Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

The nasolacrimal channels drain the medication from the pre-corneal area, causing the majority of the ophthalmic medication to be quickly removed following topical instillation. Over the past thirty years, newer medical techniques, such as gel, nanoparticle, liposome, nanosuspension, microemulsion, iontophoresis, and occuserts have been created in an effort to overcome these challenges. These methods gradually and deliberately boost the drug's bioavailability. This article discusses ocular drug delivery for ophthalmics and its ideal characteristics, and also provides an insight on the use of nanotechnology in the form of nanoparticles used for the treatment of glaucoma in the eyes, employing HPH, ultrasonication/HSH, SE, SED technique, SFM, ME technique, SD method, DE method, PM, FUD, and other techniques to offer continuous and controlled IOP inside the eye chamber, make drug more ocularly bioavailable, and address a few pharmacological difficulties in ophthalmology. The creation of new drug delivery methods is currently gaining popularity, and this can facilitate the development of medicines for diseases that endanger eyesight.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855278863240130074330
2024-02-19
2025-04-09
Loading full text...

Full text loading...

References

  1. ZimmermanT.J. Topical ophthalmic beta blockers: A comparative review.J. Ocul. Pharmacol. Ther.19939437338410.1089/jop.1993.9.373 7906296
    [Google Scholar]
  2. ShivhareR. PathakA. ShrivastavaN. SinghC. TiwariG. GoyalR. An update review on novel advanced ocular drug delivery system.World J. Pharm. Pharm. Sci.201212545568
    [Google Scholar]
  3. JayanettiV. SandhuS. LusthausJ.A. The latest drugs in development that reduce intraocular pressure in ocular hypertension and glaucoma.J. Exp. Pharmacol.20201253954810.2147/JEP.S281187 33244278
    [Google Scholar]
  4. AlwardW.L.M. AlwardW.L.M. Medical management of glaucoma.N. Engl. J. Med.1998339181298130710.1056/NEJM199810293391808 9791148
    [Google Scholar]
  5. PatilP.R. ShivsharanK.J. SalveV.K. ShaikhS.S. Improvements in opthalmic drug delivery system: A review.Int J Pharm Res Dev2014602100110
    [Google Scholar]
  6. VyasS.P. RoopK. Controlled drug delivery concepts and advances.Vallabh Prakashan20057580
    [Google Scholar]
  7. JainN.K. Controlled and Novel Drug Delivery.CBS Publisher and Distributors20048595
    [Google Scholar]
  8. HillJ.M. O’CallaghanR.J. HobdenJ.A. Ocular iontophoresis. MitraA.K. Ophthalmic drug delivery systems.New YorkMarcel Dekker Inc1993331354
    [Google Scholar]
  9. DavsonH. The eye.3rd edOrlandoAcademic press1984164
    [Google Scholar]
  10. IrschK. GuytonD.L. Anatomy of Eyes.In: Encyclopedia of Biometrics.20091.11A: pp. 11-6.
    [Google Scholar]
  11. DavsonH. Physiology of the Eye.Bloomsbury Publishing19905
    [Google Scholar]
  12. YavuzB. KompellaU.B. Ocular drug delivery.In: Pharmacologic therapy of ocular disease.20173-305764
    [Google Scholar]
  13. TangriP. KhuranaS. Basics of ocular drug delivery systems.Int. J. Res. Pharm. Biomed. Sci.20112415411552
    [Google Scholar]
  14. AhmedI. Ophthalmic drug delivery systems.CRC Press2003356385
    [Google Scholar]
  15. YavuzB. KompellaU.B. Ocular Drug Delivery. Pharmacologic Therapy of Ocular Disease.Handb. Exp. Pharmacol.20166693
    [Google Scholar]
  16. RaghavaS. HammondM. KompellaU.B. Periocular routes for retinal drug delivery.Expert Opin. Drug Deliv.2004119911410.1517/17425247.1.1.99 16296723
    [Google Scholar]
  17. GeroskiD.H. EdelhauserH.F. Drug delivery for posterior segment eye disease.Invest. Ophthalmol. Vis. Sci.2000415961964 10752928
    [Google Scholar]
  18. MylesM. NeumannD. HillJ. Recent progress in ocular drug delivery for posterior segment disease: Emphasis on transscleral iontophoresis.Adv. Drug Deliv. Rev.200557142063207910.1016/j.addr.2005.08.006 16310884
    [Google Scholar]
  19. LangJ.C. Ocular drug delivery conventional ocular formulations.Adv. Drug Deliv. Rev.1995161394310.1016/0169‑409X(95)00012‑V
    [Google Scholar]
  20. HughesP. OlejnikO. ChanglinJ. WilsonC. Topical and systemic drug delivery to the posterior segments.Adv. Drug Deliv. Rev.200557142010203210.1016/j.addr.2005.09.004 16289435
    [Google Scholar]
  21. JärvinenK. JärvinenT. UrttiA. Ocular absorption following topical delivery.Adv. Drug Deliv. Rev.199516131910.1016/0169‑409X(95)00010‑5
    [Google Scholar]
  22. UrttiA. SalminenL. Minimizing systemic absorption of topically administered ophthalmic drugs.Surv. Ophthalmol.199337643545610.1016/0039‑6257(93)90141‑S 8100087
    [Google Scholar]
  23. BararJ. JavadzadehA.R. OmidiY. Ocular novel drug delivery: Impacts of membranes and barriers.Expert Opin. Drug Deliv.20085556758110.1517/17425247.5.5.567 18491982
    [Google Scholar]
  24. Cunha-VazJ. The blood-ocular barriers.Surv. Ophthalmol.197923527929610.1016/0039‑6257(79)90158‑9 380030
    [Google Scholar]
  25. FischbargJ. The corneal endothelium.In: the biology of eye.New York, NY, USA: Academic Press2006113125
    [Google Scholar]
  26. AhmedI. PattonT.F. Importance of the noncorneal absorption route in topical ophthalmic drug delivery.Invest. Ophthalmol. Vis. Sci.1985264584587 3884542
    [Google Scholar]
  27. PrausnitzM.R. NoonanJ.S. Permeability of cornea, sclera, and conjunctiva: A literature analysis for drug delivery to the eye.J. Pharm. Sci.199887121479148810.1021/js9802594 10189253
    [Google Scholar]
  28. EdwardsA. PrausnitzM.R. Fiber matrix model of sclera and corneal stroma for drug delivery to the eye.AIChE J.199844121422510.1002/aic.690440123
    [Google Scholar]
  29. WangW. SasakiH. ChienD.S. LeeV.H.L. Lipophilicity influence on conjunctival drug penetration in the pigmented rabbit: A comparison with corneal penetration.Curr. Eye Res.199110657157910.3109/02713689109001766 1680041
    [Google Scholar]
  30. HuangH.S. SchoenwaldR.D. LachJ.L. Corneal penetration behavior of beta-blockers.J. Pharm. Sci.19837212721279 6139472
    [Google Scholar]
  31. HuangH-S. SchoenwaldR.D. Corneal penetration behavior of beta-blocking agents I: Physiochemical factors.J. Pharm. Sci.198372111266127210.1002/jps.2600721108 6139471
    [Google Scholar]
  32. Pitka¨nenL. RantaV.P. MoilanenH. UrttiA. Permeability of retinal pigment epithelium: Effects of permeant molecular weight and lipophilicity.Invest. Ophthalmol. Vis. Sci.200546264164610.1167/iovs.04‑1051 15671294
    [Google Scholar]
  33. KaurI.P. SmithaR. Penetration enhancers and ocular bioadhesives: Two new avenues for ophthalmic drug delivery.Drug Dev. Ind. Pharm.200228435336910.1081/DDC‑120002997 12056529
    [Google Scholar]
  34. LeeV.H.L. Mechanisms and facilitation of corneal drug penetration.J. Control. Release1990111-3799010.1016/0168‑3659(90)90122‑A
    [Google Scholar]
  35. ParikhC.H. EdelhauserH.F. Ocular surgical pharmacology: Corneal endothelial safety and toxicity.Curr. Opin. Ophthalmol.200314417818510.1097/00055735‑200308000‑00002 12888714
    [Google Scholar]
  36. WatskyM.A. JablonskiM.M. EdelhauserH.F. Comparison of conjunctival and corneal surface areas in rabbit and human.Curr. Eye Res.19887548348610.3109/02713688809031801 3409715
    [Google Scholar]
  37. SinghD. Conjunctival lymphatic system.J. Cataract Refract. Surg.200329463263310.1016/S0886‑3350(03)00161‑5 12686215
    [Google Scholar]
  38. LeeV.H.L. RobinsonJ.R. Topical ocular drug delivery: Recent developments and future challenges.J. Ocul. Pharmacol. Ther.1986216710810.1089/jop.1986.2.67 3332284
    [Google Scholar]
  39. SasakiH. YamamuraK. NishidaK. NakamuraJ. IchikawaM. Delivery of drugs to the eye by topical application.Prog. Retin. Eye Res.199615258362010.1016/1350‑9462(96)00014‑6
    [Google Scholar]
  40. SubriziA. del AmoE.M. Korzhikov-VlakhV. TennikovaT. RuponenM. UrttiA. Design principles of ocular drug delivery systems: Importance of drug payload, release rate, and material properties.Drug Discov. Today20192481446145710.1016/j.drudis.2019.02.001 30738982
    [Google Scholar]
  41. FischbargJ. On the mechanism of fluid transport across corneal endothelium and epithelia in general.J. Exp. Zoolog. A Comp. Exp. Biol.2003300A1304010.1002/jez.a.10306 14598383
    [Google Scholar]
  42. DoaneM.G. JensenA.D. DohlmanC.H. Penetration routes of topically applied eye medications.Am. J. Ophthalmol.197885338338610.1016/S0002‑9394(14)77735‑9 655217
    [Google Scholar]
  43. HuangA.J. TsengS.C. KenyonK.R. Paracellular permeability of corneal and conjunctival epithelia.Invest. Ophthalmol. Vis. Sci.1989304684689 2703309
    [Google Scholar]
  44. VyasS.P. KharR.K. Controlled drug delivery: Concepts and advances.1st edDelhiVallabh Prakashan2002392
    [Google Scholar]
  45. GaudanaR. JwalaJ. BodduH.S. MitraA.K. Recent perspectives in ocular drug delivery.Pharm. Res.200826511971216 18758924
    [Google Scholar]
  46. KunoN. FujiiS. Recent advances in ocular drug delivery systems.Polymers20113119322110.3390/polym3010193
    [Google Scholar]
  47. KeisterJ.C. CooperE.R. MisselP.J. LangJ.C. HagerD.F. Limits on optimizing ocular drug delivery.J. Pharm. Sci.1991801505310.1002/jps.2600800113 2013850
    [Google Scholar]
  48. FielderA. BlencoweH. O’ConnorA. GilbertC. Impact of retinopathy of prematurity on ocular structures and visual functions.Arch. Dis. Child. Fetal Neonatal Ed.20151002F179F18410.1136/archdischild‑2014‑306207 25336678
    [Google Scholar]
  49. RaoN.A. ThaeteL.G. DelmageJ.M. SevanianA. Superoxide dismutase in ocular structures.Invest. Ophthalmol. Vis. Sci.1985261217781781 4066214
    [Google Scholar]
  50. GuptaD. ChenP.P. Glaucoma.Am. Fam. Physician2016938668674 27175839
    [Google Scholar]
  51. McMonniesC.W. Glaucoma history and risk factors.J. Optom.2017102717810.1016/j.optom.2016.02.003 27025415
    [Google Scholar]
  52. QuigleyH.A. Number of people with glaucoma worldwide.Br. J. Ophthalmol.199680538939310.1136/bjo.80.5.389 8695555
    [Google Scholar]
  53. WeinrebR.N. AungT. MedeirosF.A. The pathophysiology and treatment of glaucoma: A review.JAMA2014311181901191110.1001/jama.2014.3192 24825645
    [Google Scholar]
  54. LeskeM.C. Factors for glaucoma progression and the effect of treatment.Arch. Ophthalmol.20031211485610.1001/archopht.121.1.48 12523884
    [Google Scholar]
  55. BengtssonB. The prevalence of glaucoma.Br. J. Ophthalmol.1981654649
    [Google Scholar]
  56. FlackJ.M. NovikovS.V. FerrarioC.M. Benefits of adherence to anti-hypertensive drug therapy.Eur. Heart J.199617162010.1093/eurheartj/17.suppl_A.16
    [Google Scholar]
  57. CockcroftJ. Nebivolol: A review.Expert Opin. Pharmacother.20045489389910.1517/14656566.5.4.893 15102571
    [Google Scholar]
  58. MünzelT. GoriT. Nebivolol.J. Am. Coll. Cardiol.200954161491149910.1016/j.jacc.2009.05.066 19815121
    [Google Scholar]
  59. JainN.K. Pharm. Nanotechnol.200813
    [Google Scholar]
  60. SahooK.S. Nanotechnology in ocular drug delivery.Drug Discov. Today200813144151
    [Google Scholar]
  61. KooO.M. RubinsteinI. OnyukselH. Role of nanotechnology in targeted drug delivery and imaging: A concise review.Nanomedicine20051319321210.1016/j.nano.2005.06.004 17292079
    [Google Scholar]
  62. LinW. Introduction: Nanoparticles in medicine.Chem. Rev.201511519104071040910.1021/acs.chemrev.5b00534 26463639
    [Google Scholar]
  63. AmriteA.C. KompellaU.B. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration.J. Pharm. Pharmacol.201057121555156310.1211/jpp.57.12.0005 16354399
    [Google Scholar]
  64. WilczewskaA.Z. NiemirowiczK. MarkiewiczK.H. CarH. Nanoparticles as drug delivery systems.Pharmacol. Rep.20126451020103710.1016/S1734‑1140(12)70901‑5 23238461
    [Google Scholar]
  65. YadavN. KhatakS. SaraU.S. Solid lipid nanoparticles-a review.Int J Appl Pharm201352818
    [Google Scholar]
  66. ArrueboM. Fernández-PachecoR. IbarraM.R. SantamaríaJ. Magnetic nanoparticles for drug delivery.Nano Today200723223210.1016/S1748‑0132(07)70084‑1
    [Google Scholar]
  67. LoxleyA. Solid lipid nanoparticles for the delivery of pharmaceutical actives.Drug Deliv Technol20099832
    [Google Scholar]
  68. MishraB. PatelB.B. TiwariS. Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery.Nanomedicine20106192410.1016/j.nano.2009.04.008 19447208
    [Google Scholar]
  69. MoisseievE. LoewensteinA. Drug delivery to the posterior segment of the eye.Dev. Ophthalmol.2017588710110.1159/000455276 28351054
    [Google Scholar]
  70. SchoenwaldR.D. Ocular pharmacokinetics. ZimmermanT.J. Textbook of Ocular Pharmacology.Philadelphia, PA, USALippincott-Raven1997119138
    [Google Scholar]
  71. NayakK. MisraM. A review on recent drug delivery systems for posterior segment of eye.Biomed. Pharmacother.201810715641582
    [Google Scholar]
  72. ThrimawithanaT.R. YoungS. BuntC.R. GreenC. AlanyR.G. Drug delivery to the posterior segment of the eye.Drug Discov. Today2011165-6270277
    [Google Scholar]
  73. UrttiA. Challenges and obstacles of ocular pharmacokinetics and drug delivery.Adv. Drug Deliv. Rev.200658111131113510.1016/j.addr.2006.07.027 17097758
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855278863240130074330
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test