Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

This in-depth analysis examines the revolutionary potential of nanostructures, particularly niosomes, in boosting Clotrimazole's therapeutic effectiveness for dermatological applications. A common antifungal drug called clotrimazole suffers significant problems with solubility, bioavailability, and penetration. Niosomal gels in particular, which are nanostructured drug carriers, have emerged as ground-breaking approaches to overcome these constraints. The study opens with an explanation of the mechanisms of action of Clotrimazole and its wide range of therapeutic uses in dermatology, emphasising the limitations of standard formulations. We present and explore niosomes, lipid-based nanocarriers with diverse characteristics. They provide a viable substrate for improved Clotrimazole administration due to their biocompatibility, adjustable lipid composition, and capacity to encapsulate both hydrophilic and hydrophobic medications. The creation and development of clotrimazole-loaded niosomal gels are at the core of the review. Numerous preparation processes are investigated, and elements affecting the formation of niosomal gel, such as lipid content and optimization strategies, are reviewed. Particle size analysis and encapsulation efficiency testing are two methods for characterising these gels that are covered in depth. The effectiveness of Clotrimazole-loaded niosomal gels is validated in large part by and tests. The review explores drug release investigations, studies of skin permeability and penetration, and comparisons with conventional formulations. When accessible, preclinical and clinical trial insights provide crucial clinical context. The benefits of clotrimazole-loaded niosomal gels, such as greater patient compliance and improved drug delivery, are also covered in the article. It solves difficulties including stability issues and regulatory issues. The review's conclusion emphasises the essential role that nanostructures and niosomes have played in developing Clotrimazole medicines for dermatological usage. It provides a thorough review of current developments, exciting new approaches, and the wider effects of this ground-breaking medication delivery strategy.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855286072240101072301
2024-01-25
2025-04-13
Loading full text...

Full text loading...

References

  1. MarksJ.G. MillerJ.J. Lookingbill and Marks’ Principles of Dermatology E-Book.Elsevier2017
    [Google Scholar]
  2. YuwnateA. ChandaneR. GiriK. YunatiM. SirsamS. A multicentre pharmacoepidemiological study of dermatological disorders in Wardha district.Int. J. Basic Clin. Pharmacol.20132675175610.5455/2319‑2003.ijbcp20131215
    [Google Scholar]
  3. ZahraS.A. GedajlovicE. NeubaumD.O. ShulmanJ.M. A typology of social entrepreneurs: Motives, search processes and ethical challenges.J. Bus. Venturing200924551953210.1016/j.jbusvent.2008.04.007
    [Google Scholar]
  4. RaiV.K. MishraN. YadavK.S. YadavN.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications.J. Control. Release201827020322510.1016/j.jconrel.2017.11.049 29199062
    [Google Scholar]
  5. KeshwaniaP. KaurN. ChauhanJ. Superficial dermatophytosis across the world’s populations: Potential benefits from nanocarrier-based therapies and rising challenges.ACS Omega2023835315753159910.1021/acsomega.3c01988 37692246
    [Google Scholar]
  6. SubissiA. MontiD. TogniG. MaillandF. Ciclopirox.Drugs201070162133215210.2165/11538110‑000000000‑00000 20964457
    [Google Scholar]
  7. WalP. SaraswatN. VigH. A detailed insight onto the molecular and cellular mechanism of action of the antifungal drugs used in the treatment of superficial fungal infections.Curr. Drug Ther.202217314815910.2174/1574885517666220328141054
    [Google Scholar]
  8. MirM.A. Human Pathogenic Microbes: Diseases and Concerns.Academic Press2022
    [Google Scholar]
  9. DograS. SahniK. SinghS. Newer topical treatments in skin and nail dermatophyte infections.Indian Dermatol. Online J.20189314915810.4103/idoj.IDOJ_281_17 29854633
    [Google Scholar]
  10. ConnH.W. Bacteria, yeasts, and molds in the home.1903Available from: https://books.google.co.in/books
    [Google Scholar]
  11. WaghuleT. SankarS. RapalliV.K. Emerging role of nanocarriers based topical delivery of anti‐fungal agents in combating growing fungal infections.Dermatol. Ther.2020336e1390510.1111/dth.13905 32588940
    [Google Scholar]
  12. GuptaA.K. SkinnerA.R. Ciclopirox for the treatment of superficial fungal infections: A review.Int. J. Dermatol.200342S13910.1046/j.1365‑4362.42.s1.2.x 12895181
    [Google Scholar]
  13. RaiM. IngleA.P. PanditR. Nanotechnology for the treatment of fungal infections on human skin.In: The microbiology of skin, soft tissue, bone and joint infections.Academic Press201710.1016/B978‑0‑12‑811079‑9.00019‑7
    [Google Scholar]
  14. SokovicM. LiarasK. Antifungal compounds discovery: Natural and synthetic approaches.Elsevier2020
    [Google Scholar]
  15. TaudorfE.H. JemecG.B.E. HayR.J. SaunteD.M.L. Cutaneous candidiasis - an evidence‐based review of topical and systemic treatments to inform clinical practice.J. Eur. Acad. Dermatol. Venereol.201933101863187310.1111/jdv.15782 31287594
    [Google Scholar]
  16. BorelliD. JacobsP.H. NallL. Tinea versicolor: Epidemiologic, clinical, and therapeutic aspects.J. Am. Acad. Dermatol.199125230030510.1016/0190‑9622(91)70198‑B 1918469
    [Google Scholar]
  17. VermoutS. TabartJ. BaldoA. MathyA. LossonB. MignonB. Pathogenesis of dermatophytosis.Mycopathologia20081665-626727510.1007/s11046‑008‑9104‑5 18478361
    [Google Scholar]
  18. JannigerC.K. SchwartzR.A. SzepietowskiJ.C. ReichA. Intertrigo and common secondary skin infections.Am. Fam. Physician2005725833838 16156342
    [Google Scholar]
  19. MistiaenP. van Halm-WaltersM. Prevention and treatment of intertrigo in large skin folds of adults: A systematic review.BMC Nurs.2010911210.1186/1472‑6955‑9‑12 20626853
    [Google Scholar]
  20. BorkowskiS. Diaper rash care and management.Pediatr. Nurs.2004306467470 15704594
    [Google Scholar]
  21. StulbergD.L. WolfreyJ. Pityriasis rosea.Am. Fam. Physician20046918791 14727822
    [Google Scholar]
  22. ForouzanP. CohenP.R. Erythrasma revisited: Diagnosis, differential diagnoses, and comprehensive review of treatment.Cureus2020129e1073310.7759/cureus.10733 33145138
    [Google Scholar]
  23. RelhanV. GoelK. BansalS. GargV. Management of chronic paronychia.Indian J. Dermatol.2014591152010.4103/0019‑5154.123482 24470654
    [Google Scholar]
  24. van BurikJ.A.H. ColvenR. SpachD.H. Cutaneous aspergillosis.J. Clin. Microbiol.199836113115312110.1128/JCM.36.11.3115‑3121.1998 9774549
    [Google Scholar]
  25. TamjidiF. ShahediM. VarshosazJ. NasirpourA. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules.Innov. Food Sci. Emerg. Technol.201319294310.1016/j.ifset.2013.03.002
    [Google Scholar]
  26. MurakamiT. BodorE. BodorN. Factors and dosage formulations affecting the solubility and bioavailability of P-glycoprotein substrate drugs.Expert Opin. Drug Metab. Toxicol.202117555558010.1080/17425255.2021.1902986 33703995
    [Google Scholar]
  27. MarzulliF.N. Barriers to skin penetration.J. Invest. Dermatol.196239538739310.1038/jid.1962.129 13933249
    [Google Scholar]
  28. FernandesB. MatamáT. Cavaco-PauloA. Cavaco-PauloA. Cyclosporin A-loaded poly(d,l -lactide) nanoparticles: a promising tool for treating alopecia.Nanomedicine202015151459146910.2217/nnm‑2020‑0089 32552553
    [Google Scholar]
  29. BrouwersJ. BrewsterM.E. AugustijnsP. Supersaturating drug delivery systems: The answer to solubility-limited oral bioavailability?J. Pharm. Sci.20099882549257210.1002/jps.21650 19373886
    [Google Scholar]
  30. BonanomiG. GaglioneS.A. CesaranoG. Frequent applications of organic matter to agricultural soil increase fungistasis.Pedosphere2017271869510.1016/S1002‑0160(17)60298‑4
    [Google Scholar]
  31. TeradaT. NodaS. InuiK. Management of dose variability and side effects for individualized cancer pharmacotherapy with tyrosine kinase inhibitors.Pharmacol. Ther.201515212513410.1016/j.pharmthera.2015.05.009 25976912
    [Google Scholar]
  32. MeudomR. ZhangY. VandenBergM.A. Supramolecular approaches for insulin stabilization without prolonged duration of action.Acta Pharm. Sin. B20231352281229010.1016/j.apsb.2023.01.007 37250160
    [Google Scholar]
  33. FluhrJ.W. DarlenskiR. Angelova-FischerI. TsankovN. BasketterD. Skin irritation and sensitization: Mechanisms and new approaches for risk assessment. 1. Skin irritation.Skin Pharmacol. Physiol.200821312413510.1159/000131077 18523410
    [Google Scholar]
  34. StoneM.H. FleckS.J. TriplettN.T. KraemerW.J. Health- and performance-related potential of resistance training.Sports Med.199111421023110.2165/00007256‑199111040‑00002 2014369
    [Google Scholar]
  35. KawakamiS. HiguchiY. HashidaM. Nonviral approaches for targeted delivery of plasmid DNA and oligonucleotide.J. Pharm. Sci.200897272674510.1002/jps.21024 17823947
    [Google Scholar]
  36. YabbarovN.G. PosypanovaG.A. VorontsovE.A. PopovaO.N. SeverinE.S. Targeted delivery of doxorubicin: Drug delivery system based on PAMAM dendrimers.Biochemistry201378888489410.1134/S000629791308004X 24228876
    [Google Scholar]
  37. SousaF. FerreiraD. ReisS. CostaP. Current insights on antifungal therapy: Novel nanotechnology approaches for drug delivery systems and new drugs from natural sources.Pharmaceuticals202013924810.3390/ph13090248 32942693
    [Google Scholar]
  38. CornetteJ.L. CeaseK.B. MargalitH. SpougeJ.L. BerzofskyJ.A. DeLisiC. Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins.J. Mol. Biol.1987195365968510.1016/0022‑2836(87)90189‑6 3656427
    [Google Scholar]
  39. KaiserE.T. KézdyF.J. Amphiphilic secondary structure: Design of peptide hormones.Science1984223463324925510.1126/science.6322295 6322295
    [Google Scholar]
  40. WangD. BradfordS.A. HarveyR.W. HaoX. ZhouD. Transport of ARS-labeled hydroxyapatite nanoparticles in saturated granular media is influenced by surface charge variability even in the presence of humic acid.J. Hazard. Mater.2012229-23017017610.1016/j.jhazmat.2012.05.089 22721835
    [Google Scholar]
  41. OhJ.Y. YangG. ChoiE. RyuJ.H. Mesoporous silica nanoparticle-supported nanocarriers with enhanced drug loading, encapsulation stability, and targeting efficiency.Biomater. Sci.20221061448145510.1039/D2BM00010E 35229845
    [Google Scholar]
  42. LeeS.S. HughesP. RossA.D. RobinsonM.R. Biodegradable implants for sustained drug release in the eye.Pharm. Res.201027102043205310.1007/s11095‑010‑0159‑x 20535532
    [Google Scholar]
  43. HeB SuiX YuB WangS ShenY, CongH. Recent advances in drug delivery systems for enhancing drug penetration into tumors.Drug Deliv.20202711474149010.1080/10717544.2020.1831106 33100061
    [Google Scholar]
  44. KhadkaP. RoJ. KimH. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian.J. Pharmaceut sci.20149630431610.1016/j.ajps.2014.05.005
    [Google Scholar]
  45. AmeeduzzafarAli J. FazilM. QumbarM. KhanN. AliA. Colloidal drug delivery system: Amplify the ocular delivery.Drug Deliv.201623370071610.3109/10717544.2014.923065 24892625
    [Google Scholar]
  46. HamishehkarH. RahimpourY. KouhsoltaniM. Niosomes as a propitious carrier for topical drug delivery.Expert Opin. Drug Deliv.201310226127210.1517/17425247.2013.746310 23252629
    [Google Scholar]
  47. GuptaM. AgrawalU. VyasS.P. Nanocarrier-based topical drug delivery for the treatment of skin diseases.Expert Opin. Drug Deliv.20129778380410.1517/17425247.2012.686490 22559240
    [Google Scholar]
  48. ZhangH. Thin-film hydration followed by extrusion method for liposome preparation. Liposomes.Methods Protoc.20171722
    [Google Scholar]
  49. KapusP. OfnerH. Development of fuel injection equipment and combustion system for DI diesels operated on dimethyl ether.SAE technical paper199510.4271/950062
    [Google Scholar]
  50. CortesiR. EspositoE. GambarinS. TelloliP. MenegattiE. NastruzziC. Preparation of liposomes by reverse-phase evaporation using alternative organic solvents.J. Microencapsul.199916225125610.1080/026520499289220 10080118
    [Google Scholar]
  51. GaidhaniK.A. HarwalkarM. BhambereD. NirgudeP.S. Lyophilization/freeze drying-A review.World J. Pharm. Res.201548516543
    [Google Scholar]
  52. HarayamaT. RiezmanH. Understanding the diversity of membrane lipid composition.Nat. Rev. Mol. Cell Biol.201819528129610.1038/nrm.2017.138 29410529
    [Google Scholar]
  53. PetkovaB. TcholakovaS. ChenkovaM. Foamability of aqueous solutions: Role of surfactant type and concentration.Adv. Colloid Interface Sci.202027610208410.1016/j.cis.2019.102084 31884021
    [Google Scholar]
  54. SawyerP.R. BrogdenR.N. PinderR.M. SpeightT.M. AveryG.S. Clotrimazole.Drugs19759642444710.2165/00003495‑197509060‑00003 1097234
    [Google Scholar]
  55. KaurD. KumarS. Niosomes: Present scenario and future aspects.J. Drug Deliv. Ther.201885354310.22270/jddt.v8i5.1886
    [Google Scholar]
  56. EssaE. Effect of formulation and processing variables on the particle size of sorbitan monopalmitate niosomes.Asian J. Pharm.20104422710.4103/0973‑8398.76752
    [Google Scholar]
  57. KumarG.P. RajeshwarraoP. Nonionic surfactant vesicular systems for effective drug delivery—an overview.Acta Pharm. Sin. B20111420821910.1016/j.apsb.2011.09.002
    [Google Scholar]
  58. JacobS. NairA.B. Cyclodextrin complexes: Perspective from drug delivery and formulation.Drug Dev. Res.201879520121710.1002/ddr.21452 30188584
    [Google Scholar]
  59. ZhouY. TangY. LiaoC. SuM. ShihK. Recent advances toward structural incorporation for stabilizing heavy metal contaminants: A critical review.J. Hazard. Mater.202344813097710.1016/j.jhazmat.2023.130977 36860053
    [Google Scholar]
  60. MirzaieA. PeiroviN. AkbarzadehI. Preparation and optimization of ciprofloxacin encapsulated niosomes: A new approach for enhanced antibacterial activity, biofilm inhibition and reduced antibiotic resistance in ciprofloxacin-resistant methicillin-resistance Staphylococcus aureus.Bioorg. Chem.202010310423110.1016/j.bioorg.2020.104231 32882442
    [Google Scholar]
  61. BabickF. Dynamic light scattering (DLS).In: Characterization of nanoparticles.Elsevier202010.1016/B978‑0‑12‑814182‑3.00010‑9
    [Google Scholar]
  62. TangC.Y. YangZ. Transmission electron microscopy (TEM).Membrane characterization.Elsevier201710.1016/B978‑0‑444‑63776‑5.00008‑5
    [Google Scholar]
  63. MohammedA. AbdullahA. Scanning electron microscopy (SEM): A review.InProceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX.2018Available from: https://fluidas.ro/hervex/proceedings2018/77-85.pdf
    [Google Scholar]
  64. TracheA. MeiningerG.A. Atomic force microscopy (AFM).Curr Proto Microbiol2008210.1002/9780471729259.mc02c02s8
    [Google Scholar]
  65. ClogstonJ.D. PatriA.K. Zeta potential measurement.Methods Mol. Biol.2011697637010.1007/978‑1‑60327‑198‑1_6
    [Google Scholar]
  66. ChenY. ZouC. MastalerzM. HuS. GasawayC. TaoX. Applications of micro-fourier transform infrared spectroscopy (FTIR) in the geological sciences-a review.Int. J. Mol. Sci.20151612302233025010.3390/ijms161226227 26694380
    [Google Scholar]
  67. El-RidyM.S. YehiaS.A. MohsenA.M. El-AwdanS.A. DarwishA.B. Formulation of niosomal gel for enhanced transdermal lornoxicam delivery: In-vitro and in-vivo evaluation.Curr. Drug Deliv.2018151122133 28240177
    [Google Scholar]
  68. ShekunovB.Y. ChattopadhyayP. TongH.H.Y. ChowA.H.L. Particle size analysis in pharmaceutics: Principles, methods and applications.Pharm. Res.200724220322710.1007/s11095‑006‑9146‑7 17191094
    [Google Scholar]
  69. SadhuS. BhowmickA.K. Morphology study of rubber based nanocomposites by transmission electron microscopy and atomic force microscopy.J. Mater. Sci.20054071633164210.1007/s10853‑005‑0663‑2
    [Google Scholar]
  70. JyothiN.V.N. PrasannaP.M. SakarkarS.N. PrabhaK.S. RamaiahP.S. SrawanG.Y. Microencapsulation techniques, factors influencing encapsulation efficiency.J. Microencapsul.201027318719710.3109/02652040903131301 20406093
    [Google Scholar]
  71. TavanoL. GentileL. Oliviero RossiC. MuzzalupoR. Novel gel-niosomes formulations as multicomponent systems for transdermal drug delivery.Colloids Surf. B Biointerfaces201311028128810.1016/j.colsurfb.2013.04.017 23732806
    [Google Scholar]
  72. ChenS. HanningS. FalconerJ. LockeM. WenJ. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications.Eur. J. Pharm. Biopharm.2019144183910.1016/j.ejpb.2019.08.015 31446046
    [Google Scholar]
  73. AbdelbaryG. El-gendyN. Niosome-encapsulated gentamicin for ophthalmic controlled delivery.AAPS PharmSciTech20089374074710.1208/s12249‑008‑9105‑1 18563578
    [Google Scholar]
  74. SguizzatoM. PepeA. BaldisserottoA. Niosomes for topical application of antioxidant molecules: Design and in vitro behavior.Gels20239210710.3390/gels9020107 36826277
    [Google Scholar]
  75. SankaliaJ.M. SankaliaM.G. MashruR.C. Drug release and swelling kinetics of directly compressed glipizide sustained-release matrices: Establishment of level A IVIVC.J. Control. Release20081291495810.1016/j.jconrel.2008.03.016 18456362
    [Google Scholar]
  76. SandbergA. BlomqvistI. JonssonU.E. LundborgP. Pharmacokinetic and pharmacodynamic properties of a new controlled-release formulation of metoprolol: A comparison with conventional tablets.Eur. J. Clin. Pharmacol.198833S1S9S1410.1007/BF00578406 3371395
    [Google Scholar]
  77. SchmookF.P. MeingassnerJ.G. BillichA. Comparison of human skin or epidermis models with human and animal skin in in-vitro percutaneous absorption.Int. J. Pharm.20012151-2515610.1016/S0378‑5173(00)00665‑7 11250091
    [Google Scholar]
  78. NounouM. El-KhordaguiL. KhalafallahN. KhalilS. Liposomal formulation for dermal and transdermal drug delivery: Past, present and future.Recent Pat. Drug Deliv. Formul.20082191810.2174/187221108783331375 19075893
    [Google Scholar]
  79. NingM. GuoY. PanH. ChenX. GuZ. Preparation, in vitro and in vivo evaluation of liposomal/niosomal gel delivery systems for clotrimazole.Drug Dev. Ind. Pharm.2005314-537538310.1081/DDC‑54315 16093203
    [Google Scholar]
  80. NohynekG.J. AntignacE. ReT. ToutainH. Safety assessment of personal care products/cosmetics and their ingredients.Toxicol. Appl. Pharmacol.2010243223925910.1016/j.taap.2009.12.001 20005888
    [Google Scholar]
  81. SawantB. KhanT. Recent advances in delivery of antifungal agents for therapeutic management of candidiasis.Biomed. Pharmacother.2017961478149010.1016/j.biopha.2017.11.127 29223551
    [Google Scholar]
  82. VermaS. UtrejaP. Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy.Asian J Pharm Sci201914211712910.1016/j.ajps.2018.05.007
    [Google Scholar]
  83. KaurI.P. KakkarS. Topical delivery of antifungal agents.Expert Opin. Drug Deliv.20107111303132710.1517/17425247.2010.525230 20961206
    [Google Scholar]
  84. FangJ.Y. HwangT.L. HuangY.L. Liposomes as vehicles for enhancing drug delivery via skin routes.Curr. Nanosci.200621557010.2174/157341306775473791
    [Google Scholar]
  85. AzeemA. AnwerM.K. TalegaonkarS. Niosomes in sustained and targeted drug delivery: Some recent advances.J. Drug Target.200917967168910.3109/10611860903079454 19845484
    [Google Scholar]
  86. JainN. VermaA. JainN. Formulation and investigation of pilocarpine hydrochloride niosomal gels for the treatment of glaucoma: Intraocular pressure measurement in white albino rabbits.Drug Deliv.202027188889910.1080/10717544.2020.1775726 32551978
    [Google Scholar]
  87. FerreiraL. Mascarenhas-MeloF. RabaçaS. Cyclodextrin-based dermatological formulations: Dermopharmaceutical and cosmetic applications.Colloids Surf. B Biointerfaces202211301210.1016/j.colsurfb.2022.113012 36395617
    [Google Scholar]
  88. LamP.L. GambariR. Advanced progress of microencapsulation technologies: In vivo and in vitro models for studying oral and transdermal drug deliveries.J. Control. Release2014178254510.1016/j.jconrel.2013.12.028 24417967
    [Google Scholar]
  89. KimJ.K. ZebA. QureshiO.S. KimH-S. ChaJ-H. KimH.S. Improved skin permeation of methotrexate via nanosized ultradeformable liposomes.Int. J. Nanomedicine2016113813382410.2147/IJN.S109565 27540293
    [Google Scholar]
  90. SindhuR BinodP MadhavanA Molecular improvements in microbial α-amylases for enhanced stability and catalytic efficiency.Bioresour Technol2017245Pt B1740174810.1016/j.biortech.2017.04.098 28478894
    [Google Scholar]
  91. RekerD.M. DuncanP.W. HornerR.D. Postacute stroke guideline compliance is associated with greater patient satisfaction.Arch. Phys. Med. Rehabil.200283675075610.1053/apmr.2002.99736 12048651
    [Google Scholar]
  92. WilliamsD. Revisiting the definition of biocompatibility.Med. Device Technol.20031481013 14603712
    [Google Scholar]
  93. QuF. GengR. LiuY. ZhuJ. Advanced nanocarrier- and microneedle-based transdermal drug delivery strategies for skin diseases treatment.Theranostics20221273372340610.7150/thno.69999 35547773
    [Google Scholar]
  94. SchmidtC. LautenschlaegerC. CollnotE.M. Nano- and microscaled particles for drug targeting to inflamed intestinal mucosa-A first in vivo study in human patients.J. Control. Release2013165213914510.1016/j.jconrel.2012.10.019 23127508
    [Google Scholar]
  95. VarmaR.S. Greener approach to nanomaterials and their sustainable applications.Curr. Opin. Chem. Eng.20121212312810.1016/j.coche.2011.12.002
    [Google Scholar]
  96. AkhlaghiM. TaebpourM. LotfabadiN.N. Synthesis and characterization of smart stimuli-responsive herbal drug-encapsulated nanoniosome particles for efficient treatment of breast cancer.Nanotechnol. Rev.20221111364138510.1515/ntrev‑2022‑0080
    [Google Scholar]
  97. JainS. PatelN. ShahM.K. KhatriP. VoraN. Recent advances in lipid-based vesicles and particulate carriers for topical and transdermal application.J. Pharm. Sci.2017106242344510.1016/j.xphs.2016.10.001 27865609
    [Google Scholar]
  98. GorantlaS. RapalliV.K. WaghuleT. Nanocarriers for ocular drug delivery: Current status and translational opportunity.RSC Advances20201046278352785510.1039/D0RA04971A 35516960
    [Google Scholar]
  99. AparajayP. DevA. Functionalized niosomes as a smart delivery device in cancer and fungal infection.Eur. J. Pharm. Sci.202216810605210.1016/j.ejps.2021.106052 34740786
    [Google Scholar]
  100. ZhouX. HaoY. YuanL. Nano-formulations for transdermal drug delivery: A review.Chin. Chem. Lett.201829121713172410.1016/j.cclet.2018.10.037
    [Google Scholar]
  101. NicoliM.C. CalligarisS. ManzoccoL. Shelf-life testing of coffee and related products: Uncertainties, pitfalls, and perspectives.Food Eng. Rev.20091215916810.1007/s12393‑009‑9010‑8
    [Google Scholar]
  102. GrolR. Successes and failures in the implementation of evidence-based guidelines for clinical practice.Med. Care2001398115410.1097/00005650‑200108002‑00003 11583121
    [Google Scholar]
  103. AdamsB. BakH. TustianA.D. Moving from the bench towards a large scale, industrial platform process for adeno‐associated viral vector purification.Biotechnol. Bioeng.2020117103199321110.1002/bit.27472 32573761
    [Google Scholar]
  104. AgrawalJ.P. Some new high energy materials and their formulations for specialized applications. Propellants, Explosives, Pyrotechnics.Int J Deal Sci Technol Aspect Energ Mater200530531632810.1002/prep.20050002
    [Google Scholar]
  105. LöscherW. KlotzU. ZimprichF. SchmidtD. The clinical impact of pharmacogenetics on the treatment of epilepsy.Epilepsia200950112310.1111/j.1528‑1167.2008.01716.x 18627414
    [Google Scholar]
  106. JacxsensL. LuningP.A. van der VorstJ.G.A.J. DevlieghereF. LeemansR. UyttendaeleM. Simulation modelling and risk assessment as tools to identify the impact of climate change on microbiological food safety - The case study of fresh produce supply chain.Food Res. Int.20104371925193510.1016/j.foodres.2009.07.009
    [Google Scholar]
  107. LamannaW.C. HolzmannJ. CohenH.P. Maintaining consistent quality and clinical performance of biopharmaceuticals.Expert Opin. Biol. Ther.201818436937910.1080/14712598.2018.1421169 29285958
    [Google Scholar]
  108. GoyalG. GargT. MalikB. ChauhanG. RathG. GoyalA.K. Development and characterization of niosomal gel for topical delivery of benzoyl peroxide.Drug Deliv.20152281027104210.3109/10717544.2013.855277 24251352
    [Google Scholar]
  109. TzartzevaK. ObiJ. RichN.E. Surveillance imaging and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: A meta-analysis.Gastroenterology2018154617061718.e110.1053/j.gastro.2018.01.064 29425931
    [Google Scholar]
  110. CvenkelB. KolkoM. Devices and treatments to address low adherence in glaucoma patients: A narrative review.J. Clin. Med.202212115110.3390/jcm12010151 36614952
    [Google Scholar]
  111. Paiva-SantosA.C. SilvaA.L. GuerraC. Ethosomes as nanocarriers for the development of skin delivery formulations.Pharm. Res.202138694797010.1007/s11095‑021‑03053‑5 34036520
    [Google Scholar]
  112. NawazA. JanS.U. KhanN.R. HussainA. KhanG.M. Formulation and in vitro evaluation of clotrimazole gel containing almond oil and tween 80 as penetration enhancer for topical application.Pak. J. Pharm. Sci.2013263617622 23625439
    [Google Scholar]
  113. GidwaniB. VyasA. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs.BioMed Res. Int.2015201511510.1155/2015/198268 26582104
    [Google Scholar]
  114. MazidiZ. JavanmardiS. NaghibS.M. MohammadpourZ. Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: An overview on the emerging materials.Chem. Eng. J.202243313456910.1016/j.cej.2022.134569
    [Google Scholar]
  115. Morteza-SemnaniK. SaeediM. AkbariJ. Green formulation, characterization, antifungal and biological safety evaluation of terbinafine HCl niosomes and niosomal gels manufactured by eco-friendly green method.J. Biomater. Sci. Polym. Ed.202233182325235210.1080/09205063.2022.2103626 35848460
    [Google Scholar]
  116. TiwariA. TiwariA. Nanomaterials in drug delivery, imaging, and tissue engineering.John Wiley & Sons201310.1002/9781118644591
    [Google Scholar]
  117. ShettyK. SherjeA.P. Nano intervention in topical delivery of corticosteroid for psoriasis and atopic dermatitis-a systematic review.J. Mater. Sci. Mater. Med.20213288810.1007/s10856‑021‑06558‑y 34331599
    [Google Scholar]
  118. CostaR. SantosL. Delivery systems for cosmetics - From manufacturing to the skin of natural antioxidants.Powder Technol.201732240241610.1016/j.powtec.2017.07.086
    [Google Scholar]
  119. NourS. ImaniR. ChaudhryG.R. SharifiA.M. Skin wound healing assisted by angiogenic targeted tissue engineering: A comprehensive review of bioengineered approaches.J. Biomed. Mater. Res. A2021109445347810.1002/jbm.a.37105 32985051
    [Google Scholar]
  120. PandeyM. ChoudhuryH. GorainB. Site-specific vesicular drug delivery system for skin cancer: A novel approach for targeting.Gels20217421810.3390/gels7040218 34842689
    [Google Scholar]
  121. ShahP. GoodyearB. HaqA. PuriV. Michniak-KohnB. Evaluations of quality by design (QbD) elements impact for developing niosomes as a promising topical drug delivery platform.Pharmaceutics202012324610.3390/pharmaceutics12030246 32182792
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855286072240101072301
Loading
/content/journals/cdth/10.2174/0115748855286072240101072301
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antifungal therapy; Clotrimazole; dermatology; drug delivery; nanostructures; niosomes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test