Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Epigenetic changes are important for controlling how genes are expressed and how cells work, and their misregulation has been linked to many diseases, including cancer. Targeting epigenetic modifiers has become a promising way to treat cancer, and it may also be useful outside of oncology. This review article goes into detail about the rapidly changing field of epigenetic-based therapies, with a focus on how they are used to treat cancer. We discuss in-depth the main epigenetic changes seen in cancer, such as DNA methylation, changes to histones, and dysregulation of non-coding RNA, as well as their roles in tumour growth, metastasis, and drug resistance. Epigenetic drugs and small molecule inhibitors that target epigenetic enzymes and reader proteins have shown a lot of promise in both preclinical and clinical studies on different types of cancer. We show the most recent evidence that these epigenetic therapies work and look into how they might be used in combination with other treatments. We talk about new research into the therapeutic potential of epigenetic modifiers in diseases other than cancer, such as neurological disorders, autoimmune diseases, and heart conditions. Even though there is a lot of potential for therapy, there are still problems, such as side effects and differences between patients. We talk about the work that is still being done to get around these problems and explain new ways to deliver epigenetic-based interventions that are more precise and effective. For epigenetic-based therapies to be used in clinical settings, it is important to understand how they work and how they interact with other types of treatment. As the field moves forward, we try to figure out where it is going and what it means to target epigenetic modifiers in cancer therapy and other areas of disease. This review looks at the role of epigenetic modulation in shaping the landscape of precision medicine and its possible effects on human health from a broad and forward-looking point of view.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855275769231114094037
2024-01-12
2024-11-22
Loading full text...

Full text loading...

References

  1. PalS. TylerJ.K. Epigenetics and aging.Sci. Adv.201627e160058410.1126/sciadv.160058427482540
    [Google Scholar]
  2. SchefferI.E. BerkovicS. CapovillaG. ConnollyM.B. FrenchJ. GuilhotoL. HirschE. JainS. MathernG.W. MoshéS.L. NordliD.R. PeruccaE. TomsonT. WiebeS. ZhangY.H. ZuberiS.M. ILAE classification of the epilepsies: Position paper of the ILAE commission for classification and terminology.Epilepsia201758451252110.1111/epi.1370928276062
    [Google Scholar]
  3. OhkuraN. SakaguchiS. Transcriptional and epigenetic basis of Treg cell development and function: Its genetic anomalies or variations in autoimmune diseases.Cell Res.202030646547410.1038/s41422‑020‑0324‑732367041
    [Google Scholar]
  4. KagoharaL.T. Stein-O’BrienG.L. KelleyD. FlamE. WickH.C. DanilovaL.V. EaswaranH. FavorovA.V. QianJ. GaykalovaD.A. FertigE.J. Epigenetic regulation of gene expression in cancer: Techniques, resources and analysis.Brief. Funct. Genomics2018171496310.1093/bfgp/elx01828968850
    [Google Scholar]
  5. LykoF. The DNA methyltransferase family: A versatile toolkit for epigenetic regulation.Nat. Rev. Genet.2018192819210.1038/nrg.2017.8029033456
    [Google Scholar]
  6. StefanatosR. SanzA. The role of mitochondrial ROS in the aging brain.FEBS Lett.2018592574375810.1002/1873‑3468.1290229106705
    [Google Scholar]
  7. GonzalesM.M. GarbarinoV.R. PolletE. PalaviciniJ.P. KelloggD.L.Jr KraigE. OrrM.E. Biological aging processes underlying cognitive decline and neurodegenerative disease.J. Clin. Invest.202213210e15845310.1172/JCI15845335575089
    [Google Scholar]
  8. SoetersP.B. WolfeR.R. ShenkinA. Hypoalbuminemia: pathogenesis and clinical significance.JPEN J. Parenter. Enteral Nutr.201943218119310.1002/jpen.145130288759
    [Google Scholar]
  9. NirmaladeviR. PaitalB. JayachandranP. PadmaP.R. NirmaladeviR. Epigenetic alterations in cancer.Front. Biosci.20202561058110910.2741/484732114424
    [Google Scholar]
  10. HataA LiebermanJ. Dysregulation of microRNA biogenesis and gene silencing in cancer.Sci Signal.20158386310.1126/scisignal.2005825
    [Google Scholar]
  11. HarperK. Plagues upon the earth: disease and the course of human history.Princeton University Press2021
    [Google Scholar]
  12. BerdascoM. EstellerM. Clinical epigenetics: Seizing opportunities for translation.Nat. Rev. Genet.201920210912710.1038/s41576‑018‑0074‑230479381
    [Google Scholar]
  13. BerkLE Development through the lifespan.Sage Publications2022
    [Google Scholar]
  14. MonkD. MackayD.J.G. EggermannT. MaherE.R. RiccioA. Genomic imprinting disorders: Lessons on how genome, epigenome and environment interact.Nat. Rev. Genet.201920423524810.1038/s41576‑018‑0092‑030647469
    [Google Scholar]
  15. NeganovaM.E. KlochkovS.G. AleksandrovaY.R. AlievG. Histone modifications in epigenetic regulation of cancer: Perspectives and achieved progress.Semin. Cancer Biol.20228345247110.1016/j.semcancer.2020.07.01532814115
    [Google Scholar]
  16. LiF. QasimS. LiD. DouQ.P. Updated review on green tea polyphenol epigallocatechin-3-gallate as a cancer epigenetic regulator.Semin. Cancer Biol.20228333535210.1016/j.semcancer.2020.11.01833453404
    [Google Scholar]
  17. SharmaR. PrajapatiP.K. Predictive, preventive and personalized medicine: Leads from ayurvedic concept of Prakriti (human constitution).Curr. Pharmacol. Rep.20206644145010.1007/s40495‑020‑00244‑3
    [Google Scholar]
  18. MeloniM. Impressionable biologies: from the archaeology of plasticity to the sociology of epigenetics.New York201923210.4324/9781315169583
    [Google Scholar]
  19. BuklijasT. Histories and meanings of epigenetics.In: The palgrave handbook of biology and society201816718710.1057/978‑1‑137‑52879‑7_8
    [Google Scholar]
  20. StrickerS.H. KöferleA. BeckS. From profiles to function in epigenomics.Nat. Rev. Genet.2017181516610.1038/nrg.2016.13827867193
    [Google Scholar]
  21. MercierR. MézardC. JenczewskiE. MacaisneN. GrelonM. The molecular biology of meiosis in plants.Annu. Rev. Plant Biol.201566129732710.1146/annurev‑arplant‑050213‑03592325494464
    [Google Scholar]
  22. OzernyukN.D. From template principle of Nikolai K. Koltzov to the double helix model of DNA structure.Russ. J. Dev. Biol.20225311510.1134/S1062360422010064
    [Google Scholar]
  23. BlunkI. ThomsenH. ReinschN. MayerM. FörstiA. SundquistJ. SundquistK. HemminkiK. Genomic imprinting analyses identify maternal effects as a cause of phenotypic variability in type 1 diabetes and rheumatoid arthritis.Sci. Rep.20201011156210.1038/s41598‑020‑68212‑x32665606
    [Google Scholar]
  24. KowluruR.A. MohammadG. Epigenetic modifications in diabetes.Metabolism202212615492010.1016/j.metabol.2021.15492034715117
    [Google Scholar]
  25. SinclairDA LaPlanteMD Lifespan: why we age—and why we don’t have to. In: Atria books2019
    [Google Scholar]
  26. WolffE.M. ChiharaY. PanF. WeisenbergerD.J. SiegmundK.D. SuganoK. KawashimaK. LairdP.W. JonesP.A. LiangG. Unique DNA methylation patterns distinguish noninvasive and invasive urothelial cancers and establish an epigenetic field defect in premalignant tissue.Cancer Res.201070208169817810.1158/0008‑5472.CAN‑10‑133520841482
    [Google Scholar]
  27. ShaileshH. ZakariaZ.Z. BaiocchiR. SifS. Protein arginine methyltransferase 5 (PRMT5) dysregulation in cancer.Oncotarget2018994367053671810.18632/oncotarget.2640430613353
    [Google Scholar]
  28. HanlyDJ EstellerM BerdascoM Interplay between long non-coding RNAs and epigenetic machinery: Emerging targets in cancer?Philos Trans R Soc Lond B Biol Sci.174837317482017007410.1098/rstb.2017.0074
    [Google Scholar]
  29. RasmiY. ShokatiA. HassanA. AzizS.G.G. BastaniS. JalaliL. MoradiF. AlipourS. The role of DNA methylation in progression of neurological disorders and neurodegenerative diseases as well as the prospect of using DNA methylation inhibitors as therapeutic agents for such disorders.IBRO Neuroscience Reports202314283710.1016/j.ibneur.2022.12.00236590248
    [Google Scholar]
  30. SatterleeJ.S. ChadwickL.H. TysonF.L. McAllisterK. BeaverJ. BirnbaumL. VolkowN.D. WilderE.L. AndersonJ.M. RoyA.L. The NIH common fund/roadmap epigenomics program: Successes of a comprehensive consortium.Sci. Adv.201957eaaw650710.1126/sciadv.aaw650731501771
    [Google Scholar]
  31. PhuongJ. RichesN.O. Madlock-BrownC. DuranD. CalzoniL. EspinozaJ.C. DattaG. KavuluruR. WeiskopfN.G. Ward-CavinessC.K. LinA.Y. Social determinants of health factors for gene–environment COVID‐19 research: challenges and opportunities.Adv. Genet.202232210005610.1002/ggn2.20210005635574521
    [Google Scholar]
  32. DuncanL.E. PollastriA.R. SmollerJ.W. Mind the gap: Why many geneticists and psychological scientists have discrepant views about gene–environment interaction (G×E) research.Am. Psychol.201469324926810.1037/a003632024750075
    [Google Scholar]
  33. BansalA. PinneyS.E. DNA methylation and its role in the pathogenesis of diabetes.Pediatr. Diabetes201718316717710.1111/pedi.1252128401680
    [Google Scholar]
  34. IllingworthR. KerrA. DeSousaD. JørgensenH. EllisP. StalkerJ. JacksonD. CleeC. PlumbR. RogersJ. HumphrayS. CoxT. LangfordC. BirdA. A novel CpG island set identifies tissue-specific methylation at developmental gene loci.PLoS Biol.200861e2210.1371/journal.pbio.006002218232738
    [Google Scholar]
  35. SharmaS. KellyT.K. JonesP.A. Epigenetics in cancer.Carcinogenesis2010311273610.1093/carcin/bgp22019752007
    [Google Scholar]
  36. JoostenS.C. SmitsK.M. AartsM.J. MelotteV. KochA. Tjan-HeijnenV.C. van EngelandM. Epigenetics in renal cell cancer: Mechanisms and clinical applications.Nat. Rev. Urol.201815743045110.1038/s41585‑018‑0023‑z29867106
    [Google Scholar]
  37. LequieuJ. SchwartzD.C. de PabloJ.J. In silico evidence for sequence-dependent nucleosome sliding.Proc. Natl. Acad. Sci.201711444E9197E920510.1073/pnas.170568511429078285
    [Google Scholar]
  38. BarnesC.E. EnglishD.M. CowleyS.M. Acetylation & Co: an expanding repertoire of histone acylations regulates chromatin and transcription.Essays Biochem.20196319710710.1042/EBC2018006130940741
    [Google Scholar]
  39. OuelletV. NegraoJ. SkibielA.L. LantiguaV.A. FabrisT.F. MarreroM.G. Dado-SennB. LaportaJ. DahlG.E. Endocrine signals altered by heat stress impact dairy cow mammary cellular processes at different stages of the dry period.Animals (Basel)202111256310.3390/ani1102056333669991
    [Google Scholar]
  40. Videtic PaskaA. HudlerP. Aberrant methylation patterns in cancer: A clinical view.Biochem. Med.201525216117610.11613/BM.2015.01726110029
    [Google Scholar]
  41. SongY. WangR. LiL.W. LiuX. WangY.F. WangQ.X. ZhangQ. Long non-coding RNA HOTAIR mediates the switching of histone H3 lysine 27 acetylation to methylation to promote epithelial-to-mesenchymal transition in gastric cancer.Int. J. Oncol.2018541778610.3892/ijo.2018.462530431069
    [Google Scholar]
  42. MaF. ZhangC. Histone modifying enzymes: Novel disease biomarkers and assay development.Expert Rev. Mol. Diagn.201616329730610.1586/14737159.2016.113505726750583
    [Google Scholar]
  43. FlavahanW.A. GaskellE. BernsteinB.E. Epigenetic plasticity and the hallmarks of cancer.Science20173576348eaal238010.1126/science.aal238028729483
    [Google Scholar]
  44. FernandesJ. AcuñaS. AokiJ. Floeter-WinterL. MuxelS. Long non-coding RNAs in the regulation of gene expression: physiology and disease.Noncoding RNA2019511710.3390/ncrna501001730781588
    [Google Scholar]
  45. OtmaniK. LewalleP. Tumor suppressor miRNA in cancer cells and the tumor microenvironment: Mechanism of deregulation and clinical implications.Front. Oncol.20211170876510.3389/fonc.2021.70876534722255
    [Google Scholar]
  46. ZhouK. LiuM. CaoY. New insight into microRNA functions in cancer: Oncogene–microRNA–tumor suppressor gene network.Front. Mol. Biosci.201744610.3389/fmolb.2017.0004628736730
    [Google Scholar]
  47. TanT. ShiP. AbbasM. WangY. XuJ. ChenY. CuiH. Epigenetic modification regulates tumor progression and metastasis through EMT (Review).Int. J. Oncol.20226067010.3892/ijo.2022.536035445731
    [Google Scholar]
  48. KimM CostelloJ. DNA methylation: An epigenetic mark of cellular memory.Exp Mol Med.201749432210.1038/emm.2017.10
    [Google Scholar]
  49. SánchezO.F. MendoncaA. MinA. LiuJ. YuanC. Monitoring histone methylation (H3K9me3) changes in live cells.ACS Omega201948132501325910.1021/acsomega.9b0141331460452
    [Google Scholar]
  50. PeñalozaE. Soto-CarrascoG. KrauseB.J. MiR-21-5p directly contributes to regulating eNOS expression in human artery endothelial cells under normoxia and hypoxia.Biochem. Pharmacol.202018211428810.1016/j.bcp.2020.11428833075314
    [Google Scholar]
  51. SmithA.R. SmithR.G. PishvaE. HannonE. RoubroeksJ.A.Y. BurrageJ. TroakesC. Al-SarrajS. SloanC. MillJ. van den HoveD.L. LunnonK. Parallel profiling of DNA methylation and hydroxymethylation highlights neuropathology-associated epigenetic variation in Alzheimer’s disease.Clin. Epigenetics20191115210.1186/s13148‑019‑0636‑y30898171
    [Google Scholar]
  52. EfimovaO.A. KoltsovaA.S. KrapivinM.I. TikhonovA.V. PendinaA.A. Environmental epigenetics and genome flexibility: Focus on 5-hydroxymethylcytosine.Int. J. Mol. Sci.2020219322310.3390/ijms2109322332370155
    [Google Scholar]
  53. MaQ. YangL. TolentinoK. WangG. ZhaoY. LitzenburgerU.M. ShiQ. ZhuL. YangC. JiaoH. ZhangF. LiR. TsaiM.C. ChenJ.A. LaiI. ZengH. LiL. ChangH.Y. Inducible lncRNA transgenic mice reveal continual role of HOTAIR in promoting breast cancer metastasis.eLife202211e7912610.7554/eLife.7912636579891
    [Google Scholar]
  54. YangY. LuanY. FengQ. ChenX. QinB. RenK.D. LuanY. Epigenetics and beyond: Targeting histone methylation to treat type 2 diabetes mellitus.Front. Pharmacol.20221280741310.3389/fphar.2021.80741335087408
    [Google Scholar]
  55. ShtumpfM. PiroevaK.V. AgrawalS.P. JacobD.R. TeifV.B. NucPosDB: A database of nucleosome positioning in vivo and nucleosomics of cell-free DNA.Chromosoma20221311-2192810.1007/s00412‑021‑00766‑935061087
    [Google Scholar]
  56. JungG. Hernández-IllánE. MoreiraL. BalaguerF. GoelA. Epigenetics of colorectal cancer: Biomarker and therapeutic potential.Nat. Rev. Gastroenterol. Hepatol.202017211113010.1038/s41575‑019‑0230‑y31900466
    [Google Scholar]
  57. GrosC. FahyJ. HalbyL. DufauI. ErdmannA. GregoireJ.M. AusseilF. VispéS. ArimondoP.B. DNA methylation inhibitors in cancer: Recent and future approaches.Biochimie201294112280229610.1016/j.biochi.2012.07.02522967704
    [Google Scholar]
  58. SuraweeraA. O’ByrneK.J. RichardD.J. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: Achieving the full therapeutic potential of HDACi.Front. Oncol.201889210.3389/fonc.2018.0009229651407
    [Google Scholar]
  59. DoroshowD.B. EderJ.P. LoRussoP.M. BET inhibitors: A novel epigenetic approach.Ann. Oncol.20172881776178710.1093/annonc/mdx15728838216
    [Google Scholar]
  60. RugoH.S. JacobsI. SharmaS. ScappaticciF. PaulT.A. Jensen-PergakesK. MaloufG.G. The promise for histone methyltransferase inhibitors for epigenetic therapy in clinical oncology: a narrative review.Adv. Ther.20203773059308210.1007/s12325‑020‑01379‑x32445185
    [Google Scholar]
  61. StresemannC. LykoF. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine.Int. J. Cancer2008123181310.1002/ijc.2360718425818
    [Google Scholar]
  62. CheblyA. Prochazkova-CarlottiM. IdrissiY. Bresson-BepoldinL. PoglioS. FarraC. Beylot-BarryM. MerlioJ.P. TombR. ChevretE. Targeting epigenetic modifiers can reduce the clonogenic capacities of Sézary cells.Front. Oncol.20211177525310.3389/fonc.2021.77525334765562
    [Google Scholar]
  63. ZhaoB. ChengX. ZhouX. The BET-bromodomain inhibitor JQ1 mitigates vemurafenib drug resistance in melanoma.Melanoma Res.201828652152610.1097/CMR.000000000000049730192303
    [Google Scholar]
  64. StrainingR. EighmyW. Tazemetostat: EZH2 Inhibitor.J. Adv. Pract. Oncol.202213215816310.6004/jadpro.2022.13.2.735369397
    [Google Scholar]
  65. EvansJ.S. BeaumontJ. BragaM. MasrourN. MauriF. BeckleyA. ButtS. KaraliC.S. CawthorneC. ArchibaldS. AboagyeE.O. SharmaR. Epigenetic potentiation of somatostatin-2 by guadecitabine in neuroendocrine neoplasias as a novel method to allow delivery of peptide receptor radiotherapy.Eur. J. Cancer202217611012010.1016/j.ejca.2022.09.00936208569
    [Google Scholar]
  66. GreenfieldG. McPhersonS. SmithJ. MeadA. HarrisonC. MillsK. McMullinM.F. Modification of the histone landscape with JAK inhibition in myeloproliferative neoplasms.Cancers2020129266910.3390/cancers1209266932962027
    [Google Scholar]
  67. SinghA.N. SharmaN. Epigenetic modulators as potential multi-targeted drugs against hedgehog pathway for treatment of cancer.Protein J.201938553755010.1007/s10930‑019‑09832‑930993446
    [Google Scholar]
  68. Fontecha-BarriusoM. Martin-SanchezD. Ruiz-AndresO. PovedaJ. Sanchez-NiñoM.D. Valiño-RivasL. Ruiz-OrtegaM. OrtizA. SanzA.B. Targeting epigenetic DNA and histone modifications to treat kidney disease.Nephrol. Dial. Transplant.201833111875188610.1093/ndt/gfy00929534238
    [Google Scholar]
  69. KumarV.E. NambiarR. De SouzaC. NguyenA. ChienJ. LamK.S. Targeting epigenetic modifiers of tumor plasticity and cancer stem cell behavior.Cells2022119140310.3390/cells1109140335563709
    [Google Scholar]
  70. FalchiL. MaH. KleinS. LueJ.K. MontanariF. MarchiE. DengC. KimH.A. RadaA. JacobA.T. KinahanC. FrancesconeM.M. SoderquistC.R. ParkD.C. BhagatG. NandakumarR. MenezesD. ScottoL. SokolL. ShustovA.R. O’ConnorO.A. Combined oral 5-azacytidine and romidepsin are highly effective in patients with PTCL: A multicenter phase 2 study.Blood2021137162161217010.1182/blood.202000900433171487
    [Google Scholar]
  71. MorabitoF. VosoM.T. HohausS. GentileM. VignaE. RecchiaA.G. IovinoL. BenedettiE. Lo-CocoF. GalimbertiS. Panobinostat for the treatment of acute myelogenous leukemia.Expert Opin. Investig. Drugs20162591117113110.1080/13543784.2016.121697127485472
    [Google Scholar]
  72. WangL LuoJ ChenG FangM WeiX LiY Chidamide, decitabine, cytarabine, aclarubicin, and granulocyte colony-stimulating factor (CDCAG) in patients with relapsed/refractory acute myeloid leukemia: A single-arm, phase 1/2 study.Clin Epigenet202010.1186/s13148‑020‑00923‑4
    [Google Scholar]
  73. YangX. LayF. HanH. JonesP.A. Targeting DNA methylation for epigenetic therapy.Trends Pharmacol. Sci.2010311153654610.1016/j.tips.2010.08.00120846732
    [Google Scholar]
  74. SaluveerO. LarssonP. RidderstråleW. HrafnkelsdóttirT.J. JernS. BerghN. Profibrinolytic effect of the epigenetic modifier valproic acid in man.PLoS One2014910e10758210.1371/journal.pone.010758225295869
    [Google Scholar]
  75. ZhengYC FengSQ Epigenetic modifications as therapeutic targets.Curr Drug Targets.20202111104610.2174/138945012111200727122724
    [Google Scholar]
  76. MüllerM.R. BurmeisterA. SkowronM.A. StephanA. BremmerF. WakilehG.A. PetzschP. KöhrerK. AlbersP. NettersheimD. Therapeutical interference with the epigenetic landscape of germ cell tumors: a comparative drug study and new mechanistical insights.Clin. Epigenetics2022141510.1186/s13148‑021‑01223‑134996497
    [Google Scholar]
  77. WatersN.J. Preclinical pharmacokinetics and pharmacodynamics of pinometostat (EPZ-5676), a first-in-class, small molecule S-adenosyl methionine competitive inhibitor of DOT1L.Eur. J. Drug Metab. Pharmacokinet.201742689190110.1007/s13318‑017‑0404‑328229434
    [Google Scholar]
  78. YamagishiM. UchimaruK. Targeting EZH2 in cancer therapy.Curr. Opin. Oncol.201729537538110.1097/CCO.000000000000039028665819
    [Google Scholar]
  79. PearsonA.D.J. DuBoisS.G. BuengerV. KieranM. StegmaierK. BandopadhayayP. BennettK. BourdeautF. BrownP.A. CheslerL. ClymerJ. FoxE. FrenchC.A. GermovsekE. GilesF.J. BenderJ.G. HattersleyM.M. LudwinskiD. LuptakovaK. MarisJ. McDonoughJ. NikolovaZ. SmithM. TsiatisA.C. VibhakarR. WeinerS. YiJ.S. ZhengF. VassalG. Bromodomain and extra-terminal inhibitors—A consensus prioritisation after the paediatric strategy forum for medicinal product development of epigenetic modifiers in children—ACCELERATE.Eur. J. Cancer202114611512410.1016/j.ejca.2021.01.01833601323
    [Google Scholar]
  80. BorutinskaitėV. VirkšaitėA. GudelytėG. NavakauskienėR. Green tea polyphenol EGCG causes anti-cancerous epigenetic modulations in acute promyelocytic leukemia cells.Leuk. Lymphoma201859246947810.1080/10428194.2017.133988128641467
    [Google Scholar]
  81. RahmanZ. BazazM.R. DevabattulaG. KhanM.A. GoduguC. Targeting H3K9 methyltransferase G9a and its related molecule GLP as a potential therapeutic strategy for cancer.J. Biochem. Mol. Toxicol.2021353e2267410.1002/jbt.2267433283949
    [Google Scholar]
  82. LinH.Y. WuH.J. ChenS.Y. HouM.F. LinC.S. ChuP.Y. Epigenetic therapy combination of UNC0638 and CI-994 suppresses breast cancer via epigenetic remodeling of BIRC5 and GADD45A.Biomed. Pharmacother.202214511243110.1016/j.biopha.2021.11243134798471
    [Google Scholar]
  83. GulatiN. BéguelinW. Giulino-RothL. Enhancer of zeste homolog 2 (EZH2) inhibitors.Leuk. Lymphoma20185971574158510.1080/10428194.2018.143079529473431
    [Google Scholar]
  84. PfisterS.X. AshworthA. Marked for death: Targeting epigenetic changes in cancer.Nat. Rev. Drug Discov.201716424126310.1038/nrd.2016.25628280262
    [Google Scholar]
  85. MomparlerR.L. MomparlerL.F. SamsonJ. Comparison of the antileukemic activity of 5-aza-2′-deoxycytidine, 1-β-d-arabinofuranosylcytosine and 5-azacytidine against L1210 leukemia.Leuk. Res.1984861043104910.1016/0145‑2126(84)90059‑66083417
    [Google Scholar]
  86. WawruszakA. BorkiewiczL. OkonE. Kukula-KochW. AfshanS. HalasaM. Vorinostat (SAHA) and breast cancer: An overview.Cancers20211318470010.3390/cancers1318470034572928
    [Google Scholar]
  87. SøgaardO.S. GraversenM.E. LethS. OlesenR. BrinkmannC.R. NissenS.K. KjaerA.S. SchleimannM.H. DentonP.W. Hey-CunninghamW.J. KoelschK.K. PantaleoG. KrogsgaardK. SommerfeltM. FromentinR. ChomontN. RasmussenT.A. ØstergaardL. TolstrupM. The depsipeptide Romidepsin reverses HIV-1 latency in vivo.PLoS Pathog.2015119e100514210.1371/journal.ppat.100514226379282
    [Google Scholar]
  88. KimK.H. RobertsC.W.M. Targeting EZH2 in cancer.Nat. Med.201622212813410.1038/nm.403626845405
    [Google Scholar]
  89. TopperM.J. VazM. MarroneK.A. BrahmerJ.R. BaylinS.B. The emerging role of epigenetic therapeutics in immuno-oncology.Nat. Rev. Clin. Oncol.2020172759010.1038/s41571‑019‑0266‑531548600
    [Google Scholar]
  90. BruyerA. MaesK. HerviouL. KassambaraA. SeckingerA. CartronG. RèmeT. RobertN. RequirandG. BoireauS. Müller-TidowC. VeyruneJ. VincentL. BouhyaS. GoldschmidtH. VanderkerkenK. HoseD. KleinB. De BruyneE. MoreauxJ. DNMTi/HDACi combined epigenetic targeted treatment induces reprogramming of myeloma cells in the direction of normal plasma cells.Br. J. Cancer201811881062107310.1038/s41416‑018‑0025‑x29500406
    [Google Scholar]
  91. MaioM. CovreA. FrattaE. Di GiacomoA.M. TavernaP. NataliP.G. CoralS. SigalottiL. Molecular pathways: At the crossroads of cancer epigenetics and immunotherapy.Clin. Cancer Res.201521184040404710.1158/1078‑0432.CCR‑14‑291426374074
    [Google Scholar]
  92. FathiA.T. Abdel-WahabO. Mutations in epigenetic modifiers in myeloid malignancies and the prospect of novel epigenetic-targeted therapy.Adv. Hematol.2012201211210.1155/2012/46959221811504
    [Google Scholar]
  93. MohammadH.P. BarbashO. CreasyC.L. Targeting epigenetic modifications in cancer therapy: Erasing the roadmap to cancer.Nat. Med.201925340341810.1038/s41591‑019‑0376‑830842676
    [Google Scholar]
  94. PoonC.H. TseL.S.R. LimL.W. DNA methylation in the pathology of Alzheimer’s disease: From gene to cognition.Ann. N. Y. Acad. Sci.202014751153310.1111/nyas.1437332491215
    [Google Scholar]
  95. Guedes-DiasP. de ProençaJ. SoaresT.R. Leitão-RochaA. PinhoB.R. DuchenM.R. OliveiraJ.M.A. HDAC6 inhibition induces mitochondrial fusion, autophagic flux and reduces diffuse mutant huntingtin in striatal neurons.Biochim. Biophys. Acta Mol. Basis Dis.20151852112484249310.1016/j.bbadis.2015.08.01226300485
    [Google Scholar]
  96. LiE. ZhangY. DNA methylation in mammals.Cold Spring Harb. Perspect. Biol.201465a01913310.1101/cshperspect.a01913324789823
    [Google Scholar]
  97. BarikR.R. BhattL.K. Emerging epigenetic targets in rheumatoid arthritis.Rheumatol. Int.202141122047206710.1007/s00296‑021‑04951‑y34309725
    [Google Scholar]
  98. ZhangY. ZhaoM. SawalhaA.H. RichardsonB. LuQ. Impaired DNA methylation and its mechanisms in CD4+T cells of systemic lupus erythematosus.J. Autoimmun.201341929910.1016/j.jaut.2013.01.00523340289
    [Google Scholar]
  99. KularL. JagodicM. Epigenetic insights into multiple sclerosis disease progression.J. Intern. Med.202028818210210.1111/joim.1304532614160
    [Google Scholar]
  100. NatarajanR. Epigenetic mechanisms in diabetic vascular complications and metabolic memory: The 2020 Edwin Bierman Award Lecture.Diabetes202170232833710.2337/dbi20‑003033472942
    [Google Scholar]
  101. TranD.H. WangZ.V. Glucose metabolism in cardiac hypertrophy and heart failure.J. Am. Heart Assoc.2019812e01267310.1161/JAHA.119.01267331185774
    [Google Scholar]
  102. PlacekK. SchultzeJ.L. AschenbrennerA.C. Epigenetic reprogramming of immune cells in injury, repair, and resolution.J. Clin. Invest.201912982994300510.1172/JCI12461931329166
    [Google Scholar]
  103. AyissiV.B.O. EbrahimiA. SchluesennerH. Epigenetic effects of natural polyphenols: A focus on SIRT1‐mediated mechanisms.Mol. Nutr. Food Res.2014581223210.1002/mnfr.20130019523881751
    [Google Scholar]
  104. CacabelosR. TorrellasC. Epigenetics of aging and Alzheimer’s disease: Implications for pharmacogenomics and drug response.Int. J. Mol. Sci.20151612304833054310.3390/ijms16122623626703582
    [Google Scholar]
  105. RrojiO. KumarA. KaruppagounderS.S. RatanR.R. Epigenetic regulators of neuronal ferroptosis identify novel therapeutics for neurological diseases: HDACs, transglutaminases, and HIF prolyl hydroxylases.Neurobiol. Dis.202114710514510.1016/j.nbd.2020.10514533127469
    [Google Scholar]
  106. EhrhartF. SanganiN.B. CurfsL.M.G. Current developments in the genetics of Rett and Rett-like syndrome.Curr. Opin. Psychiatry201831210310810.1097/YCO.000000000000038929206688
    [Google Scholar]
  107. McCarthyS.E. GillisJ. KramerM. LihmJ. YoonS. BersteinY. MistryM. PavlidisP. SolomonR. GhibanE. AntoniouE. KelleherE. O’BrienC. DonohoeG. GillM. MorrisD.W. McCombieW.R. CorvinA. De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability.Mol. Psychiatry201419665265810.1038/mp.2014.2924776741
    [Google Scholar]
  108. CiechomskaM. RoszkowskiL. MaslinskiW. DNA methylation as a future therapeutic and diagnostic target in rheumatoid arthritis.Cells20198995310.3390/cells809095331443448
    [Google Scholar]
  109. MazzoneR. ZwergelC. ArticoM. TauroneS. RalliM. GrecoA. MaiA. The emerging role of epigenetics in human autoimmune disorders.Clin. Epigenetics20191113410.1186/s13148‑019‑0632‑230808407
    [Google Scholar]
  110. ZhangZ. ZhangR. Epigenetics in autoimmune diseases: Pathogenesis and prospects for therapy.Autoimmun. Rev.2015141085486310.1016/j.autrev.2015.05.00826026695
    [Google Scholar]
  111. NicorescuI. DallingaG.M. de WintherM.P.J. StroesE.S.G. BahjatM. Potential epigenetic therapeutics for atherosclerosis treatment.Atherosclerosis201928118919710.1016/j.atherosclerosis.2018.10.00630340764
    [Google Scholar]
  112. PrasherD. GreenwayS.C. SinghR.B. The impact of epigenetics on cardiovascular disease.Biochem. Cell Biol.2020981122210.1139/bcb‑2019‑004531112654
    [Google Scholar]
  113. ArifM. SadayappanS. BeckerR.C. MartinL.J. UrbinaE.M. Epigenetic modification: A regulatory mechanism in essential hypertension.Hypertens. Res.20194281099111310.1038/s41440‑019‑0248‑030867575
    [Google Scholar]
  114. Bianco-MiottoT. CraigJ.M. GasserY.P. van DijkS.J. OzanneS.E. Epigenetics and DOHaD: From basics to birth and beyond.J. Dev. Orig. Health Dis.20178551351910.1017/S204017441700073328889823
    [Google Scholar]
  115. Stols-GonçalvesD. TristãoL.S. HennemanP. NieuwdorpM. Epigenetic markers and microbiota/metabolite-induced epigenetic modifications in the pathogenesis of obesity, metabolic syndrome, type 2 diabetes, and non-alcoholic fatty liver disease.Curr. Diab. Rep.20191963110.1007/s11892‑019‑1151‑431044315
    [Google Scholar]
  116. HoangT.T. SikdarS. XuC.J. LeeM.K. CardwellJ. FornoE. ImbodenM. JeongA. MadoreA.M. QiC. WangT. BennettB.D. WardJ.M. ParksC.G. Beane-FreemanL.E. KingD. Motsinger-ReifA. UmbachD.M. WyssA.B. SchwartzD.A. CeledónJ.C. LapriseC. OberC. Probst-HenschN. YangI.V. KoppelmanG.H. LondonS.J. Epigenome-wide association study of DNA methylation and adult asthma in the Agricultural Lung Health Study.Eur. Respir. J.2020563200021710.1183/13993003.00217‑202032381493
    [Google Scholar]
  117. ShanmugamG. SunnyJ.S. RakshitS. GeorgeM. LeelaK.V. SarkarK. Involvement of inflammatory cytokines and epigenetic modification of the mtTFA complex in T-helper cells of patients’ suffering from non-small cell lung cancer and chronic obstructive pulmonary disease.Mol. Immunol.2022151708310.1016/j.molimm.2022.08.00636099831
    [Google Scholar]
  118. GroteC. ReinhardtD. ZhangM. WangJ. Regulatory mechanisms and clinical manifestations of musculoskeletal aging.J. Orthop. Res.20193771475148810.1002/jor.2429230919498
    [Google Scholar]
  119. MoufarrijS. DandapaniM. ArthoferE. GomezS. SrivastavaA. Lopez-AcevedoM. VillagraA. ChiappinelliK.B. Epigenetic therapy for ovarian cancer: Promise and progress.Clin. Epigenetics2019111710.1186/s13148‑018‑0602‑030646939
    [Google Scholar]
  120. CaradusJR Intended and unintended consequences of genetically modified crops–myth, fact and/or manageable outcomes.N Z J Agric Res.202201110110.1080/00288233.2022.2141273
    [Google Scholar]
  121. WangX. ZhangH. ChenX. Drug resistance and combating drug resistance in cancer.Cancer Drug Resist.20192214116010.20517/cdr.2019.1034322663
    [Google Scholar]
  122. HamdaniN. CostantinoS. MüggeA. LebecheD. TschöpeC. ThumT. PaneniF. Leveraging clinical epigenetics in heart failure with preserved ejection fraction: A call for individualized therapies.Eur. Heart J.202142201940195810.1093/eurheartj/ehab197
    [Google Scholar]
  123. RobertiA. ValdesA.F. TorrecillasR. FragaM.F. FernandezA.F. Epigenetics in cancer therapy and nanomedicine.Clin. Epigenetics20191118110.1186/s13148‑019‑0675‑431097014
    [Google Scholar]
  124. CoussensN.P. SittampalamG.S. JonsonS.G. HallM.D. GorbyH.E. TamizA.P. McManusO.B. FelderC.C. RasmussenK. The opioid crisis and the future of addiction and pain therapeutics.J. Pharmacol. Exp. Ther.2019371239640810.1124/jpet.119.25940831481516
    [Google Scholar]
  125. BrownWA Expectation, the placebo effect and the response to treatment.R I Med J.20139851921
    [Google Scholar]
  126. ManzariM.T. ShamayY. KiguchiH. RosenN. ScaltritiM. HellerD.A. Targeted drug delivery strategies for precision medicines.Nat. Rev. Mater.20216435137010.1038/s41578‑020‑00269‑634950512
    [Google Scholar]
  127. WathoniN. PuluhulawaL.E. JoniI.M. MuchtaridiM. MohammedA.F.A. ElaminK.M. MilandaT. GozaliD. Monoclonal antibody as a targeting mediator for nanoparticle targeted delivery system for lung cancer.Drug Deliv.20222912959297010.1080/10717544.2022.212056636085575
    [Google Scholar]
  128. MarshallH.T. DjamgozM.B.A. Immuno-oncology: Emerging targets and combination therapies.Front. Oncol.2018831510.3389/fonc.2018.0031530191140
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855275769231114094037
Loading
/content/journals/cdth/10.2174/0115748855275769231114094037
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test