Skip to content
2000
image of Assessment of Left Ventricular Shape Index and Eccentricity Index as Promising Parameters for Detection of Left Ventricular Remodeling in Cardiovascular Events

Abstract

Left ventricular remodeling (LVR) refers to the changes in the size, shape, and function of the left ventricle, influenced by mechanical, neurohormonal, and genetic factors. These changes are directly linked to an increased risk of major adverse cardiac events (MACEs). Various parameters are used to assess cardiac geometry across different imaging modalities, with echocardiography being the most commonly employed technique for measuring left ventricular (LV) geometry. However, many echocardiographic evaluations of geometric changes primarily rely on two-dimensional (2D) methods, which overlook the true three-dimensional (3D) characteristics of the LV. While cardiac magnetic resonance (CMR) imaging is considered the gold standard for assessing LV volume, it has limitations, including accessibility issues, challenges in patients with cardiac devices, and longer examination times compared to standard echocardiography. In nuclear medicine, LV geometry can be analyzed using the shape index (SI) and eccentricity index (EI), which measure the sphericity and elongation of the left ventricle. Myocardial perfusion imaging (MPI) using SPECT or PET is inherently a 3D technique, making it particularly effective for accurately and consistently assessing LV size and shape parameters. In this context, LV metrics such as EI and SI can significantly enhance the range of quantitative assessments available through nuclear cardiology techniques, with particular value in identifying early LV remodeling in specific patient groups. This article explores the diagnostic significance of left ventricular geometric indices through various diagnostic methods, highlighting the important role of nuclear cardiology.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X357558250122062037
2025-02-07
2025-07-05
Loading full text...

Full text loading...

References

  1. Bletsa E. Oikonomou E. Dimitriadis K. Stampouloglou P.K. Fragoulis C. Lontou S.P. Korakas E. Beneki E. Kalogeras K. Lambadiari V. Tsioufis K. Vavouranakis M. Siasos G. Exercise effects on left ventricular remodeling in patients with cardiometabolic risk factors. Life 2023 13 8 1742 10.3390/life13081742 37629599
    [Google Scholar]
  2. Capotosto L. Massoni F. De Sio S. Ricci S. Vitarelli A. Early diagnosis of cardiovascular diseases in workers: Role of standard and advanced echocardiography. BioMed Res. Int. 2018 2018 1 15 10.1155/2018/7354691 29560362
    [Google Scholar]
  3. Boulet J. Mehra M.R. Left ventricular reverse remodeling in heart failure: Remission to recovery. Struct. Heart. 2021 5 5 466 481 10.1080/24748706.2021.1954275
    [Google Scholar]
  4. Malek H. Yaghoobi N. Jalali Zefrei F. Firoozabadi H. Rastgou F. Bakhshandeh H. Association between stress-induced left ventricular diastolic dysfunction and ischemic heart disease in myocardial perfusion imaging. Indian Heart J. 2021 22 3 95 103
    [Google Scholar]
  5. Maadani M. Sarraf N.S. Alilou S. Aeinfar K. Sadeghipour P. Zahedmehr A. Fathollahi M.S. Hashemi Ghadi S.I. Zavarehee A. Zolfaghari M. Zolfaghari R. Relationship between preprocedural lipid levels and periprocedural myocardial injury in patients undergoing elective percutaneous coronary intervention. Tex. Heart Inst. J. 2022 49 6 e207384 10.14503/THIJ‑20‑7384 36515930
    [Google Scholar]
  6. Calvieri C. Riva A. Sturla F. Dominici L. Conia L. Gaudio C. Miraldi F. Secchi F. Galea N. Left ventricular adverse remodeling in ischemic heart disease: Emerging cardiac magnetic resonance imaging biomarkers. J. Clin. Med. 2023 12 1 334 10.3390/jcm12010334 36615133
    [Google Scholar]
  7. Shaghaghi Z. Farzipour S. Jalali F. Alvandi M. Ferroptosis inhibitors as new therapeutic insights into radiation-induced heart disease. Cardiovasc. Hematol. Agents Med. Chem. 2023 21 1 2 9 10.2174/1871525720666220713101736 35838214
    [Google Scholar]
  8. Mousavi S.M. Jalali-zefrei F. Shourmij M. Tabaghi S. Davari A. Khalili S.B. Farzipour S. Salari A. Targeting wnt pathways with small molecules as new approach in cardiovascular disease. Curr. Cardiol. Rev. 2024 21 10.2174/011573403X333038241023153349 39482911
    [Google Scholar]
  9. Azevedo P.S. Polegato B.F. Minicucci M.F. Paiva S.A.R. Zornoff L.A.M. Cardiac remodeling: Concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arq. Bras. Cardiol. 2016 106 1 62 69 10.5935/abc.20160005 26647721
    [Google Scholar]
  10. Leancă S.A. Crișu D. Petriș A.O. Afrăsânie I. Genes A. Costache A.D. Tesloianu D.N. Costache I.I. Left ventricular remodeling after myocardial infarction: From physiopathology to treatment. Life (Basel) 2022 12 8 1111 10.3390/life12081111 35892913
    [Google Scholar]
  11. Gerami R. Sadeghi Joni S. Akhondi N. Etemadi A. Fosouli M. Eghbal A.F. Souri Z. A literature review on the imaging methods for breast cancer. Int. J. Physiol. Pathophysiol. Pharmacol. 2022 14 3 171 176 [From NLM.]. 35891932
    [Google Scholar]
  12. Zolfaghari Dehkharghani M. Mousavi S. Kianifard N. Fazlzadeh A. Parsa H. Tavakoli Pirzaman A. Fazlollahpour-Naghibi A. Importance of long non-coding rnas in the pathogenesis, diagnosis, and treatment of myocardial infarction. Int. J. Cardiol. Heart Vasc. 2024 55 101529 10.1016/j.ijcha.2024.101529 39498345
    [Google Scholar]
  13. Hashimoto G. Enriquez-Sarano M. Stanberry L.I. Oh F. Wang M. Acosta K. Association of left ventricular remodeling assessment by cardiac magnetic resonance with outcomes in patients with chronic aortic regurgitation. JAMA Cardiol. 2024 7 9 924 933 10.1001/jamacardio.2022.2108 35857306
    [Google Scholar]
  14. Yildiz M. Oktay A.A. Stewart M.H. Milani R.V. Ventura H.O. Lavie C.J. Left ventricular hypertrophy and hypertension. Prog. Cardiovasc. Dis. 2020 63 1 10 21 10.1016/j.pcad.2019.11.009 31759953
    [Google Scholar]
  15. Komaki A. Hashemi-Firouzi N. Shojaei S. Souri Z. Heidari S. Shahidi S. Study the effect of endocannabinoid system on rat behavior in elevated plus-maze. Basic Clin. Neurosci. 2015 6 3 147 153 [From NLM.]. 26904171
    [Google Scholar]
  16. Burchfield J.S. Xie M. Hill J.A. Pathological ventricular remodeling: Mechanisms: Part 1 of 2. Circulation. 2024 128 4 388 400 10.1161/CIRCULATIONAHA.113.001878 23877061
    [Google Scholar]
  17. Udelson J.E. Konstam M.A. Ventricular remodeling. J. Am. Coll. Cardiol. 2011 57 13 1477 1479 10.1016/j.jacc.2011.01.009 21435517
    [Google Scholar]
  18. Ghorbani M. Keykhosravi E. Vatanparast M. Elyassirad D. Golchin N. Mirsardoo H. Hasanpour M. Traumatic middle meningeal artery aneurysm: A case report. Neurochirurgie 2024 70 2 101545 10.1016/j.neuchi.2024.101545 38417248
    [Google Scholar]
  19. Medvedofsky D. Maffessanti F. Weinert L. Tehrani D.M. Narang A. Addetia K. Mediratta A. Besser S.A. Maor E. Patel A.R. Spencer K.T. Mor-Avi V. Lang R.M. 2d and 3d echocardiography-derived indices of left ventricular function and shape. JACC Cardiovasc. Imaging 2018 11 11 1569 1579 10.1016/j.jcmg.2017.08.023 29153577
    [Google Scholar]
  20. Kobayashi Y. Okura H. Kobayashi Y. Fukuda S. Hirohata A. Yoshida K. Left ventricular myocardial function assessed by three‐dimensional speckle tracking echocardiography in takotsubo cardiomyopathy. Echocardiography 2017 34 4 523 529 10.1111/echo.13492 28266731
    [Google Scholar]
  21. Pezel T. Besseyre des Horts T. Schaaf M. Croisille P. Bière L. Garcia-Dorado D. Jossan C. Roubille F. Cung T.T. Prunier F. Meyer E. Amaz C. Derumeaux G. de Poli F. Hovasse T. Gilard M. Bergerot C. Thibault H. Ovize M. Mewton N. Predictive value of early cardiac magnetic resonance imaging functional and geometric indexes for adverse left ventricular remodelling in patients with anterior st-segment elevation myocardial infarction: A report from the circus study. Arch. Cardiovasc. Dis. 2020 113 11 710 720 10.1016/j.acvd.2020.05.024 33160891
    [Google Scholar]
  22. Abidov A. Slomka P.J. Nishina H. Hayes S.W. Kang X. Yoda S. Yang L.D. Gerlach J. Aboul-Enein F. Cohen I. Friedman J.D. Kavanagh P.B. Germano G. Berman D.S. Left ventricular shape index assessed by gated stress myocardial perfusion SPECT: Initial description of a new variable. J. Nucl. Cardiol. 2006 13 5 652 659 10.1016/j.nuclcard.2006.05.020 16945745
    [Google Scholar]
  23. Alvandi M. Javid R.N. Shaghaghi Z. Farzipour S. Nosrati S. An in-depth analysis of the adverse effects of ionizing radiation exposure on cardiac catheterization staffs. Curr. Radiopharm. 2024 17 3 219 228 10.2174/0118744710283181231229112417 38314600
    [Google Scholar]
  24. Germano G. Kavanagh P.B. Slomka P.J. Van Kriekinge S.D. Pollard G. Berman D.S. Quantitation in gated perfusion SPECT imaging: The cedars-sinai approach. J. Nucl. Cardiol. 2007 14 4 433 454 10.1016/j.nuclcard.2007.06.008 17679052
    [Google Scholar]
  25. Liga R. Gimelli A. Automatic evaluation of myocardial perfusion on SPECT: Need for “normality”. J. Nucl. Cardiol. 2019 26 3 786 789 10.1007/s12350‑017‑1097‑3 29071669
    [Google Scholar]
  26. Gimelli A. Liga R. Giorgetti A. Casagranda M. Marzullo P. Stress-induced alteration of left ventricular eccentricity: An additional marker of multivessel cad. J. Nucl. Cardiol. 2019 26 1 227 232 10.1007/s12350‑017‑0862‑7 28353212
    [Google Scholar]
  27. Hida S. Chikamori T. Tanaka H. Usui Y. Igarashi Y. Nagao T. Yamashina A. Diagnostic value of left ventricular function after stress and at rest in the detection of multivessel coronary artery disease as assessed by electrocardiogram-gated SPECT. J. Nucl. Cardiol. 2007 14 1 68 74 10.1016/j.nuclcard.2006.10.019 17276308
    [Google Scholar]
  28. Gimelli A. Liga R. Clemente A. Marras G. Kusch A. Marzullo P. Left ventricular eccentricity index measured with SPECT myocardial perfusion imaging: An additional parameter of adverse cardiac remodeling. J. Nucl. Cardiol. 2020 27 1 71 79 10.1007/s12350‑017‑0777‑3 28083831
    [Google Scholar]
  29. Sobic-Saranovic D.P. Pavlovic S.V. Beleslin B.D. Petrasinovic Z.R. Kozarevic N.D. Todorovic-Tirnanic M.V. Ille T.M. Jaksic E.D. Artiko V.M. Obradovic V.B. Site of myocardial infarction and severity of perfusion abnormalities impact on post-stress left ventricular function in patients with single-vessel disease: Gated single-photon emission computed tomography methoxyisobutylisonitrile study. Nucl. Med. Commun. 2009 30 2 148 154 10.1097/MNM.0b013e3283176a67 19077915
    [Google Scholar]
  30. Gimelli A. Liga R. Pasanisi E.M. Casagranda M. Coceani M. Marzullo P. Influence of cardiac stress protocol on myocardial perfusion imaging accuracy: The role of exercise level on the evaluation of ischemic burden. J. Nucl. Cardiol. 2016 23 5 1114 1122 10.1007/s12350‑015‑0101‑z 25814218
    [Google Scholar]
  31. Park C.S. Park J.B. Kim Y. Yoon Y.E. Lee S.P. Kim H.K. Kim Y.J. Cho G.Y. Sohn D.W. Lee S.H. Left ventricular geometry determines prognosis and reverse j-shaped relation between blood pressure and mortality in ischemic stroke patients. JACC Cardiovasc. Imaging 2018 11 3 373 382 10.1016/j.jcmg.2017.02.015 28624400
    [Google Scholar]
  32. Shakiba D. Mohammadiun Shabestari A. Mokhtari T. Khanlari Goodarzi M. Saeed S. Zinatbakhsh Z. Akaberi K. Allahyartorkaman M. Nanoliposomes meet folic acid: A precision delivery system for bleomycin in cancer treatment. Asian Pacific Journal of Cancer Biology 2024 9 4 561 568 10.31557/apjcb.2024.9.4.561‑568
    [Google Scholar]
  33. Berti V. Sciagrà R. Acampa W. Ricci F. Cerisano G. Gallicchio R. Vigorito C. Pupi A. Cuocolo A. Relationship between infarct size and severity measured by gated SPECT and long-term left ventricular remodelling after acute myocardial infarction. Eur. J. Nucl. Med. Mol. Imaging 2011 38 6 1124 1131 10.1007/s00259‑011‑1739‑7 21327635
    [Google Scholar]
  34. Li T. Li G. Guo X. Li Z. Sun Y. Echocardiographic left ventricular geometry profiles for prediction of stroke, coronary heart disease and all-cause mortality in the chinese community: A rural cohort population study. BMC Cardiovasc. Disord. 2021 21 1 238 10.1186/s12872‑021‑02055‑w 33980151
    [Google Scholar]
  35. Jahanshahi A. Kalurazi T.Y. Haghighi M. Maroufizadeh S. Jafari A. Foumani A.A. The effect of Ivermectin as add‐on therapy to standard care in COVID-19 patients: A randomized, double‐blind, placebo‐controlled trial. Clin. Ther. 2021 43 6 1007 1019 10.1016/j.clinthera.2021.04.007 34052007
    [Google Scholar]
  36. Zeng D. Chen H. Jiang C.L. Wu J. Usefulness of three-dimensional spherical index to assess different types of left ventricular remodeling. Medicine (Baltimore) 2017 96 36 e7968 10.1097/MD.0000000000007968 28885350
    [Google Scholar]
  37. Konstam M.A. Kramer D.G. Patel A.R. Maron M.S. Udelson J.E. Left ventricular remodeling in heart failure: Current concepts in clinical significance and assessment. JACC Cardiovasc. Imaging 2011 4 1 98 108 10.1016/j.jcmg.2010.10.008 21232712
    [Google Scholar]
  38. Mannaerts H.F.J. van der Heide J.A. Kamp O. Stoel M.G. Twisk J. Visser C.A. Early identification of left ventricular remodelling after myocardial infarction, assessed by transthoracic 3D echocardiography. Eur. Heart J. 2024 25 8 680 687 10.1016/j.ehj.2004.02.030 15084373
    [Google Scholar]
  39. Karuzas A. Rumbinaite E. Verikas D. Ptasinskas T. Muckiene G. Kazakauskaite E. Zabiela V. Jurkevicius R. Vaskelyte J.J. Zaliunas R. Zaliaduonyte-Peksiene D. Accuracy of three-dimensional systolic dyssynchrony and sphericity indexes for identifying early left ventricular remodelling after acute myocardial infarction. Anatol. J. Cardiol. 2019 22 1 13 20 10.14744/AnatolJCardiol.2019.02844 31264652
    [Google Scholar]
  40. Khan J.N. McCann G.P. Cardiovascular magnetic resonance imaging assessment of outcomes in acute myocardial infarction. World J. Cardiol. 2017 9 2 109 133 10.4330/wjc.v9.i2.109 28289525
    [Google Scholar]
  41. Zlibut A. Cojocaru C. Onciul S. Agoston-Coldea L. Cardiac magnetic resonance imaging in appraising myocardial strain and biomechanics: A current overview. Diagnostics 2023 13 3 553 10.3390/diagnostics13030553 36766658
    [Google Scholar]
  42. Marchal P. Lairez O. Cognet T. Chabbert V. Barrier P. Berry M. Méjean S. Roncalli J. Rousseau H. Carrié D. Galinier M. Relationship between left ventricular sphericity and trabeculation indexes in patients with dilated cardiomyopathy: A cardiac magnetic resonance study. Eur. Heart J. Cardiovasc. Imaging 2013 14 9 914 920 10.1093/ehjci/jet064 23644933
    [Google Scholar]
  43. Faragli A. Tanacli R. Kolp C. Abawi D. Lapinskas T. Stehning C. Schnackenburg B. Lo Muzio F.P. Fassina L. Pieske B. Nagel E. Post H. Kelle S. Alogna A. Cardiovascular magnetic resonance-derived left ventricular mechanics—strain, cardiac power and end-systolic elastance under various inotropic states in swine. J. Cardiovasc. Magn. Reson. 2020 22 1 79 10.1186/s12968‑020‑00679‑z 33256761
    [Google Scholar]
  44. Nakamori S. Ismail H. Ngo L.H. Manning W.J. Nezafat R. Left ventricular geometry predicts ventricular tachyarrhythmia in patients with left ventricular systolic dysfunction: A comprehensive cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 2016 19 1 79 10.1186/s12968‑017‑0396‑9 29058590
    [Google Scholar]
  45. Daubert M.A. White J.A. Al-Khalidi H.R. Velazquez E.J. Rao S.V. Crowley A.L. Zeymer U. Kasprzak J.D. Guetta V. Krucoff M.W. Douglas P.S. Cardiac remodeling after large st-elevation myocardial infarction in the current therapeutic era. Am. Heart J. 2020 223 87 97 10.1016/j.ahj.2020.02.017 32203684
    [Google Scholar]
  46. O’Regan D.P. Shi W. Ariff B. Baksi A.J. Durighel G. Rueckert D. Cook S.A. Remodeling after acute myocardial infarction: Mapping ventricular dilatation using three dimensional cmr image registration. J. Cardiovasc. Magn. Reson. 2012 14 1 46 10.1186/1532‑429X‑14‑41 22720881
    [Google Scholar]
  47. Davari A. Jalali-zefrei F. Gholami-chabok B. Tabaghi S. Farzipour S. Delpasand K. Mousavi S.M. Left ventricular wall motion as an additional valuable parameter in diabetic patients with normal myocardial perfusion imaging. Curr. Radiopharm. 2024 17 10.2174/0118744710312688240814100448 39253932
    [Google Scholar]
  48. Germano G. Slomka P.J. Assessing lv remodeling in nuclear cardiology. J. Nucl. Cardiol. 2019 26 1 233 235 10.1007/s12350‑017‑0957‑1 28616800
    [Google Scholar]
  49. Gaasch W.H. Zile M.R. Left ventricular structural remodeling in health and disease: With special emphasis on volume, mass, and geometry. J. Am. Coll. Cardiol. 2011 58 17 1733 1740 10.1016/j.jacc.2011.07.022 21996383
    [Google Scholar]
  50. Saheera S. Krishnamurthy P. Cardiovascular changes associated with hypertensive heart disease and aging. Cell Transplant. 2020 29 10.1177/0963689720920830 32393064
    [Google Scholar]
  51. Hämäläinen H. Laitinen T.M. Hedman M. Hedman A. Kivelä A. Laitinen T.P. Cardiac remodelling in association with left ventricular dyssynchrony and systolic dysfunction in patients with coronary artery disease. Clin. Physiol. Funct. Imaging 2022 42 6 413 421 10.1111/cpf.12780 35848312
    [Google Scholar]
  52. V Cokkinos D. Belogianneas C. Left ventricular remodelling: A problem in search of solutions. Eur. Cardiol. 2016 11 1 29 35 10.15420/ecr.2015:9:3 30310445
    [Google Scholar]
  53. Musumeci B. Tini G. Russo D. Sclafani M. Cava F. Tropea A. Adduci C. Palano F. Francia P. Autore C. Left ventricular remodeling in hypertrophic cardiomyopathy: An overview of current knowledge. J. Clin. Med. 2021 10 8 1547 10.3390/jcm10081547 33916967
    [Google Scholar]
  54. Medrano-Gracia P. Cowan B.R. Ambale-Venkatesh B. Bluemke D.A. Eng J. Finn J.P. Fonseca C.G. Lima J.A.C. Suinesiaputra A. Young A.A. Left ventricular shape variation in asymptomatic populations: The multi-ethnic study of atherosclerosis. J. Cardiovasc. Magn. Reson. 2014 16 1 56 10.1186/s12968‑014‑0056‑2 25160814
    [Google Scholar]
  55. Levine Y.C. Matos J. Rosenberg M.A. Manning W.J. Josephson M.E. Buxton A.E. Left ventricular sphericity independently predicts appropriate implantable cardioverter-defibrillator therapy. Heart Rhythm 2016 13 2 490 497 10.1016/j.hrthm.2015.09.022 26409099
    [Google Scholar]
  56. Arvidsson P.M. Töger J. Carlsson M. Steding-Ehrenborg K. Pedrizzetti G. Heiberg E. Arheden H. Left and right ventricular hemodynamic forces in healthy volunteers and elite athletes assessed with 4d flow magnetic resonance imaging. Am. J. Physiol. Heart Circ. Physiol. 2017 312 2 H314 H328 10.1152/ajpheart.00583.2016 27770000
    [Google Scholar]
  57. Ambale-Venkatesh B. Yoneyama K. Sharma R.K. Ohyama Y. Wu C.O. Burke G.L. Shea S. Gomes A.S. Young A.A. Bluemke D.A. Lima J.A.C. Left ventricular shape predicts different types of cardiovascular events in the general population. Heart 2017 103 7 499 507 10.1136/heartjnl‑2016‑310052 27694110
    [Google Scholar]
  58. Masci P.G. Bogaert J. Post myocardial infarction of the left ventricle: The course ahead seen by cardiac mri. Cardiovasc. Diagn. Ther. 2012 2 2 113 127 24282705
    [Google Scholar]
  59. Balaban G. Halliday B.P. Hammersley D. Rinaldi C.A. Prasad S.K. Bishop M.J. Lamata P. Left ventricular shape predicts arrhythmic risk in fibrotic dilated cardiomyopathy. Europace 2024 24 7 1137 1147 10.1093/europace/euab306 34907426
    [Google Scholar]
  60. Khanna S. Bhat A. Chen H.H. Tan J.W.A. Gan G.C.H. Tan T.C. Left ventricular sphericity index is a reproducible bedside echocardiographic measure of geometric change between acute phase takotsubo’s syndrome and acute anterior myocardial infarction. Int. J. Cardiol. Heart Vasc. 2020 29 100547 10.1016/j.ijcha.2020.100547 32514426
    [Google Scholar]
  61. Tabaghi S. Sheibani M. Khaheshi I. Miri R. Haji Aghajani M. Safi M. Eslami V. Pishgahi M. Alipour Parsa S. Namazi M.H. Beyranvand M.R. Sohrabifar N. Hassanian-Moghaddam H. Pourmotahari F. Khaiat S. Akbarzadeh M.A. Associations between short‐term exposure to fine particulate matter and acute myocardial infarction: A case‐crossover study. Clin. Cardiol. 2023 46 11 1319 1325 10.1002/clc.24111 37501642
    [Google Scholar]
  62. Anvari S. Akbarzadeh M.A. Bayat F. Namazi M.H. Safi M. Left ventricular sphericity index analysis for the prediction of appropriate implantable cardioverter‐defibrillator therapy. Pacing Clin. Electrophysiol. 2018 41 9 1192 1196 10.1111/pace.13420 29931684
    [Google Scholar]
  63. Kehat I. Molkentin J.D. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation 2010 122 25 2727 2735 10.1161/CIRCULATIONAHA.110.942268 21173361
    [Google Scholar]
  64. French B.A. Kramer C.M. Mechanisms of postinfarct left ventricular remodeling. Drug Discov. Today Dis. Mech. 2007 4 3 185 196 10.1016/j.ddmec.2007.12.006 18690295
    [Google Scholar]
  65. Shahid F. Lip G.Y.H. Shantsila E. Role of monocytes in heart failure and atrial fibrillation. J. Am. Heart. Assoc. 2024 7 3 e007849 10.1161/JAHA.117.007849 29419389
    [Google Scholar]
  66. Shaghaghi Z. Jalali Zefrei F. Salari A. Hojjati S.A. Fakhr Mousavi S.A. Farzipour S. Promising radiopharmaceutical tracers for detection of cardiotoxicity in cardio-oncology. Curr. Radiopharm. 2023 16 3 171 184 10.2174/1874471016666230228102231 36852813
    [Google Scholar]
  67. García-Otero L. Soveral I. Sepúlveda-Martínez Á. Rodriguez-López M. Torres X. Guirado L. Nogué L. Valenzuela-Alcaraz B. Martínez J.M. Gratacós E. Gómez O. Crispi F. Reference ranges for fetal cardiac, ventricular and atrial relative size, sphericity, ventricular dominance, wall asymmetry and relative wall thickness from 18 to 41 gestational weeks. Ultrasound Obstet. Gynecol. 2021 58 3 388 397 10.1002/uog.23127 32959925
    [Google Scholar]
  68. Čikeš M. A study of regional and global myocardial morphology and function in various substrates of cardiac remodelling. Bijnens, Bart Doctoral Thesis Medicine in Zagreb 2009
    [Google Scholar]
  69. Gaudieri V. Nappi C. Acampa W. Zampella E. Assante R. Mannarino T. Genova A. De Simini G. Klain M. Germano G. Petretta M. Cuocolo A. Added prognostic value of left ventricular shape by gated SPECT imaging in patients with suspected coronary artery disease and normal myocardial perfusion. J. Nucl. Cardiol. 2019 26 4 1148 1156 10.1007/s12350‑017‑1090‑x 29071670
    [Google Scholar]
  70. Gaudieri V. Mannarino T. Zampella E. Assante R. D’Antonio A. Nappi C. Cantoni V. Green R. Petretta M. Arumugam P. Cuocolo A. Acampa W. Prognostic value of coronary vascular dysfunction assessed by rubidium-82 PET/CT imaging in patients with resistant hypertension without overt coronary artery disease. Eur. J. Nucl. Med. Mol. Imaging 2021 48 10 3162 3171 10.1007/s00259‑021‑05239‑w 33594472
    [Google Scholar]
  71. Gaudieri V. Acampa W. Rozza F. Nappi C. Zampella E. Assante R. Mannarino T. Mainolfi C. Petretta M. Verberne H.J. Arumugam P. Cuocolo A. Coronary vascular function in patients with resistant hypertension and normal myocardial perfusion: A propensity score analysis. Eur. Heart J. Cardiovasc. Imaging 2019 20 8 949 958 10.1093/ehjci/jez025 30768182
    [Google Scholar]
  72. Nitta K. Kurisu S. Erasta R. Sumimoto Y. Ikenaga H. Ishibashi K. Fukuda Y. Kihara Y. Associations of left ventricular shape with left ventricular volumes and functions assessed by ecg-gated SPECT in patients without significant perfusion abnormality. Heart Vessels 2020 35 1 86 91 10.1007/s00380‑019‑01465‑3 31267146
    [Google Scholar]
  73. Miller R.J.H. Sharir T. Otaki Y. Gransar H. Liang J.X. Einstein A.J. Fish M.B. Ruddy T.D. Kaufmann P.A. Sinusas A.J. Miller E.J. Bateman T.M. Dorbala S. Di Carli M. Tamarappoo B.K. Dey D. Berman D.S. Slomka P.J. Quantitation of poststress change in ventricular morphology improves risk stratification. J. Nucl. Med. 2021 62 11 1582 1590 10.2967/jnumed.120.260141 33712535
    [Google Scholar]
  74. Martinez-Lucio T.S. Carvajal-Juarez I. Mendoza-Ibanez A.K. Mendoza-Ibanez O.I. Tsoumpas C. Slart R.H.J.A. Alexanderson-Rosas E. Left ventricular shape index and eccentricity index assessed by gated PET/CT. Promising parameters for detection of left ventricular remodelling. Europ. Hea. J. - Cardiovasc. Imag. 2023 24 Suppl_1 jead119.406 10.1093/ehjci/jead119.406
    [Google Scholar]
  75. Zhao Y. Wu P. Xu L. Xiao Y. Li S. <strong>the incremental prognostic value of left ventricular shape index in patients with diagnostic and suspected coronary artery disease with preserved and supra-normal ejection fraction</strong>. J. Nucl. Med. 2023 64 Suppl. 1 559 P559
    [Google Scholar]
  76. He Z. de Amorim Fernandes F. do Nascimento E.A. Garcia E.V. Mesquita C.T. Zhou W. Incremental value of left ventricular shape parameters measured by gated SPECT MPI in predicting the super-response to CRT. J. Nucl. Cardiol. 2022 29 4 1537 1546 10.1007/s12350‑020‑02469‑7 33506382
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X357558250122062037
Loading
/content/journals/ccr/10.2174/011573403X357558250122062037
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test