Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

In the current scenario, discovery of natural bioactive components can be considered as a major development in treating common ailments. One of the medicinally important herbs is Murraya koenigii. The biological functions are promoted by the leaves, fruits, roots, and bark of this beautiful plant. It is the carbazole alkaloids that promote most of the medicinal properties and contribute to the anti-oxidative properties as well. Terpenoids, Flavonoids, Saponins and Phenols isolated from different parts of the plant have unique hypocholestrolemic and antidiabetic activities. Among commonly used alternative therapies, plant sterols present in may help to reduce cholesterol and triglyceride levels, in turn managing heart diseases. Experimental animal studies are proving the hypolipidemic ability of . Possible mechanisms involved in exhibiting such an amazing hypolipidemic ability can be attributed to the phytochemicals, some of which can reduce the absorption of cholesterol in the intestines or accelerate the catabolism of fats. In contrast, others can inhibit the enzyme HMG CoA reductase. can inhibit pancreatic lipase. Such a response could be due to the presence of carbazole alkaloids like Mahanimbin, Isomahanine, Murrayacinine, Koenimbine, Mahanimboline, Murrayazolinine, Girinimbine . These enzymes can be selected for the pharmaceutical mediation of hypocholesterolemia agents. A triumph over the production of lipids in the hepatic cells is achieved upon feeding , thereby bringing about a drastic fall in triglyceride levels. The present review provides a better understanding of the major components of against dyslipidemia that could serve as an herbal alternative while treating other pathological conditions. Although various extracts of have numerous medical applications, an extensive investigation of their toxicity, along with more clinical trials and standardization of protocols, is required to produce modern drugs from these leaf extracts.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855278592240131105512
2024-02-15
2024-11-22
Loading full text...

Full text loading...

References

  1. ReynaldiM.I. SantosoS. TjahjonoK. The effect of stratified doses of curry leaf extract (murraya koenigii) on total cholesterol and triglycerides in male sprague-dawley rats induced by high fat feed.Dipone. Med. J.202110191510.14710/dmj.v10i1.29256
    [Google Scholar]
  2. JenkinsD.J.A. KendallC.W. MarchieA. FaulknerD.A. WongJ.M. de SouzaR. EmamA. ParkerT.L. VidgenE. LapsleyK.G. TrautweinE.A. JosseR.G. LeiterL.A. ConnellyP.W. Effects of a dietary portfolio of cholesterol-lowering foods vs lovastatin on serum lipids and C-reactive protein.JAMA2003290450251010.1001/jama.290.4.50212876093
    [Google Scholar]
  3. Kant UpadhyayR. Antihyperlipidemic and cardioprotective effects of plant natural products: A review.Int. J. Green Pharm.202115111
    [Google Scholar]
  4. FerdowsianH.R. BarnardN.D. BarnardN.D. Effects of plant-based diets on plasma lipids.Am. J. Cardiol.2009104794795610.1016/j.amjcard.2009.05.03219766762
    [Google Scholar]
  5. MhaskarK.S. BlatterE. CaiusJ.F. Kirtikar and Basu’s Illustrated Indian Medicinal Plants: Their Usage in Ayurveda and Unani Medicines.Sri Satguru Publications200010
    [Google Scholar]
  6. ChaudharyA. A review on the culinary uses and therapeutic properties of murraya koenigii.J. Adv. Pharmacogn202011
    [Google Scholar]
  7. IgaraC. OmoboyowaD. AhuchaoguA. OrjiN. NdukweM. Phytochemical and nutritional profile of Murraya koenigii (Linn) Spreng leaf CE Igara, DA Omoboyowa, AA Ahuchaogu, NU Orji and MK Ndukwe.J. Pharmacogn. Phytochem.20165547
    [Google Scholar]
  8. TembhurneS. V. SakarkarD. M. Anti-obesity and hypoglycemic effect of ethanolic extract of Murraya koenigii (L) leaves in high fatty diet rats.Asian Pacific J. Trop. Dis.20122S1S166S16810.1016/S2222‑1808(12)60145‑5
    [Google Scholar]
  9. PrakashP.N. and Natarajan CP. Studies on curry leaf (Murraya koenigii L).J. Food Sci. Technol.1974
    [Google Scholar]
  10. VinuthanM.K. KumarV.G. RavindraJ.P. GuptaP.S.P. ArunS.J. Changes in the blood lipid profile after administration of Murraya koenigii Spreng (curry leaf) extracts in the normal Sprague Dawley rats.Indian J. Anim. Res.2007413223225
    [Google Scholar]
  11. XieJ.T. ChangW.T. WangC.Z. MehendaleS.R. LiJ. AmbihaipaharR. AmbihaipaharU. FongH.H. YuanC.S. Curry leaf (Murraya koenigii Spreng.) reduces blood cholesterol and glucose levels in ob/ob mice.Am. J. Chin. Med.200634227928410.1142/S0192415X0600382516552838
    [Google Scholar]
  12. PhatakR.S. KhanwelkarC.C. MatuleS.M. DatkhileK.D. HendreA.S. Antihyperlipidemic activity of Murraya koenigii leaves methanolic and aqueous extracts on serum lipid profile of high fat-fructose fed rats.Pharmacogn. J.201911483684110.5530/pj.2019.11.134
    [Google Scholar]
  13. BirariR. JaviaV. BhutaniK.K. Antiobesity and lipid lowering effects of Murraya koenigii (L.) Spreng leaves extracts and mahanimbine on high fat diet induced obese rats.Fitoterapia20108181129113310.1016/j.fitote.2010.07.01320655993
    [Google Scholar]
  14. KesariA.N. KesariS. SinghS.K. GuptaR.K. WatalG. Studies on the glycemic and lipidemic effect of Murraya koenigii in experimental animals.J. Ethnopharmacol.2007112230531110.1016/j.jep.2007.03.02317467937
    [Google Scholar]
  15. MollyJ. Effect of Murraya koenigii (curry leaves) powder on the liver and renal functions in women with hyperlipidemia.Int. J. Health Sci. Res.201771188192
    [Google Scholar]
  16. KhanB.P. AbrahamA. LeelammaS. Biochemical response in rats to the addition of curry leaf (Murraya koenigii) and mustard seeds (Brassica juncea) to the diet.Plant Foods Hum Nutr19964942959
    [Google Scholar]
  17. IyerU.M. ManiU.V. Studies on the effect of curry leaves supplementation (Murraya koenigi) on lipid profile, glycated proteins and amino acids in non-insulin-dependent diabetic patients.Plant Foods Hum. Nutr.199040427528210.1007/BF021938512174154
    [Google Scholar]
  18. LiuJ.C. ChanP. HsuF.L. ChenY.J. HsiehM.H. LoM.Y. LinJ.Y. The in vitro inhibitory effects of crude extracts of traditional Chinese herbs on 3-hydroxy-3-methylglutaryl-coenzyme A reductase on Vero cells.Am. J. Chin. Med.200230462963610.1142/S0192415X0200045412568290
    [Google Scholar]
  19. ChakrabartiR. Pharmacotherapy of obesity: Emerging drugs and targets.Expert Opin. Ther. Targets200913219520710.1517/1472822080263706319236237
    [Google Scholar]
  20. KimG.N. ShinM.R. ShinS.H. LeeA.R. LeeJ.Y. SeoB.I. KimM.Y. KimT.H. NohJ.S. RheeM.H. RohS.S. Study of antiobesity effect through inhibition of pancreatic lipase activity of diospyros kaki fruit and citrus unshiu peel.BioMed Res. Int.201620161710.1155/2016/172304227529064
    [Google Scholar]
  21. Abdul RahmanH. SaariN. AbasF. IsmailA. MumtazM.W. Abdul HamidA. Anti-obesity and antioxidant activities of selected medicinal plants and phytochemical profiling of bioactive compounds.Int. J. Food Prop.201720112616262910.1080/10942912.2016.1247098
    [Google Scholar]
  22. HenryW.L. Perspectives in diabetes.J. Natl. Med. Assoc.196254447647813906557
    [Google Scholar]
  23. RaniA. KumarS. KharR.K. In vitro antidiabetic and hypolipidemic activity of selected medicinal plants.Int. J. Pharm. Biol. Sci.20199166466810.21276/ijpbs.2019.9.1.85
    [Google Scholar]
  24. BelloM. Basilio-AntonioL. Fragoso-VázquezJ. Avalos-SorianoA. Correa-BasurtoJ. Molecular recognition between pancreatic lipase and natural and synthetic inhibitors.Int. J. Biol. Macromol.20179885586810.1016/j.ijbiomac.2017.01.15028212930
    [Google Scholar]
  25. IsolatedP. NPC.Nat. Prod. Commun.201014912
    [Google Scholar]
  26. GaurP. ShankerK. PlantsA. In vitro Screening of alcoholic and hydroalcoholic extracts of Ayurvedic medicinal plants for the management of hyperlipidemia.Proceedings of the 5th International Electronic Conference on Medicinal Chemistry.Basel, Switzerland1-30 Nov201910.3390/ECMC2019‑06409
    [Google Scholar]
  27. HandralH. Pharmacophore2010April2016
    [Google Scholar]
  28. Zheleva-DimitrovaD. Effects of chronic treatment with statins and fenofibrate on rat skeletal muscle: A biochemical, histological and electrophysiological study.Pharmacogn. Mag.201014922747810.4103/0973‑1296.6288920668569
    [Google Scholar]
  29. TanakaC.U.Y. NII-electronic library service.Chem. Pharm. Bull.1994171114601462
    [Google Scholar]
  30. MukherjeeM. MukherjeeS. ShawA.K. GangulyS.N. Mukonicine, a carbazole alkaloid from leaves of murraya koenigii. Phytochemistry198322102328232910.1016/S0031‑9422(00)80178‑8
    [Google Scholar]
  31. KureelS.P. KapilR.S. PopliS.P. Terpenoid alkaloids from Murraya koenigii Spreng. II. The constitution of cyclomahanimbine, bicyclomahanibine, and mahanimbidine.Tetrahedron Lett.196910443857386210.1016/S0040‑4039(01)88531‑25348311
    [Google Scholar]
  32. PATRICKS. ChemInform Abstract: THE DI-PI-methane rearrangement, stereochemistry.Chem. Informat.1974511
    [Google Scholar]
  33. ReischJ. Alkaloids from seeds of murraya koeivzgzz.199231828772879
    [Google Scholar]
  34. MandalS. NayakA. KarM. BanerjeeS.K. DasA. UpadhyayS.N. SinghR.K. BanerjiA. BanerjiJ. Antidiarrhoeal activity of carbazole alkaloids from Murraya koenigii Spreng (Rutaceae) seeds.Fitoterapia2010811727410.1016/j.fitote.2009.08.01619695314
    [Google Scholar]
  35. AdebajoA.C. AyoolaO.F. IwalewaE.O. AkindahunsiA.A. OmisoreN.O.A. AdewunmiC.O. AdenowoT.K. Anti-trichomonal, biochemical and toxicological activities of methanolic extract and some carbazole alkaloids isolated from the leaves of Murraya koenigii growing in Nigeria.Phytomedicine200613424625410.1016/j.phymed.2004.12.00216492527
    [Google Scholar]
  36. BoccellinoM. AngeloS. D. Anti-obesity effects of polyphenol intake: Current status and future possibilities.Int. J. Mol. Sci.202021615642
    [Google Scholar]
  37. Villa-RuanoN. Zurita-VásquezG.G. Pacheco-HernándezY. Betancourt-JiménezM.G. Cruz-DuránR. Duque-BautistaH. Anti-Iipase and antioxidant properties of 30 medicinal plants used in Oaxaca, México.Biol. Res.201346215316010.4067/S0716‑9760201300020000623959013
    [Google Scholar]
  38. GajariaT.K. PatelD.K. DevkarR.V. RamachandranA.V. Flavonoid rich extract of Murraya Koenigii alleviates in-vitro LDL oxidation and oxidized LDL induced apoptosis in raw 264.7 Murine macrophage cells.J. Food Sci. Technol.20145263367337510.1007/s13197‑014‑1399‑226028717
    [Google Scholar]
  39. LiuP.K. WengZ.M. GeG.B. LiH.L. DingL.L. DaiZ.R. HouX.D. LengY.H. YuY. HouJ. Biflavones from Ginkgo biloba as novel pancreatic lipase inhibitors: Inhibition potentials and mechanism.Int. J. Biol. Macromol.2018118Pt B2216222310.1016/j.ijbiomac.2018.07.08530009906
    [Google Scholar]
  40. GuptaS. PaarakhP.M. GavaniU. Antioxidant activity of murraya koenigii linn leaves.Pharmacologyonline2009478474478
    [Google Scholar]
  41. HanL.K. SumiyoshiM. ZhengY.N. OkudaH. KimuraY. Anti‐obesity action of Salix matsudana leaves (Part 2). Isolation of anti‐obesity effectors from polyphenol fractions of Salix matsudana.Phytother. Res.200317101195119810.1002/ptr.140514669255
    [Google Scholar]
  42. KuppusamyU.R. DasN.P. Effects of flavonoids on cyclic AMP phosphodiesterase and lipid mobilization in rat adipocytes.Biochem. Pharmacol.19924471307131510.1016/0006‑2952(92)90531‑M1384499
    [Google Scholar]
  43. NingappaM.B. DineshaR. SrinivasL. Antioxidant and free radical scavenging activities of polyphenol-enriched curry leaf (Murraya koenigii L.) extracts.Food Chem.2008106272072810.1016/j.foodchem.2007.06.057
    [Google Scholar]
  44. ChatuphonprasertW. SangkawatT. NemotoN. JarukamjornK. Suppression of beta-naphthoflavone induced CYP1A expression and lipid-peroxidation by berberine.Fitoterapia201182688989510.1016/j.fitote.2011.05.00221624442
    [Google Scholar]
  45. ShabirS. YousufS. SinghS.K. VamanuE. SinghM.P. Ethnopharmacological effects of urtica dioica, matricaria chamomilla, and murraya koenigii on rotenone-exposed D. melanogaster: An attenuation of cellular, biochemical, and organismal markers.Antioxidants2022118162310.3390/antiox1108162336009342
    [Google Scholar]
  46. GrafB.A. MilburyP.E. BlumbergJ.B. Flavonols, flavones, flavanones, and human health: Epidemiological evidence.J. Med. Food20058328129010.1089/jmf.2005.8.28116176136
    [Google Scholar]
  47. AshokkumarK. SelvarajK. DeviS. Reverse phase-high performance liquid chromatography-diode array detector (RP-HPLC-DAD) analysis of flavonoids profile from curry leaf (Murraya koenigii. L).J. Med. Plants Res.2013747339399
    [Google Scholar]
  48. SaadB. GhareebB. KmailA. Metabolic and epigenetics action mechanisms of antiobesity medicinal plants and phytochemicals.Evid.-Based Complemen. Altern. Med.2021202119
    [Google Scholar]
  49. FragaC.G. CroftK.D. KennedyD.O. Tomás-BarberánF.A. The effects of polyphenols and other bioactives on human health.Food Funct.201910251452810.1039/C8FO01997E30746536
    [Google Scholar]
  50. BajesH.R. AlmasriI. BustanjiY. Plant products and their inhibitory activity against pancreatic lipase.Rev. Bras. Farmacogn.202030332133010.1007/s43450‑020‑00055‑z
    [Google Scholar]
  51. ChenG. LiH. ZhaoY. ZhuH. CaiE. GaoY. LiuS. YangH. ZhangL. Saponins from stems and leaves of Panax ginseng prevent obesity via regulating thermogenesis, lipogenesis and lipolysis in high-fat diet-induced obese C57BL/6 mice.Food Chem. Toxicol.2017106Pt A39340310.1016/j.fct.2017.06.01228599882
    [Google Scholar]
  52. PrabhachandhS.R. BabychanN. Phytochemical Analysis of Murraya koenigii in Urban and Coastal Area.2017Available from:www.jetir.org
  53. ElekofehintiO.O. The effect of saponin from solanum anguivilam. Fruit on serum lipid and oxidative stress in hepatocyte of diabetic rats.Brazillian conference of medicinal plants.Bentos Goncalves, Brazil201435
    [Google Scholar]
  54. TomarR.S. BanerjeeS. KaushikS. Assessment of antioxidant activity of leaves of Murraya koenigii extracts and it’s comparative efficacy analysis in different solvents.J. Pharm. Sci. Res.201793288291
    [Google Scholar]
  55. HeH.F. Recognition of gallotannins and the physiological activities: From chemical view.Front. Nutr.20229June88889210.3389/fnut.2022.88889235719149
    [Google Scholar]
  56. Torres-LeónC. Ventura-SobrevillaJ. Serna-CockL. Ascacio-ValdésJ.A. Contreras-EsquivelJ. AguilarC.N. Pentagalloylglucose (PGG): A valuable phenolic compound with functional properties.J. Funct. Foods20173717618910.1016/j.jff.2017.07.045
    [Google Scholar]
  57. VinarovaL. VinarovZ. AtanasovV. PantchevaI. TcholakovaS. DenkovN. StoyanovS. Lowering of cholesterol bioaccessibility and serum concentrations by saponins: In vitro and in vivo studies.Food Funct.20156250151210.1039/C4FO00785A25479247
    [Google Scholar]
  58. SieniawskaE. Activities of tannins-From in vitro studies to clinical trials.Nat. Prod. Commun.201510111934578X150100110.1177/1934578X150100111826749816
    [Google Scholar]
  59. SerranoJ. Puupponen-PimiäR. DauerA. AuraA. M. Saura-CalixtoF. Tannins: Current knowledge of food sources, intake, bioavailability and biological effects.Mol. Nutr. Food Res.200953S2S3102910.1002/mnfr.200900039
    [Google Scholar]
  60. LiY. KimJ. LiJ. LiuF. LiuX. HimmeldirkK. RenY. WagnerT.E. ChenX. Natural anti-diabetic compound 1,2,3,4,6-penta-O-galloyl-d-glucopyranose binds to insulin receptor and activates insulin-mediated glucose transport signaling pathway.Biochem. Biophys. Res. Commun.2005336243043710.1016/j.bbrc.2005.08.10316137651
    [Google Scholar]
  61. LiuX. MalkiA. CaoY. LiY. QianY. WangX. ChenX. Glucose- and triglyceride-lowering dietary penta-O-galloyl-α-D-glucose reduces expression of PPARγ and C/EBPα, induces p21-Mediated G1 phase cell cycle arrest, and inhibits adipogenesis in 3T3-L1 preadipocytes.Exp. Clin. Endocrinol. Diabetes2015123530831610.1055/s‑0035‑154878925988880
    [Google Scholar]
  62. KejariwalM. Antioxidant potential of Murraya koenigii‘s ( L .) Sprenge polysaccharide.Bull. Env. Pharmacol. Life Sci.202110198105
    [Google Scholar]
  63. KalitaP. AhmedA.B. SenS. ChakrabortyR. A comprehensive review on polysaccharides with hypolipidemic activity: Occurrence, chemistry and molecular mechanism.Int. J. Biol. Macromol.202220668169810.1016/j.ijbiomac.2022.02.18935247430
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855278592240131105512
Loading
/content/journals/cdth/10.2174/0115748855278592240131105512
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test