Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Left ventricular remodeling (LVR) refers to the changes in the size, shape, and function of the left ventricle, influenced by mechanical, neurohormonal, and genetic factors. These changes are directly linked to an increased risk of major adverse cardiac events (MACEs). Various parameters are used to assess cardiac geometry across different imaging modalities, with echocardiography being the most commonly employed technique for measuring left ventricular (LV) geometry. However, many echocardiographic evaluations of geometric changes primarily rely on two-dimensional (2D) methods, which overlook the true three-dimensional (3D) characteristics of the LV. While cardiac magnetic resonance (CMR) imaging is considered the gold standard for assessing LV volume, it has limitations, including accessibility issues, challenges in patients with cardiac devices, and longer examination times compared to standard echocardiography. In nuclear medicine, LV geometry can be analyzed using the shape index (SI) and eccentricity index (EI), which measure the sphericity and elongation of the left ventricle. Myocardial perfusion imaging (MPI) using SPECT or PET is inherently a 3D technique, making it particularly effective for accurately and consistently assessing LV size and shape parameters. In this context, LV metrics such as EI and SI can significantly enhance the range of quantitative assessments available through nuclear cardiology techniques, with particular value in identifying early LV remodeling in specific patient groups. This article explores the diagnostic significance of left ventricular geometric indices through various diagnostic methods, highlighting the important role of nuclear cardiology.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X357558250122062037
2025-02-07
2025-08-20
Loading full text...

Full text loading...

References

  1. BletsaE. OikonomouE. DimitriadisK. StampouloglouP.K. FragoulisC. LontouS.P. KorakasE. BenekiE. KalogerasK. LambadiariV. TsioufisK. VavouranakisM. SiasosG. Exercise effects on left ventricular remodeling in patients with cardiometabolic risk factors.Life2023138174210.3390/life1308174237629599
    [Google Scholar]
  2. CapotostoL. MassoniF. De SioS. RicciS. VitarelliA. Early diagnosis of cardiovascular diseases in workers: Role of standard and advanced echocardiography.BioMed Res. Int.2018201811510.1155/2018/735469129560362
    [Google Scholar]
  3. BouletJ. MehraM.R. Left ventricular reverse remodeling in heart failure: Remission to recovery.Struct. Heart.20215546648110.1080/24748706.2021.1954275
    [Google Scholar]
  4. MalekH. YaghoobiN. Jalali ZefreiF. FiroozabadiH. RastgouF. BakhshandehH. Association between stress-induced left ventricular diastolic dysfunction and ischemic heart disease in myocardial perfusion imaging.Indian Heart J.202122395103
    [Google Scholar]
  5. MaadaniM. SarrafN.S. AlilouS. AeinfarK. SadeghipourP. ZahedmehrA. FathollahiM.S. Hashemi GhadiS.I. ZavareheeA. ZolfaghariM. ZolfaghariR. Relationship between preprocedural lipid levels and periprocedural myocardial injury in patients undergoing elective percutaneous coronary intervention.Tex. Heart Inst. J.2022496e20738410.14503/THIJ‑20‑738436515930
    [Google Scholar]
  6. CalvieriC. RivaA. SturlaF. DominiciL. ConiaL. GaudioC. MiraldiF. SecchiF. GaleaN. Left ventricular adverse remodeling in ischemic heart disease: Emerging cardiac magnetic resonance imaging biomarkers.J. Clin. Med.202312133410.3390/jcm1201033436615133
    [Google Scholar]
  7. ShaghaghiZ. FarzipourS. JalaliF. AlvandiM. Ferroptosis inhibitors as new therapeutic insights into radiation-induced heart disease.Cardiovasc. Hematol. Agents Med. Chem.20232112910.2174/187152572066622071310173635838214
    [Google Scholar]
  8. MousaviS.M. Jalali-zefreiF. ShourmijM. TabaghiS. DavariA. KhaliliS.B. FarzipourS. SalariA. Targeting wnt pathways with small molecules as new approach in cardiovascular disease.Curr. Cardiol. Rev.20242110.2174/011573403X33303824102315334939482911
    [Google Scholar]
  9. AzevedoP.S. PolegatoB.F. MinicucciM.F. PaivaS.A.R. ZornoffL.A.M. Cardiac remodeling: Concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment.Arq. Bras. Cardiol.20161061626910.5935/abc.2016000526647721
    [Google Scholar]
  10. LeancăS.A. CrișuD. PetrișA.O. AfrăsânieI. GenesA. CostacheA.D. TesloianuD.N. CostacheI.I. Left ventricular remodeling after myocardial infarction: From physiopathology to treatment.Life (Basel)2022128111110.3390/life1208111135892913
    [Google Scholar]
  11. GeramiR. Sadeghi JoniS. AkhondiN. EtemadiA. FosouliM. EghbalA.F. SouriZ. A literature review on the imaging methods for breast cancer.Int. J. Physiol. Pathophysiol. Pharmacol.202214317117635891932
    [Google Scholar]
  12. Zolfaghari DehkharghaniM. MousaviS. KianifardN. FazlzadehA. ParsaH. Tavakoli PirzamanA. Fazlollahpour-NaghibiA. Importance of long non-coding rnas in the pathogenesis, diagnosis, and treatment of myocardial infarction.Int. J. Cardiol. Heart Vasc.20245510152910.1016/j.ijcha.2024.10152939498345
    [Google Scholar]
  13. HashimotoG. Enriquez-SaranoM. StanberryL.I. OhF. WangM. AcostaK. Association of left ventricular remodeling assessment by cardiac magnetic resonance with outcomes in patients with chronic aortic regurgitation.JAMA Cardiol.20247992493310.1001/jamacardio.2022.210835857306
    [Google Scholar]
  14. YildizM. OktayA.A. StewartM.H. MilaniR.V. VenturaH.O. LavieC.J. Left ventricular hypertrophy and hypertension.Prog. Cardiovasc. Dis.2020631102110.1016/j.pcad.2019.11.00931759953
    [Google Scholar]
  15. KomakiA. Hashemi-FirouziN. ShojaeiS. SouriZ. HeidariS. ShahidiS. Study the effect of endocannabinoid system on rat behavior in elevated plus-maze.Basic Clin. Neurosci.20156314715326904171
    [Google Scholar]
  16. BurchfieldJ.S. XieM. HillJ.A. Pathological ventricular remodeling: Mechanisms: Part 1 of 2.Circulation.2024128438840010.1161/CIRCULATIONAHA.113.00187823877061
    [Google Scholar]
  17. UdelsonJ.E. KonstamM.A. Ventricular remodeling.J. Am. Coll. Cardiol.201157131477147910.1016/j.jacc.2011.01.00921435517
    [Google Scholar]
  18. GhorbaniM. KeykhosraviE. VatanparastM. ElyassiradD. GolchinN. MirsardooH. HasanpourM. Traumatic middle meningeal artery aneurysm: A case report.Neurochirurgie202470210154510.1016/j.neuchi.2024.10154538417248
    [Google Scholar]
  19. MedvedofskyD. MaffessantiF. WeinertL. TehraniD.M. NarangA. AddetiaK. MedirattaA. BesserS.A. MaorE. PatelA.R. SpencerK.T. Mor-AviV. LangR.M. 2d and 3d echocardiography-derived indices of left ventricular function and shape.JACC Cardiovasc. Imaging201811111569157910.1016/j.jcmg.2017.08.02329153577
    [Google Scholar]
  20. KobayashiY. OkuraH. KobayashiY. FukudaS. HirohataA. YoshidaK. Left ventricular myocardial function assessed by three‐dimensional speckle tracking echocardiography in takotsubo cardiomyopathy.Echocardiography201734452352910.1111/echo.1349228266731
    [Google Scholar]
  21. PezelT. Besseyre des HortsT. SchaafM. CroisilleP. BièreL. Garcia-DoradoD. JossanC. RoubilleF. CungT.T. PrunierF. MeyerE. AmazC. DerumeauxG. de PoliF. HovasseT. GilardM. BergerotC. ThibaultH. OvizeM. MewtonN. Predictive value of early cardiac magnetic resonance imaging functional and geometric indexes for adverse left ventricular remodelling in patients with anterior st-segment elevation myocardial infarction: A report from the circus study.Arch. Cardiovasc. Dis.20201131171072010.1016/j.acvd.2020.05.02433160891
    [Google Scholar]
  22. AbidovA. SlomkaP.J. NishinaH. HayesS.W. KangX. YodaS. YangL.D. GerlachJ. Aboul-EneinF. CohenI. FriedmanJ.D. KavanaghP.B. GermanoG. BermanD.S. Left ventricular shape index assessed by gated stress myocardial perfusion SPECT: Initial description of a new variable.J. Nucl. Cardiol.200613565265910.1016/j.nuclcard.2006.05.02016945745
    [Google Scholar]
  23. AlvandiM. JavidR.N. ShaghaghiZ. FarzipourS. NosratiS. An in-depth analysis of the adverse effects of ionizing radiation exposure on cardiac catheterization staffs.Curr. Radiopharm.202417321922810.2174/011874471028318123122911241738314600
    [Google Scholar]
  24. GermanoG. KavanaghP.B. SlomkaP.J. Van KriekingeS.D. PollardG. BermanD.S. Quantitation in gated perfusion SPECT imaging: The cedars-sinai approach.J. Nucl. Cardiol.200714443345410.1016/j.nuclcard.2007.06.00817679052
    [Google Scholar]
  25. LigaR. GimelliA. Automatic evaluation of myocardial perfusion on SPECT: Need for “normality”.J. Nucl. Cardiol.201926378678910.1007/s12350‑017‑1097‑329071669
    [Google Scholar]
  26. GimelliA. LigaR. GiorgettiA. CasagrandaM. MarzulloP. Stress-induced alteration of left ventricular eccentricity: An additional marker of multivessel cad.J. Nucl. Cardiol.201926122723210.1007/s12350‑017‑0862‑728353212
    [Google Scholar]
  27. HidaS. ChikamoriT. TanakaH. UsuiY. IgarashiY. NagaoT. YamashinaA. Diagnostic value of left ventricular function after stress and at rest in the detection of multivessel coronary artery disease as assessed by electrocardiogram-gated SPECT.J. Nucl. Cardiol.2007141687410.1016/j.nuclcard.2006.10.01917276308
    [Google Scholar]
  28. GimelliA. LigaR. ClementeA. MarrasG. KuschA. MarzulloP. Left ventricular eccentricity index measured with SPECT myocardial perfusion imaging: An additional parameter of adverse cardiac remodeling.J. Nucl. Cardiol.2020271717910.1007/s12350‑017‑0777‑328083831
    [Google Scholar]
  29. Sobic-SaranovicD.P. PavlovicS.V. BeleslinB.D. PetrasinovicZ.R. KozarevicN.D. Todorovic-TirnanicM.V. IlleT.M. JaksicE.D. ArtikoV.M. ObradovicV.B. Site of myocardial infarction and severity of perfusion abnormalities impact on post-stress left ventricular function in patients with single-vessel disease: Gated single-photon emission computed tomography methoxyisobutylisonitrile study.Nucl. Med. Commun.200930214815410.1097/MNM.0b013e3283176a6719077915
    [Google Scholar]
  30. GimelliA. LigaR. PasanisiE.M. CasagrandaM. CoceaniM. MarzulloP. Influence of cardiac stress protocol on myocardial perfusion imaging accuracy: The role of exercise level on the evaluation of ischemic burden.J. Nucl. Cardiol.20162351114112210.1007/s12350‑015‑0101‑z25814218
    [Google Scholar]
  31. ParkC.S. ParkJ.B. KimY. YoonY.E. LeeS.P. KimH.K. KimY.J. ChoG.Y. SohnD.W. LeeS.H. Left ventricular geometry determines prognosis and reverse j-shaped relation between blood pressure and mortality in ischemic stroke patients.JACC Cardiovasc. Imaging201811337338210.1016/j.jcmg.2017.02.01528624400
    [Google Scholar]
  32. ShakibaD. Mohammadiun ShabestariA. MokhtariT. Khanlari GoodarziM. SaeedS. ZinatbakhshZ. AkaberiK. AllahyartorkamanM. Nanoliposomes meet folic acid: A precision delivery system for bleomycin in cancer treatment.Asian Pacific Journal of Cancer Biology20249456156810.31557/apjcb.2024.9.4.561‑568
    [Google Scholar]
  33. BertiV. SciagràR. AcampaW. RicciF. CerisanoG. GallicchioR. VigoritoC. PupiA. CuocoloA. Relationship between infarct size and severity measured by gated SPECT and long-term left ventricular remodelling after acute myocardial infarction.Eur. J. Nucl. Med. Mol. Imaging20113861124113110.1007/s00259‑011‑1739‑721327635
    [Google Scholar]
  34. LiT. LiG. GuoX. LiZ. SunY. Echocardiographic left ventricular geometry profiles for prediction of stroke, coronary heart disease and all-cause mortality in the chinese community: A rural cohort population study.BMC Cardiovasc. Disord.202121123810.1186/s12872‑021‑02055‑w33980151
    [Google Scholar]
  35. JahanshahiA. KaluraziT.Y. HaghighiM. MaroufizadehS. JafariA. FoumaniA.A. The effect of Ivermectin as add‐on therapy to standard care in COVID-19 patients: A randomized, double‐blind, placebo‐controlled trial.Clin. Ther.20214361007101910.1016/j.clinthera.2021.04.00734052007
    [Google Scholar]
  36. ZengD. ChenH. JiangC.L. WuJ. Usefulness of three-dimensional spherical index to assess different types of left ventricular remodeling.Medicine (Baltimore)20179636e796810.1097/MD.000000000000796828885350
    [Google Scholar]
  37. KonstamM.A. KramerD.G. PatelA.R. MaronM.S. UdelsonJ.E. Left ventricular remodeling in heart failure: Current concepts in clinical significance and assessment.JACC Cardiovasc. Imaging2011419810810.1016/j.jcmg.2010.10.00821232712
    [Google Scholar]
  38. MannaertsH.F.J. van der HeideJ.A. KampO. StoelM.G. TwiskJ. VisserC.A. Early identification of left ventricular remodelling after myocardial infarction, assessed by transthoracic 3D echocardiography.Eur. Heart J.202425868068710.1016/j.ehj.2004.02.03015084373
    [Google Scholar]
  39. KaruzasA. RumbinaiteE. VerikasD. PtasinskasT. MuckieneG. KazakauskaiteE. ZabielaV. JurkeviciusR. VaskelyteJ.J. ZaliunasR. Zaliaduonyte-PeksieneD. Accuracy of three-dimensional systolic dyssynchrony and sphericity indexes for identifying early left ventricular remodelling after acute myocardial infarction.Anatol. J. Cardiol.2019221132010.14744/AnatolJCardiol.2019.0284431264652
    [Google Scholar]
  40. KhanJ.N. McCannG.P. Cardiovascular magnetic resonance imaging assessment of outcomes in acute myocardial infarction.World J. Cardiol.20179210913310.4330/wjc.v9.i2.10928289525
    [Google Scholar]
  41. ZlibutA. CojocaruC. OnciulS. Agoston-ColdeaL. Cardiac magnetic resonance imaging in appraising myocardial strain and biomechanics: A current overview.Diagnostics202313355310.3390/diagnostics1303055336766658
    [Google Scholar]
  42. MarchalP. LairezO. CognetT. ChabbertV. BarrierP. BerryM. MéjeanS. RoncalliJ. RousseauH. CarriéD. GalinierM. Relationship between left ventricular sphericity and trabeculation indexes in patients with dilated cardiomyopathy: A cardiac magnetic resonance study.Eur. Heart J. Cardiovasc. Imaging201314991492010.1093/ehjci/jet06423644933
    [Google Scholar]
  43. FaragliA. TanacliR. KolpC. AbawiD. LapinskasT. StehningC. SchnackenburgB. Lo MuzioF.P. FassinaL. PieskeB. NagelE. PostH. KelleS. AlognaA. Cardiovascular magnetic resonance-derived left ventricular mechanics—strain, cardiac power and end-systolic elastance under various inotropic states in swine.J. Cardiovasc. Magn. Reson.20202217910.1186/s12968‑020‑00679‑z33256761
    [Google Scholar]
  44. NakamoriS. IsmailH. NgoL.H. ManningW.J. NezafatR. Left ventricular geometry predicts ventricular tachyarrhythmia in patients with left ventricular systolic dysfunction: A comprehensive cardiovascular magnetic resonance study.J. Cardiovasc. Magn. Reson.20161917910.1186/s12968‑017‑0396‑929058590
    [Google Scholar]
  45. DaubertM.A. WhiteJ.A. Al-KhalidiH.R. VelazquezE.J. RaoS.V. CrowleyA.L. ZeymerU. KasprzakJ.D. GuettaV. KrucoffM.W. DouglasP.S. Cardiac remodeling after large st-elevation myocardial infarction in the current therapeutic era.Am. Heart J.2020223879710.1016/j.ahj.2020.02.01732203684
    [Google Scholar]
  46. O’ReganD.P. ShiW. AriffB. BaksiA.J. DurighelG. RueckertD. CookS.A. Remodeling after acute myocardial infarction: Mapping ventricular dilatation using three dimensional cmr image registration.J. Cardiovasc. Magn. Reson.20121414610.1186/1532‑429X‑14‑4122720881
    [Google Scholar]
  47. DavariA. Jalali-zefreiF. Gholami-chabokB. TabaghiS. FarzipourS. DelpasandK. MousaviS.M. Left ventricular wall motion as an additional valuable parameter in diabetic patients with normal myocardial perfusion imaging.Curr. Radiopharm.20241710.2174/011874471031268824081410044839253932
    [Google Scholar]
  48. GermanoG. SlomkaP.J. Assessing lv remodeling in nuclear cardiology.J. Nucl. Cardiol.201926123323510.1007/s12350‑017‑0957‑128616800
    [Google Scholar]
  49. GaaschW.H. ZileM.R. Left ventricular structural remodeling in health and disease: With special emphasis on volume, mass, and geometry.J. Am. Coll. Cardiol.201158171733174010.1016/j.jacc.2011.07.02221996383
    [Google Scholar]
  50. SaheeraS. KrishnamurthyP. Cardiovascular changes associated with hypertensive heart disease and aging.Cell Transplant.20202910.1177/096368972092083032393064
    [Google Scholar]
  51. HämäläinenH. LaitinenT.M. HedmanM. HedmanA. KiveläA. LaitinenT.P. Cardiac remodelling in association with left ventricular dyssynchrony and systolic dysfunction in patients with coronary artery disease.Clin. Physiol. Funct. Imaging202242641342110.1111/cpf.1278035848312
    [Google Scholar]
  52. V CokkinosD. BelogianneasC. Left ventricular remodelling: A problem in search of solutions.Eur. Cardiol.2016111293510.15420/ecr.2015:9:330310445
    [Google Scholar]
  53. MusumeciB. TiniG. RussoD. SclafaniM. CavaF. TropeaA. AdduciC. PalanoF. FranciaP. AutoreC. Left ventricular remodeling in hypertrophic cardiomyopathy: An overview of current knowledge.J. Clin. Med.2021108154710.3390/jcm1008154733916967
    [Google Scholar]
  54. Medrano-GraciaP. CowanB.R. Ambale-VenkateshB. BluemkeD.A. EngJ. FinnJ.P. FonsecaC.G. LimaJ.A.C. SuinesiaputraA. YoungA.A. Left ventricular shape variation in asymptomatic populations: The multi-ethnic study of atherosclerosis.J. Cardiovasc. Magn. Reson.20141615610.1186/s12968‑014‑0056‑225160814
    [Google Scholar]
  55. LevineY.C. MatosJ. RosenbergM.A. ManningW.J. JosephsonM.E. BuxtonA.E. Left ventricular sphericity independently predicts appropriate implantable cardioverter-defibrillator therapy.Heart Rhythm201613249049710.1016/j.hrthm.2015.09.02226409099
    [Google Scholar]
  56. ArvidssonP.M. TögerJ. CarlssonM. Steding-EhrenborgK. PedrizzettiG. HeibergE. ArhedenH. Left and right ventricular hemodynamic forces in healthy volunteers and elite athletes assessed with 4D flow magnetic resonance imaging.Am. J. Physiol. Heart Circ. Physiol.20173122H314H32810.1152/ajpheart.00583.201627770000
    [Google Scholar]
  57. Ambale-VenkateshB. YoneyamaK. SharmaR.K. OhyamaY. WuC.O. BurkeG.L. SheaS. GomesA.S. YoungA.A. BluemkeD.A. LimaJ.A.C. Left ventricular shape predicts different types of cardiovascular events in the general population.Heart2017103749950710.1136/heartjnl‑2016‑31005227694110
    [Google Scholar]
  58. MasciP.G. BogaertJ. Post myocardial infarction of the left ventricle: The course ahead seen by cardiac mri.Cardiovasc. Diagn. Ther.20122211312724282705
    [Google Scholar]
  59. BalabanG. HallidayB.P. HammersleyD. RinaldiC.A. PrasadS.K. BishopM.J. LamataP. Left ventricular shape predicts arrhythmic risk in fibrotic dilated cardiomyopathy.Europace20242471137114710.1093/europace/euab30634907426
    [Google Scholar]
  60. KhannaS. BhatA. ChenH.H. TanJ.W.A. GanG.C.H. TanT.C. Left ventricular sphericity index is a reproducible bedside echocardiographic measure of geometric change between acute phase takotsubo’s syndrome and acute anterior myocardial infarction.Int. J. Cardiol. Heart Vasc.20202910054710.1016/j.ijcha.2020.10054732514426
    [Google Scholar]
  61. TabaghiS. SheibaniM. KhaheshiI. MiriR. Haji AghajaniM. SafiM. EslamiV. PishgahiM. Alipour ParsaS. NamaziM.H. BeyranvandM.R. SohrabifarN. Hassanian-MoghaddamH. PourmotahariF. KhaiatS. AkbarzadehM.A. Associations between short‐term exposure to fine particulate matter and acute myocardial infarction: A case‐crossover study.Clin. Cardiol.202346111319132510.1002/clc.2411137501642
    [Google Scholar]
  62. AnvariS. AkbarzadehM.A. BayatF. NamaziM.H. SafiM. Left ventricular sphericity index analysis for the prediction of appropriate implantable cardioverter‐defibrillator therapy.Pacing Clin. Electrophysiol.20184191192119610.1111/pace.1342029931684
    [Google Scholar]
  63. KehatI. MolkentinJ.D. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation.Circulation2010122252727273510.1161/CIRCULATIONAHA.110.94226821173361
    [Google Scholar]
  64. FrenchB.A. KramerC.M. Mechanisms of postinfarct left ventricular remodeling.Drug Discov. Today Dis. Mech.20074318519610.1016/j.ddmec.2007.12.00618690295
    [Google Scholar]
  65. ShahidF. LipG.Y.H. ShantsilaE. Role of monocytes in heart failure and atrial fibrillation.J. Am. Heart. Assoc.202473e00784910.1161/JAHA.117.00784929419389
    [Google Scholar]
  66. ShaghaghiZ. Jalali ZefreiF. SalariA. HojjatiS.A. Fakhr MousaviS.A. FarzipourS. Promising radiopharmaceutical tracers for detection of cardiotoxicity in cardio-oncology.Curr. Radiopharm.202316317118410.2174/187447101666623022810223136852813
    [Google Scholar]
  67. García-OteroL. SoveralI. Sepúlveda-MartínezÁ. Rodriguez-LópezM. TorresX. GuiradoL. NoguéL. Valenzuela-AlcarazB. MartínezJ.M. GratacósE. GómezO. CrispiF. Reference ranges for fetal cardiac, ventricular and atrial relative size, sphericity, ventricular dominance, wall asymmetry and relative wall thickness from 18 to 41 gestational weeks.Ultrasound Obstet. Gynecol.202158338839710.1002/uog.2312732959925
    [Google Scholar]
  68. ČikešM. A study of regional and global myocardial morphology and function in various substrates of cardiac remodelling.Bijnens, BartDoctoral Thesis Medicine in Zagreb2009
    [Google Scholar]
  69. GaudieriV. NappiC. AcampaW. ZampellaE. AssanteR. MannarinoT. GenovaA. De SiminiG. KlainM. GermanoG. PetrettaM. CuocoloA. Added prognostic value of left ventricular shape by gated SPECT imaging in patients with suspected coronary artery disease and normal myocardial perfusion.J. Nucl. Cardiol.20192641148115610.1007/s12350‑017‑1090‑x29071670
    [Google Scholar]
  70. GaudieriV. MannarinoT. ZampellaE. AssanteR. D’AntonioA. NappiC. CantoniV. GreenR. PetrettaM. ArumugamP. CuocoloA. AcampaW. Prognostic value of coronary vascular dysfunction assessed by rubidium-82 PET/CT imaging in patients with resistant hypertension without overt coronary artery disease.Eur. J. Nucl. Med. Mol. Imaging202148103162317110.1007/s00259‑021‑05239‑w33594472
    [Google Scholar]
  71. GaudieriV. AcampaW. RozzaF. NappiC. ZampellaE. AssanteR. MannarinoT. MainolfiC. PetrettaM. VerberneH.J. ArumugamP. CuocoloA. Coronary vascular function in patients with resistant hypertension and normal myocardial perfusion: A propensity score analysis.Eur. Heart J. Cardiovasc. Imaging201920894995810.1093/ehjci/jez02530768182
    [Google Scholar]
  72. NittaK. KurisuS. ErastaR. SumimotoY. IkenagaH. IshibashiK. FukudaY. KiharaY. Associations of left ventricular shape with left ventricular volumes and functions assessed by ecg-gated SPECT in patients without significant perfusion abnormality.Heart Vessels2020351869110.1007/s00380‑019‑01465‑331267146
    [Google Scholar]
  73. MillerR.J.H. SharirT. OtakiY. GransarH. LiangJ.X. EinsteinA.J. FishM.B. RuddyT.D. KaufmannP.A. SinusasA.J. MillerE.J. BatemanT.M. DorbalaS. Di CarliM. TamarappooB.K. DeyD. BermanD.S. SlomkaP.J. Quantitation of poststress change in ventricular morphology improves risk stratification.J. Nucl. Med.202162111582159010.2967/jnumed.120.26014133712535
    [Google Scholar]
  74. Martinez-LucioT.S. Carvajal-JuarezI. Mendoza-IbanezA.K. Mendoza-IbanezO.I. TsoumpasC. SlartR.H.J.A. Alexanderson-RosasE. Left ventricular shape index and eccentricity index assessed by gated PET/CT. Promising parameters for detection of left ventricular remodelling.Europ. Hea. J. - Cardiovasc. Imag.202324Suppl_1jead119.40610.1093/ehjci/jead119.406
    [Google Scholar]
  75. ZhaoY. WuP. XuL. XiaoY. LiS. <strong>the incremental prognostic value of left ventricular shape index in patients with diagnostic and suspected coronary artery disease with preserved and supra-normal ejection fraction</strong>.J. Nucl. Med.202364Suppl. 1559P559
    [Google Scholar]
  76. HeZ. de Amorim FernandesF. do NascimentoE.A. GarciaE.V. MesquitaC.T. ZhouW. Incremental value of left ventricular shape parameters measured by gated SPECT MPI in predicting the super-response to CRT.J. Nucl. Cardiol.20222941537154610.1007/s12350‑020‑02469‑733506382
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X357558250122062037
Loading
/content/journals/ccr/10.2174/011573403X357558250122062037
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test