Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

The emergence and spread of Antimicrobial Resistance (AMR) pose a grave threat to global public health. In the pursuit of innovative solutions, targeting the immune cell CD4 receptors (iCD4) has gained momentum as a potential strategy for combating AMR. This abstract explores drug delivery strategies aimed at harnessing iCD4 receptors to enhance the efficacy of antimicrobial therapies. The CD4 receptor, primarily found on the surface of T-helper lymphocytes, plays a pivotal role in immune responses. Recent research has revealed that iCD4 receptors are also expressed on other immune cells, such as macrophages and dendritic cells, which are integral in the host's defense against pathogens. Leveraging these receptors as drug targets opens new avenues for the precise delivery of antimicrobial agents. Various drug delivery systems, including nanoparticles, liposomes, and antibody-drug conjugates, can be engineered to specifically target iCD4 receptors. These carriers offer improved drug stability, controlled release, and reduced side effects. Furthermore, the functionalization of these carriers with ligands that bind selectively to iCD4 receptors ensures targeted drug delivery to infected tissues. In summary, drug delivery strategies that target iCD4 receptors hold immense promise for combatting AMR. By delivering antimicrobial agents directly to immune cells involved in the host defense, we can potentially enhance therapeutic efficacy, reduce side effects, and mitigate the emergence of resistance. This approach represents a promising avenue for the development of innovative treatments to address the urgent global challenge of antimicrobial resistance.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855285457240213074307
2024-02-23
2025-04-10
Loading full text...

Full text loading...

References

  1. DalgleishA.G. BeverleyP.C.L. ClaphamP.R. CrawfordD.H. GreavesM.F. WeissR.A. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus.Nature1984312599676376710.1038/312763a0 6096719
    [Google Scholar]
  2. KwongP.D. WyattR. RobinsonJ. SweetR.W. SodroskiJ. HendricksonW.A. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody.Nature1998393668664865910.1038/31405 9641677
    [Google Scholar]
  3. LiuJ. BartesaghiA. BorgniaM.J. SapiroG. SubramaniamS. Molecular architecture of native HIV-1 gp120 trimers.Nature2008455720910911310.1038/nature07159 18668044
    [Google Scholar]
  4. ArthosJ. DeenK.C. ChaikinM.A. Identification of the residues in human CD4 critical for the binding of HIV.Cell198957346948110.1016/0092‑8674(89)90922‑7 2541915
    [Google Scholar]
  5. WuL. GerardN.P. WyattR. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5.Nature1996384660517918310.1038/384179a0 8906795
    [Google Scholar]
  6. MoirS. FauciA.S. Insights into B cells and HIV ‐specific B‐cell responses in HIV ‐infected individuals.Immunol. Rev.2013254120722410.1111/imr.12067 23772622
    [Google Scholar]
  7. SattentauQ.J. MooreJ.P. Conformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding.J. Exp. Med.1991174240741510.1084/jem.174.2.407 1713252
    [Google Scholar]
  8. BergerE.A. MurphyP.M. FarberJ.M. Chemokine receptors as HIV-1 coreceptors: Roles in viral entry, tropism, and disease.Annu. Rev. Immunol.199917165770010.1146/annurev.immunol.17.1.657 10358771
    [Google Scholar]
  9. YooJ.W. IrvineD.J. DischerD.E. MitragotriS. Bio-inspired, bioengineered and biomimetic drug delivery carriers.Nat. Rev. Drug Discov.201110752153510.1038/nrd3499 21720407
    [Google Scholar]
  10. VentolaC.L. The antibiotic resistance crisis: part 1: Causes and threats.P&T2015404277283 25859123
    [Google Scholar]
  11. PatersonD.L. BonomoR.A. Extended-spectrum beta-lactamases: A clinical update.Clin. Microbiol. Rev.200518465768610.1128/CMR.18.4.657‑686.2005 16223952
    [Google Scholar]
  12. LaxminarayanR. DuseA. WattalC. Antibiotic resistance-the need for global solutions.Lancet Infect. Dis.201313121057109810.1016/S1473‑3099(13)70318‑9 24252483
    [Google Scholar]
  13. AllenT.M. CullisP.R. Liposomal drug delivery systems: From concept to clinical applications.Adv. Drug Deliv. Rev.2013651364810.1016/j.addr.2012.09.037 23036225
    [Google Scholar]
  14. DanhierF. FeronO. PréatV. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery.J. Control. Release2010148213514610.1016/j.jconrel.2010.08.027 20797419
    [Google Scholar]
  15. ParvezM.K. RishiV. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging.Nanomedicine2017123237250 28093036
    [Google Scholar]
  16. HuhA.J. KwonY.J. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era.J. Control. Release2011156212814510.1016/j.jconrel.2011.07.002 21763369
    [Google Scholar]
  17. FalagasM.E. KarageorgopoulosD.E. Pandrug resistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among Gram-negative bacilli: need for international harmonization in terminology.Clin. Infect. Dis.20084671121112210.1086/528867 18444833
    [Google Scholar]
  18. DowlingA.J. WilkinsonP.A. HoldenM.T.G. Genome-wide analysis reveals loci encoding anti-macrophage factors in the human pathogen Burkholderia pseudomallei K96243.PLoS One2010512e1569310.1371/journal.pone.0015693 21203527
    [Google Scholar]
  19. FarokhzadO.C. LangerR. Impact of nanotechnology on drug delivery.ACS Nano200931162010.1021/nn900002m 19206243
    [Google Scholar]
  20. PetrosR.A. DeSimoneJ.M. Strategies in the design of nanoparticles for therapeutic applications.Nat. Rev. Drug Discov.20109861562710.1038/nrd2591 20616808
    [Google Scholar]
  21. PelegA.Y. HooperD.C. Hospital-acquired infections due to gram-negative bacteria.N. Engl. J. Med.2010362191804181310.1056/NEJMra0904124 20463340
    [Google Scholar]
  22. FisherJ.F. MerouehS.O. MobasheryS. Bacterial resistance to beta-lactam antibiotics: Compelling opportunism, compelling opportunity.Chem. Rev.2005105239542410.1021/cr030102i 15700950
    [Google Scholar]
  23. PelgriftR.Y. FriedmanA.J. Nanotechnology as a therapeutic tool to combat microbial resistance.Adv. Drug Deliv. Rev.20136513-141803181510.1016/j.addr.2013.07.011 23892192
    [Google Scholar]
  24. PayneD.J. GwynnM.N. HolmesD.J. PomplianoD.L. Drugs for bad bugs: Confronting the challenges of antibacterial discovery.Nat. Rev. Drug Discov.200761294010.1038/nrd2201 17159923
    [Google Scholar]
  25. SongX. LiuP. LiuX. Dealing with MDR bacteria and biofilm in the post-antibiotic era: Application of antimicrobial peptides-based nano-formulation.Mater. Sci. Eng. C202112811231810.1016/j.msec.2021.112318 34474869
    [Google Scholar]
  26. VanićŽ. JøraholmenM.W. Škalko-BasnetN. Nanomedicines for the topical treatment of vulvovaginal infections: Addressing the challenges of antimicrobial resistance.Adv. Drug Deliv. Rev.202117811385510.1016/j.addr.2021.113855 34214638
    [Google Scholar]
  27. WeldickP.J. WangA. HalbusA.F. PaunovV.N. Emerging nanotechnologies for targeting antimicrobial resistance.Nanoscale202214114018404110.1039/D1NR08157H 35234774
    [Google Scholar]
  28. Trigo-GutierrezJ.K. Vega-ChacónY. SoaresA.B. MimaE.G.O. Antimicrobial activity of curcumin in nanoformulations: A comprehensive review.Int. J. Mol. Sci.20212213713010.3390/ijms22137130 34281181
    [Google Scholar]
  29. MunitaJM AriasCA Mechanisms of antibiotic resistance.Microbiol Spectr2016424.2.1510.1128/microbiolspec.VMBF‑0016‑2015 27227291
    [Google Scholar]
  30. MulaniM.S. KambleE.E. KumkarS.N. TawreM.S. PardesiK.R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review.Front. Microbiol.20191053910.3389/fmicb.2019.00539 30988669
    [Google Scholar]
  31. LamS.J. O’Brien-SimpsonN.M. PantaratN. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers.Nat. Microbiol.20161111616210.1038/nmicrobiol.2016.162 27617798
    [Google Scholar]
  32. GaoW. ThamphiwatanaS. AngsantikulP. ZhangL. Nanoparticle approaches against bacterial infections.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20146653254710.1002/wnan.1282 25044325
    [Google Scholar]
  33. MinakshiP. GhoshM. BrarB. Nano-antimicrobials: A new paradigm for combating mycobacterial resistance.Curr. Pharm. Des.201925131554157910.2174/1381612825666190620094041 31218956
    [Google Scholar]
  34. GhoshS. ChakrabortyP. SahaP. AcharyaS. RayM. Polymer based nanoformulation of methylglyoxal as an antimicrobial agent: efficacy against resistant bacteria.RSC Advances2014444232512326110.1039/C4RA00075G
    [Google Scholar]
  35. KhatoonN. AlamH. KhanA. RazaK. SardarM. Ampicillin Silver Nanoformulations against Multidrug resistant bacteria.Sci. Rep.201991684810.1038/s41598‑019‑43309‑0 31048721
    [Google Scholar]
  36. ChauhanA. SilluD. DhimanN.K. AgnihotriS. Silver-based nano-formulations for treating antibiotic-resistant microbial strains.In: Nano-Strategies for Addressing Antimicrobial Resistance.Nano-Diagnostics, Nano-Carriers, and Nano-Antimicrobials. ChamSpringer International Publishing202210.1007/978‑3‑031‑10220‑2_8
    [Google Scholar]
  37. SilvaA.C. SantosP.D.F. SilvaJ.T.P. LeimannF.V. BrachtL. GonçalvesO.H. Impact of curcumin nanoformulation on its antimicrobial activity.Trends Food Sci. Technol.201872748210.1016/j.tifs.2017.12.004
    [Google Scholar]
  38. TurosE. ReddyG.S.K. GreenhalghK. Penicillin-bound polyacrylate nanoparticles: Restoring the activity of β-lactam antibiotics against MRSA.Bioorg. Med. Chem. Lett.200717123468347210.1016/j.bmcl.2007.03.077 17420125
    [Google Scholar]
  39. PatilS. SandbergA. HeckertE. SelfW. SealS. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential.Biomaterials200728314600460710.1016/j.biomaterials.2007.07.029 17675227
    [Google Scholar]
  40. MohamedM.A. NasrM. ElkhatibW.F. EltayebW.N. In vitro evaluation of antimicrobial activity and cytotoxicity of different nanobiotics targeting multidrug resistant and biofilm forming Staphylococci.BioMed Res. Int.201820181710.1155/2018/7658238 30622962
    [Google Scholar]
  41. BuenoJ. Nanotheranostics approaches in antimicrobial drug resistance.In: Nanotheranostics: Applications and Limitations.Springer201910.1007/978‑3‑030‑29768‑8_3
    [Google Scholar]
  42. KędzioraA. WerneckiM. KorzekwaK. Consequences of long-term bacteria’s exposure to silver nanoformulations with different physicochemical properties.Int. J. Nanomedicine20201519921310.2147/IJN.S208838 32021174
    [Google Scholar]
  43. AlaviM. NokhodchiA. Micro- and nanoformulations of antibiotics against Brucella.Drug Discov. Today2023281210380910.1016/j.drudis.2023.103809 37923166
    [Google Scholar]
  44. JeevanandamJ. AingY.S. ChanY.S. PanS. DanquahM.K. Nanoformulation and application of phytochemicals as antimicrobial agents.In: Antimicrobial nanoarchitectonics.Elsevier201710.1016/B978‑0‑323‑52733‑0.00003‑3
    [Google Scholar]
  45. ParveenS. MisraR. SahooS.K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging.Nanomedicine20128214716610.1016/j.nano.2011.05.016 21703993
    [Google Scholar]
  46. ReadA.F. WoodsR.J. Antibiotic resistance management.Evol. Med. Public Health20142014114710.1093/emph/eou024 25355275
    [Google Scholar]
  47. DuncanR. Polymer conjugates as anticancer nanomedicines.Nat. Rev. Cancer20066968870110.1038/nrc1958 16900224
    [Google Scholar]
  48. ViswanathD. ParkJ. MisraR. Nanotechnology-enhanced radiotherapy and the abscopal effect: Current status and challenges of nanomaterial-based radio-immunotherapy.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2023e1924 37632203
    [Google Scholar]
  49. RanjaniS. HemalathaS. Nanoformulation target virulence genes to break antibiotic resistance in MDR E. coli.Appl. Nanosci.20231385615562610.1007/s13204‑023‑02782‑w
    [Google Scholar]
  50. ZhangP. MengJ. LiY. Nanotechnology-enhanced immunotherapy for metastatic cancer.Innovation20212410017410.1016/j.xinn.2021.100174 34766099
    [Google Scholar]
  51. HussainM.S. SharmaP. DhanjalD.S. Nanotechnology based advanced therapeutic strategies for targeting interleukins in chronic respiratory diseases.Chem. Biol. Interact.202134810963710.1016/j.cbi.2021.109637 34506765
    [Google Scholar]
  52. VolovatC. VolovatS.R. AgopM. Nanotechnology and immunomodulators in cancer.In: Immunomodulators and Human Health.Springer2022125186
    [Google Scholar]
  53. TangL. ZhangM. LiuC. Advances in nanotechnology-based immunotherapy for glioblastoma.Front. Immunol.20221388225710.3389/fimmu.2022.882257 35651605
    [Google Scholar]
  54. ZhangM. DaiZ. TheivendranS. Nanotechnology enabled reactive species regulation in biosystems for boosting cancer immunotherapy.Nano Today20213610103510.1016/j.nantod.2020.101035
    [Google Scholar]
  55. KhaledA. GuoS. LiF. GuoP. Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology.Nano Lett.2005591797180810.1021/nl051264s 16159227
    [Google Scholar]
  56. StewartM.P. ShareiA. DingX. SahayG. LangerR. JensenK.F. In vitro and ex vivo strategies for intracellular delivery.Nature2016538762418319210.1038/nature19764 27734871
    [Google Scholar]
  57. SwaminathanS VaviaPR Lipid-based nanocarriers for oral peptide delivery.Adv Drug Deliv Rev2016106(Pt B)337354
    [Google Scholar]
  58. SommerM.O.A. DantasG. ChurchG.M. Functional characterization of the antibiotic resistance reservoir in the human microflora.Science200932559441128113110.1126/science.1176950 19713526
    [Google Scholar]
  59. VishwakarmaP.K. GuptaR.A. JainG. MishraS.B. VishwakarmaK. Supertool for superbugs-smart “Nano-ointment of Graphene Usnic Acid Nanoparticles” Against Antimicrobial Resistance (AMRs).Bionanoscience20231331231124210.1007/s12668‑023‑01153‑7
    [Google Scholar]
  60. YayehradA.T. WondieG.B. MarewT. Different nanotechnology approaches for ciprofloxacin delivery against multidrug-resistant microbes.Infect. Drug Resist.20221541342610.2147/IDR.S348643 35153493
    [Google Scholar]
  61. TrifanA. LucaS.V. Greige-GergesH. MironA. GilleE. AprotosoaieA.C. Recent advances in tackling microbial multidrug resistance with essential oils: combinatorial and nano-based strategies.Crit. Rev. Microbiol.202046333835710.1080/1040841X.2020.1782339 32608293
    [Google Scholar]
  62. BeriniF. OrlandiV. GornatiR. BernardiniG. MarinelliF. Nanoantibiotics to fight multidrug resistant infections by Gram-positive bacteria: Hope or reality?Biotechnol. Adv.20225710794810.1016/j.biotechadv.2022.107948 35337933
    [Google Scholar]
  63. SimsekliO. BilinmisI. CelikS. ArıkG. BabaA.Y. KarakucukA. Advancing biofilm management through nanoformulation strategies: A review of dosage forms and administration routes.J. Drug Target.202331993194910.1080/1061186X.2023.2270619 37831630
    [Google Scholar]
  64. HagbaniT.A. YadavH. MoinA. Enhancement of vancomycin potential against pathogenic bacterial strains via gold nano-formulations: A nano-antibiotic approach.Materials2022153110810.3390/ma15031108 35161053
    [Google Scholar]
  65. WeissigV. PettingerT. MurdockN. Nanopharmaceuticals (part 1): Products on the market.Int. J. Nanomedicine201494357437310.2147/IJN.S46900 25258527
    [Google Scholar]
  66. DesaiN. Challenges in development of nanoparticle-based therapeutics.AAPS J.201214228229510.1208/s12248‑012‑9339‑4 22407288
    [Google Scholar]
  67. BoucherH.W. TalbotG.H. BradleyJ.S. Bad bugs, no drugs: No ESKAPE! An update from the infectious diseases society of America.Clin. Infect. Dis.200948111210.1086/595011 19035777
    [Google Scholar]
  68. AlexisF. PridgenE.M. LangerR. FarokhzadO.C. Nanoparticle technologies for cancer therapy.Handb. Exp. Pharmacol.2010197197558610.1007/978‑3‑642‑00477‑3_2 20217526
    [Google Scholar]
  69. DanhierF. AnsorenaE. SilvaJ.M. CocoR. Le BretonA. PréatV. PLGA-based nanoparticles: An overview of biomedical applications.J. Control. Release2012161250552210.1016/j.jconrel.2012.01.043 22353619
    [Google Scholar]
  70. JiangY. LiY. FuX. Interplay between G protein-coupled receptors and nanotechnology.Acta Biomater.202316911810.1016/j.actbio.2023.07.049 37517621
    [Google Scholar]
  71. DengH. ZhangZ. The application of nanotechnology in immune checkpoint blockade for cancer treatment.J. Control. Release2018290284510.1016/j.jconrel.2018.09.026 30287266
    [Google Scholar]
  72. HaghparastA. ZakeriA. EbrahimianM. RamezaniM. Targeting Pattern Recognition Receptors (PRRs) in nano-adjuvants: Current perspectives.Curr. Bionanotechnol.201621475910.2174/2213529402666160601125159
    [Google Scholar]
  73. AlaviM. AdulrahmanN.A. HaleemA.A. Nanoformulations of curcumin and quercetin with silver nanoparticles for inactivation of bacteria.Cell. Mol. Biol.202267515115610.14715/cmb/2021.67.5.21 35818258
    [Google Scholar]
  74. ElfadilD. ElkhatibW.F. El-SayyadG.S. Promising advances in nanobiotic-based formulations for drug specific targeting against multidrug-resistant microbes and biofilm-associated infections.Microb. Pathog.202217010572110.1016/j.micpath.2022.105721 35970290
    [Google Scholar]
  75. Giráldez-PérezR.M. GruesoE.M. CarboneroA. Synergistic antibacterial effects of amoxicillin and gold nanoparticles: A therapeutic option to combat antibiotic resistance.Antibiotics2023128127510.3390/antibiotics12081275 37627696
    [Google Scholar]
  76. NawazA. AliS.M. RanaN.F. Ciprofloxacin-loaded gold nanoparticles against antimicrobial resistance: An in vivo assessment.Nanomaterials20211111315210.3390/nano11113152 34835916
    [Google Scholar]
  77. BaptistaP.V. McCuskerM.P. CarvalhoA. Nano-strategies to fight multidrug resistant bacteria-“A Battle of the Titans”.Front. Microbiol.20189144110.3389/fmicb.2018.01441 30013539
    [Google Scholar]
  78. ShomeS. TalukdarA.D. UpadhyayaH. Antibacterial activity of curcumin and its essential nanoformulations against some clinically important bacterial pathogens: A comprehensive review.Biotechnol. Appl. Biochem.20226962357238610.1002/bab.2289 34826356
    [Google Scholar]
  79. FengC. LiY. FerdowsB.E. Emerging vaccine nanotechnology: From defense against infection to sniping cancer.Acta Pharm. Sin. B20221252206222310.1016/j.apsb.2021.12.021 35013704
    [Google Scholar]
  80. SeyfooriA. Shokrollahi BaroughM. MokarramP. Emerging advances of nanotechnology in drug and vaccine delivery against Viral Associated Respiratory Infectious Diseases (VARID).Int. J. Mol. Sci.20212213693710.3390/ijms22136937 34203268
    [Google Scholar]
  81. Relaño-RodríguezI. Muñoz-FernándezM.Á. Emergence of nanotechnology to fight HIV sexual transmission: The trip of G2-S16 polyanionic carbosilane dendrimer to possible pre-clinical trials.Int. J. Mol. Sci.20202124940310.3390/ijms21249403 33321835
    [Google Scholar]
  82. das Neves JAmiji MM, Bahia MF, Sarmento B. Nanotechnology-based systems for the treatment and prevention of HIV/AIDS.Adv. Drug Deliv. Rev.2010624-545847710.1016/j.addr.2009.11.017 19914314
    [Google Scholar]
  83. Abo-zeidY. AmerA. BakkarM.R. El-HoussienyB. SakranW. Antimicrobial activity of azithromycin encapsulated into PLGA NPs: A potential strategy to overcome efflux resistance.Antibiotics20221111162310.3390/antibiotics11111623 36421266
    [Google Scholar]
  84. PanigajM. JohnsonM.B. KeW. Aptamers as modular components of therapeutic nucleic acid nanotechnology.Ther RNA Nanotechnol2021825882
    [Google Scholar]
  85. HajibonabiA. YekaniM. SharifiS. NahadJ.S. DizajS.M. MemarM.Y. Antimicrobial activity of nanoformulations of carvacrol and thymol: New trend and applications.OpenNano202310017010.1016/j.onano.2023.100170
    [Google Scholar]
  86. AlshammariF. AlshammariB. MoinA. Ceftriaxone mediated synthesized gold nanoparticles: A nano-therapeutic tool to target bacterial resistance.Pharmaceutics20211311189610.3390/pharmaceutics13111896 34834310
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855285457240213074307
Loading
/content/journals/cdth/10.2174/0115748855285457240213074307
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test