny Stanford Publishing201732335510.4324/9781315364476‑9
    [Google Scholar]
  104. SallamM.A. PrakashS. KumbhojkarN. ShieldsC.W.IV MitragotriS. Formulation‐based approaches for dermal delivery of vaccines and therapeutic nucleic acids: Recent advances and future perspectives.Bioeng. Transl. Med.202163e1021510.1002/btm2.10215 34589595
    [Google Scholar]
  105. LinY.L. ChenC.H. WuH.Y. Inhibition of breast cancer with transdermal tamoxifen-encapsulated lipoplex.J. Nanobiotechnology20161411110.1186/s12951‑016‑0163‑3 26892504
    [Google Scholar]
  106. ShajiJ. BhatiaV. Proliposomes: A brief overview of novel delivery system.Int J Pharm Biosci20134150160
    [Google Scholar]
  107. HiremathN. GowdaD.V. AnushaR. Proliposomes: A novel approach to carrier drug delivery system.J Chem Pharm201682348354
    [Google Scholar]
  108. LeeS.H. BajracharyaR. MinJ.Y. HanJ.W. ParkB.J. HanH.K. Strategic approaches for colon targeted drug delivery: An overview of recent advancements.Pharmaceutics20201216810.3390/pharmaceutics12010068 31952340
    [Google Scholar]
  109. BhatM. PukaleS. SinghS. MittalA. ChitkaraD. Nano-enabled topical delivery of anti-psoriatic small molecules.J. Drug Deliv. Sci. Technol.20216210232810.1016/j.jddst.2021.102328
    [Google Scholar]
  110. KurmiB.D. TekchandaniP. PaliwalR. PaliwalS.R. Transdermal drug delivery: Opportunities and challenges for controlled delivery of therapeutic agents using nanocarriers.Curr. Drug Metab.201718548149510.2174/1389200218666170222150555 28228076
    [Google Scholar]
  111. AkbarzadehA. SadabadyR.R. DavaranS. Liposome: Classification, preparation, and applications.Nanoscale Res. Lett.20138110210.1186/1556‑276X‑8‑102 23432972
    [Google Scholar]
  112. DhamechaDl. RathiA.A. SaifeeM. Drug vehicle based approaches of penetration enhancement.Int. J. Pharma Sci.2009112446
    [Google Scholar]
  113. PurdonC.H. AzziC.G. ZhangJ. SmithE.W. MaibachH.I. Penetration enhancement of transdermal delivery--current permutations and limitations.Crit. Rev. Ther. Drug Carrier Syst.20042123610.1615/CritRevTherDrugCarrierSyst.v21.i2.20 15202928
    [Google Scholar]
  114. PierreM.B.R. TedescoA.C. MarchettiJ.M. BentleyM.V.L.B. Stratum corneum lipids liposomes for the topical delivery of 5-aminolevulinic acid in photodynamic therapy of skin cancer: Preparation and in vitro permeation study.BMC Dermatol.200111510.1186/1471‑5945‑1‑5 11545679
    [Google Scholar]
  115. VermaD. VermaS. BlumeG. FahrA. Particle size of liposomes influences dermal delivery of substances into skin.Int. J. Pharm.20032581-214115110.1016/S0378‑5173(03)00183‑2 12753761
    [Google Scholar]
  116. EgbariaK. WeinerN. Liposomes as a topical drug delivery system.Adv. Drug Deliv. Rev.19905328730010.1016/0169‑409X(90)90021‑J
    [Google Scholar]
  117. VermorkenA.J.M. HukkelhovenM.W A C. MarkslagV.A.M.G. GoosC.M A A. WirtzP. ZiegenmeyerJ. The use of liposomes in the topical application of steroids.J. Pharm. Pharmacol.201136533433610.1111/j.2042‑7158.1984.tb04387.x 6145773
    [Google Scholar]
  118. ZhangJ. FroelichA. KohnM.B. Topical delivery of meloxicam using liposome and microemulsion formulation approaches.Pharmaceutics202012328210.3390/pharmaceutics12030282 32245190
    [Google Scholar]
  119. SinghR. VyasS.P. Topical liposomal system for localized and controlled drug delivery.J. Dermatol. Sci.199613210711110.1016/S0923‑1811(96)00508‑7 8953409
    [Google Scholar]
  120. JainH. GeetanjaliD. DalviH. BhatA. GoduguC. SrivastavaS. Liposome mediated topical delivery of Ibrutinib and Curcumin as a synergistic approach to combat imiquimod induced psoriasis.J. Drug Deliv. Sci. Technol.20226810310310.1016/j.jddst.2022.103103
    [Google Scholar]
  121. XiL. LinZ. QiuF. Enhanced uptake and anti-maturation effect of celastrol-loaded mannosylated liposomes on dendritic cells for psoriasis treatment.Acta Pharm. Sin. B202212133935210.1016/j.apsb.2021.07.019 35127390
    [Google Scholar]
  122. ChenJ. MaY. TaoY. Formulation and evaluation of a topical liposomal gel containing a combination of zedoary turmeric oil and tretinoin for psoriasis activity.J. Liposome Res.202131213014410.1080/08982104.2020.1748646 32223352
    [Google Scholar]
  123. Rodríguez-LunaA. TaleroE. Ávila-RománJ. Preparation and in vivo evaluation of rosmarinic acid-loaded transethosomes after percutaneous application on a psoriasis animal model.AAPS PharmSciTech202122310310.1208/s12249‑021‑01966‑3 33712964
    [Google Scholar]
  124. FathallaD. YoussefE.M.K. SolimanG.M. Liposomal and ethosomal gels for the topical delivery of anthralin: Preparation, comparative evaluation and clinical assessment in psoriatic patients.Pharmaceutics202012544610.3390/pharmaceutics12050446 32403379
    [Google Scholar]
  125. BahramizadehM. BahramizadehM. KiafarB. Development, characterization and evaluation of topical methotrexate-entrapped deformable liposome on imiquimod-induced psoriasis in a mouse model.Int. J. Pharm.201956911862310.1016/j.ijpharm.2019.118623 31419462
    [Google Scholar]
  126. RahmanM. AlamK. BegS. Liposomes as topical drug delivery systems: State of the arts. In: biomedical applications of nanoparticles.William Andrew Publishing201914961
    [Google Scholar]
  127. StroberB.E. ArmourK. RomitiR. Biopharmaceuticals and biosimilars in psoriasis: What the dermatologist needs to know.J. Am. Acad. Dermatol.201266231732210.1016/j.jaad.2011.08.034 22243723
    [Google Scholar]
  128. CevcG. Lipid vesicles and other colloids as drug carriers on the skin.Adv. Drug Deliv. Rev.200456567571110.1016/j.addr.2003.10.028 15019752
    [Google Scholar]
  129. KimJ.K. ZebA. QureshiO.S. KimH-S. ChaJ-H. KimH.S. Improved skin permeation of methotrexate via nanosized ultradeformable liposomes.Int. J. Nanomedicine2016113813382410.2147/IJN.S109565 27540293
    [Google Scholar]
  130. ZengJ. LuoS. HuangY. LuQ. Critical role of environmental factors in the pathogenesis of psoriasis.J. Dermatol.201744886387210.1111/1346‑8138.13806 28349593
    [Google Scholar]
  131. KortingH.C. BlecherP. Schäfer-KortingM. WendelA. Topical liposome drugs to come: What the patent literature tells us.J. Am. Acad. Dermatol.19912561068107110.1016/0190‑9622(91)70309‑P 1810984
    [Google Scholar]
  132. KuchekarA.B. PujariR.R. KuchekarS.B. Psoriasis: A comprehensive review.Int. J. Pharm. Biol. Sci.201126
    [Google Scholar]
  133. DasN.K. SilA. LalN.R. GayenT. BandyopadhyayD. Safety and effectiveness of autoinoculation therapy in cutaneous warts: A double - blind, randomized, placebo - controlled study.Indian J. Dermatol. Venereol. Leprol.201480651552010.4103/0378‑6323.144146 25382508
    [Google Scholar]
  134. CevcG. Transfersomes, liposomes and other lipid suspensions on the skin: Permeation enhancement, vesicle penetration, and transdermal drug delivery.Crit. Rev. Ther. Drug Carrier Syst.1996133-425738810.1615/CritRevTherDrugCarrierSyst.v13.i3‑4.30 9016383
    [Google Scholar]
  135. AkhtarN. VermaA. PathakK. Topical delivery of drugs for the effective treatment of fungal infections of skin.Curr. Pharm. Des.201521202892291310.2174/1381612821666150428150456 25925110
    [Google Scholar]
  136. PatilY.P. JadhavS. Novel methods for liposome preparation.Chem. Phys. Lipids201417781810.1016/j.chemphyslip.2013.10.011 24220497
    [Google Scholar]
  137. TitovaL.V. AyesheshimA.K. GolubovA. Intense THz pulses down-regulate genes associated with skin cancer and psoriasis: A new therapeutic avenue?Sci. Rep.201331236310.1038/srep02363 23917523
    [Google Scholar]
  138. GisondiP. GeatD. PizzolatoM. GirolomoniG. State of the art and pharmacological pipeline of biologics for chronic plaque psoriasis.Curr. Opin. Pharmacol.201946909910.1016/j.coph.2019.05.007 31212119
    [Google Scholar]
  139. WuJ. LiuW. XueC. Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure.Toxicol. Lett.200919111810.1016/j.toxlet.2009.05.020 19501137
    [Google Scholar]
  140. LewW. BowcockA.M. KruegerJ.G. Psoriasis vulgaris: Cutaneous lymphoid tissue supports T-cell activation and ‘Type 1’ inflammatory gene expression.Trends Immunol.200425629530510.1016/j.it.2004.03.006 15145319
    [Google Scholar]
  141. ZylberbergC. MatosevicS. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape.Drug Deliv.20162393319332910.1080/10717544.2016.1177136 27145899
    [Google Scholar]
  142. NickoloffB.J. NestleF.O. Recent insights into the immuno-pathogenesis of psoriasis provide new therapeutic opportunities.J Clin20041131216641675
    [Google Scholar]
  143. BaeY.H. ParkK. Targeted drug delivery to tumors: Myths, reality and possibility.J. Control. Release2011153319820510.1016/j.jconrel.2011.06.001 21663778
    [Google Scholar]
  144. SzczepanowiczK. BazylińskaU. PietkiewiczJ. WarszyńskaS.L. WilkK.A. WarszyńskiP. Biocompatible long-sustained release oil-core polyelectrolyte nanocarriers: From controlling physical state and stability to biological impact.Adv. Colloid Interface Sci.201522267869110.1016/j.cis.2014.10.005 25453660
    [Google Scholar]
  145. LalotraA.S. SinghV. KhuranaB. AgrawalS. ShresthaS. AroraD. A comprehensive review on nanotechnology-based innovations in topical drug delivery for the treatment of skin cancer.Curr. Pharm. Des.202026445720573110.2174/1381612826666200819202821 32814523
    [Google Scholar]
  146. SousaF. FerreiraD. ReisS. CostaP. Current insights on antifungal therapy: Novel nanotechnology approaches for drug delivery systems and new drugs from natural sources.Pharmaceuticals2020139248
    [Google Scholar]
  147. PatraJ.K. DasG. FracetoL.F. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  148. MottalebA.M.M. TryC. PellequerY. LamprechtA. Nano-medicine strategies for targeting skin inflammation.Nano-Med201491117271743
    [Google Scholar]
  149. ChenY. FengX. MengS. Site-specific drug delivery in the skin for the localized treatment of skin diseases.Expert Opin. Drug Deliv.201916884786710.1080/17425247.2019.1645119 31311345
    [Google Scholar]
  150. ChauhanI. YasirM. VermaM. SinghA.P. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery.Adv. Pharm. Bull.202010215016510.34172/apb.2020.021 32373485
    [Google Scholar]
  151. CoulmanS.A. AnsteyA. GateleyC. Microneedle mediated delivery of nanoparticles into human skin.Int. J. Pharm.20093661-219020010.1016/j.ijpharm.2008.08.040 18812218
    [Google Scholar]
  152. DanaeiM. DehghankholdM. AtaeiS. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems.Pharmaceutics20181025710.3390/pharmaceutics10020057 29783687
    [Google Scholar]
  153. AlsaadA.A. HussienA.A. GareebM.M. Solid lipid nanoparticles (Sln) As a novel drug delivery system: A theoretical review.Syst. Rev. Pharm.202011259273
    [Google Scholar]
  154. BolzingerM.A. BriançonS. PelletierJ. ChevalierY. Penetration of drugs through skin, a complex rate-controlling membrane.Curr. Opin. Colloid Interface Sci.201217315616510.1016/j.cocis.2012.02.001
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855297829240227072642
Loading
/content/journals/cdth/10.2174/0115748855297829240227072642
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test