Skip to content
2000
image of Targeting Wnt Pathways with Small Molecules as New Approach in Cardiovascular Disease

Abstract

The increasing incidences of morbidity and mortality associated with cardiovascular diseases represent significant difficulties for clinical treatment and have a major impact on patient health. Wnt signaling pathways are highly conserved and are well known for their regulatory roles in embryonic development, tissue regeneration, and adult tissue homeostasis. Wnt signaling is classified into two distinct pathways: canonical Wnt/β-catenin signaling and non-canonical pathways, including planar cell polarity and Wnt/Ca2+ pathways. A growing body of experimental evidence suggests the involvement of both canonical and non-canonical Wnt signaling pathways in the development of cardiovascular diseases, including myocardial hypertrophy, arrhythmias, diabetic cardiomyopathy, arrhythmogenic cardiomyopathy, and myocardial infarction. Thus, to enhance patient quality of life, diagnosing and treating cardiac illnesses may require a thorough understanding of the molecular functions played by the Wnt pathway in these disorders. Many small-molecule inhibitors specifically target various components within the Wnt signaling pathways, such as Frizzled, Disheveled, Porcupine, and Tankyrase. This study aims to present an overview of the latest findings regarding the functions of Wnt signaling in human cardiac disorders and possible inhibitors of Wnt, which could lead to novel approaches for treating cardiac ailments.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X333038241023153349
2024-10-30
2024-12-21
Loading full text...

Full text loading...

References

  1. Li D. Sun J. Zhong T.P. Wnt signaling in heart development and regeneration. Curr. Cardiol. Rep. 2022 24 10 1425 1438 10.1007/s11886‑022‑01756‑8 35925512
    [Google Scholar]
  2. Rim E.Y. Clevers H. Nusse R. The Wnt pathway: From signaling mechanisms to synthetic modulators. Annu. Rev. Biochem. 2022 91 1 571 598 10.1146/annurev‑biochem‑040320‑103615 35303793
    [Google Scholar]
  3. Hermans K.C. Blankesteijn W.M. Wnt signaling in cardiac disease. Compr. Physiol. 2015 5 3 1183 1209 10.1002/cphy.c140060 26140714
    [Google Scholar]
  4. Kleszcz R. The canonical Wnt pathway. Postepy Biochem. 2019 65 3 183 192 10.18388/pb.2019_268 31643165
    [Google Scholar]
  5. Yu F. Yu C. Li F. Zuo Y. Wang Y. Yao L. Wu C. Wang C. Ye L. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct. Target. Ther. 2021 6 1 307 10.1038/s41392‑021‑00701‑5 34456337
    [Google Scholar]
  6. Qin K. Yu M. Fan J. Wang H. Zhao P. Zhao G. Zeng W. Chen C. Wang Y. Wang A. Schwartz Z. Hong J. Song L. Wagstaff W. Haydon R.C. Luu H.H. Ho S.H. Strelzow J. Reid R.R. He T.C. Shi L.L. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis. 2024 11 1 103 134 10.1016/j.gendis.2023.01.030 37588235
    [Google Scholar]
  7. Kim J.G. Mahmud S. Min J.K. Lee Y.B. Kim H. Kang D.C. Park H.S. Seong J. Park J.B. RhoA GTPase phosphorylated at tyrosine 42 by src kinase binds to β-catenin and contributes transcriptional regulation of vimentin upon Wnt3A. Redox Biol. 2021 40 101842 10.1016/j.redox.2020.101842 33388549
    [Google Scholar]
  8. Poznyak A.V. Sukhorukov V.N. Popov M.A. Chegodaev Y.S. Postnov A.Y. Orekhov A.N. Mechanisms of the Wnt pathways as a potential target pathway in atherosclerosis. J. Lipid Atheroscler. 2023 12 3 223 236 10.12997/jla.2023.12.3.223 37800111
    [Google Scholar]
  9. Aisagbonhi O. Rai M. Ryzhov S. Atria N. Feoktistov I. Hatzopoulos A.K. Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Dis. Model. Mech. 2011 4 4 469 483 10.1242/dmm.006510 21324930
    [Google Scholar]
  10. Xiang M. Lu Y. Xin L. Gao J. Shang C. Jiang Z. Lin H. Fang X. Qu Y. Wang Y. Shen Z. Zhao M. Cui X. Role of oxidative stress in reperfusion following myocardial ischemia and its treatments. Oxid. Med. Cell. Longev. 2021 2021 1 6614009 10.1155/2021/6614009 34055195
    [Google Scholar]
  11. Ni B. Sun M. Zhao J. Wang J. Cao Z. The role of β-catenin in cardiac diseases. Front. Pharmacol. 2023 14 1157043 10.3389/fphar.2023.1157043 37033656
    [Google Scholar]
  12. Liu P. Su J. Song X. Wang S. Activation of nuclear β-catenin/c-Myc axis promotes oxidative stress injury in streptozotocin-induced diabetic cardiomyopathy. Biochem. Biophys. Res. Commun. 2017 493 4 1573 1580 10.1016/j.bbrc.2017.10.027 28989026
    [Google Scholar]
  13. Huang L. Xiang M. Ye P. Zhou W. Chen M. Beta‐catenin promotes macrophage‐mediated acute inflammatory response after myocardial infarction. Immunol. Cell Biol. 2018 96 1 100 113 10.1111/imcb.1019 29356094
    [Google Scholar]
  14. Zhang Q. Wang L. Wang S. Cheng H. Xu L. Pei G. Wang Y. Fu C. Jiang Y. He C. Wei Q. Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct. Target. Ther. 2022 7 1 78 10.1038/s41392‑022‑00925‑z 35273164
    [Google Scholar]
  15. Zou B. Huang T. Wu D. Hu X. Xiao L. Wang C. Zhang H. Xiang J. Hu C. Wu Q. Wu T. Knockdown of ZFAS1 improved the cardiac function of myocardial infarction rats via regulating Wnt/β-catenin signaling pathway. Aging (Albany NY) 2021 13 9 12919 12928 10.18632/aging.202961 33952724
    [Google Scholar]
  16. Moheimani F. Roth H.M. Cross J. Reid A.T. Shaheen F. Warner S.M. Hirota J.A. Kicic A. Hallstrand T.S. Kahn M. Stick S.M. Hansbro P.M. Hackett T.L. Knight D.A. Disruption of β-catenin/CBP signaling inhibits human airway epithelial–mesenchymal transition and repair. Int. J. Biochem. Cell Biol. 2015 68 59 69 10.1016/j.biocel.2015.08.014 26315281
    [Google Scholar]
  17. Akhmetshina A. Palumbo K. Dees C. Bergmann C. Venalis P. Zerr P. Horn A. Kireva T. Beyer C. Zwerina J. Schneider H. Sadowski A. Riener M.O. MacDougald O.A. Distler O. Schett G. Distler J.H.W. Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat. Commun. 2012 3 1 735 10.1038/ncomms1734 22415826
    [Google Scholar]
  18. Qian L. Hong J. Zhang Y. Zhu M. Wang X. Zhang Y. Chu M. Yao J. Xu D. Downregulation of S100A4 alleviates cardiac fibrosis via Wnt/β-catenin pathway in mice. Cell. Physiol. Biochem. 2018 46 6 2551 2560 10.1159/000489683 29758552
    [Google Scholar]
  19. Qiu L. Chen J. Lin J. Wo D. Chu J. Peng J. Baicalin alleviates H2O2-induced injury of H9c2 cardiomyocytes through suppression of the Wnt/β-catenin signaling pathway. Mol. Med. Rep. 2017 16 6 9251 9255 10.3892/mmr.2017.7748 29039516
    [Google Scholar]
  20. Liu S. Lan Y. Zhao Y. Zhang Q. Lin T. Lin K. Guo J. Yan Y. Expression of connexin 43 protein in cardiomyocytes of heart failure mouse model. Front. Cardiovasc. Med. 2022 9 1028558 10.3389/fcvm.2022.1028558 36277751
    [Google Scholar]
  21. Huo R. Hu C. Zhao L. Sun L. Wang N. Lu Y. Ye B. Deb A. Li F. Xu H. Enhancement of β-catenin/T-cell factor 4 signaling causes susceptibility to cardiac arrhythmia by suppressing NaV1.5 expression in mice. Heart Rhythm 2019 16 11 1720 1728 10.1016/j.hrthm.2019.05.015 31125668
    [Google Scholar]
  22. Liu J. Shentu L. Ma N. Wang L. Zhang G. Sun Y. Wang Y. Li J. Mu Y. Inhibition of NF-κB and Wnt/β-catenin/GSK3β signaling pathways ameliorates cardiomyocyte hypertrophy and fibrosis in streptozotocin (STZ)-induced type 1 diabetic rats. Curr. Med. Sci. 2020 40 1 35 47 10.1007/s11596‑020‑2144‑x 32166663
    [Google Scholar]
  23. Lee C.Y. Kuo W.W. Baskaran R. Day C.H. Pai P.Y. Lai C.H. Chen Y.F. Chen R.J. Padma V.V. Huang C.Y. Increased β-catenin accumulation and nuclear translocation are associated with concentric hypertrophy in cardiomyocytes. Cardiovasc. Pathol. 2017 31 9 16 10.1016/j.carpath.2017.07.003 28802159
    [Google Scholar]
  24. Zhao Y. Wang C. Wang C. Hong X. Miao J. Liao Y. Zhou L. Liu Y. An essential role for Wnt/β-catenin signaling in mediating hypertensive heart disease. Sci. Rep. 2018 8 1 8996 10.1038/s41598‑018‑27064‑2 29895976
    [Google Scholar]
  25. Wang J. Xia Y. Lu A. Wang H. Davis D.R. Liu P. Beanlands R.S. Liang W. Cardiomyocyte-specific deletion of β-catenin protects mouse hearts from ventricular arrhythmias after myocardial infarction. Sci. Rep. 2021 11 1 17722 10.1038/s41598‑021‑97176‑9 34489488
    [Google Scholar]
  26. Piven O.O. Winata C.L. The canonical way to make a heart: β-catenin and plakoglobin in heart development and remodeling. Exp. Biol. Med. (Maywood) 2017 242 18 1735 1745 10.1177/1535370217732737 28920469
    [Google Scholar]
  27. Lickert H. Kutsch S. Kanzler B. Tamai Y. Taketo M.M. Kemler R. Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm. Dev. Cell 2002 3 2 171 181 10.1016/S1534‑5807(02)00206‑X 12194849
    [Google Scholar]
  28. Bertozzi A. Wu C.C. Hans S. Brand M. Weidinger G. Wnt/β-catenin signaling acts cell-autonomously to promote cardiomyocyte regeneration in the zebrafish heart. Dev. Biol. 2022 481 226 237 10.1016/j.ydbio.2021.11.001 34748730
    [Google Scholar]
  29. Balatskyi V.V. Palchevska O.L. Bortnichuk L. Gan A.M. Myronova A. Macewicz L.L. Navrulin V.O. Tumanovska L.V. Olichwier A. Dobrzyn P. Piven O.O. β-catenin regulates cardiac energy metabolism in sedentary and trained mice. Life (Basel) 2020 10 12 357 10.3390/life10120357 33348907
    [Google Scholar]
  30. Balatskyi V.V. Vaskivskyi V.O. Myronova A. Avramets D. Abu Nahia K. Macewicz L.L. Ruban T.P. Kucherenko D.Y. Soldatkin O.O. Lushnikova I.V. Skibo G.G. Winata C.L. Dobrzyn P. Piven O.O. Cardiac-specific β-catenin deletion dysregulates energetic metabolism and mitochondrial function in perinatal cardiomyocytes. Mitochondrion 2021 60 59 69 10.1016/j.mito.2021.07.005 34303005
    [Google Scholar]
  31. Stubenvoll A. Rice M. Wietelmann A. Wheeler M. Braun T. Attenuation of Wnt/β-catenin activity reverses enhanced generation of cardiomyocytes and cardiac defects caused by the loss of emerin. Hum. Mol. Genet. 2015 24 3 802 813 10.1093/hmg/ddu498 25274778
    [Google Scholar]
  32. Shaghaghi Z. Farzipour S. Jalali F. Alvandi M. Ferroptosis inhibitors as new therapeutic insights into radiation-induced heart disease. Cardiovasc. Hematol. Agents Med. Chem. 2023 21 1 2 9 10.2174/1871525720666220713101736 35838214
    [Google Scholar]
  33. Shaghaghi Z. Jalali Zefrei F. Salari A. Hojjati S.A. Fakhr Mousavi S.A. Farzipour S. Promising radiopharmaceutical tracers for detection of cardiotoxicity in cardio-oncology. Curr. Radiopharm. 2023 16 3 171 184 10.2174/1874471016666230228102231 36852813
    [Google Scholar]
  34. Parrotta E.I. Procopio A. Scalise S. Esposito C. Nicoletta G. Santamaria G. De Angelis M.T. Dorn T. Moretti A. Laugwitz K.L. Montefusco F. Cosentino C. Cuda G. Deciphering the role of wnt and rho signaling pathway in iPSC-derived ARVC cardiomyocytes by in silico mathematical modeling. Int. J. Mol. Sci. 2021 22 4 2004 10.3390/ijms22042004 33670616
    [Google Scholar]
  35. Wolke C. Antileo E. Lendeckel U. WNT signaling in atrial fibrillation. Exp. Biol. Med. (Maywood) 2021 246 9 1112 1120 10.1177/1535370221994086 33641440
    [Google Scholar]
  36. Beljaars L. Daliri S. Dijkhuizen C. Poelstra K. Gosens R. WNT-5A regulates TGF-β-related activities in liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 2017 312 3 G219 G227 10.1152/ajpgi.00160.2016 28057611
    [Google Scholar]
  37. Dissanayake S.K. Wade M. Johnson C.E. O’Connell M.P. Leotlela P.D. French A.D. Shah K.V. Hewitt K.J. Rosenthal D.T. Indig F.E. Jiang Y. Nickoloff B.J. Taub D.D. Trent J.M. Moon R.T. Bittner M. Weeraratna A.T. The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J. Biol. Chem. 2007 282 23 17259 17271 10.1074/jbc.M700075200 17426020
    [Google Scholar]
  38. Abraityte A. Vinge L.E. Askevold E.T. Lekva T. Michelsen A.E. Ranheim T. Alfsnes K. Fiane A. Aakhus S. Lunde I.G. Dahl C.P. Aukrust P. Christensen G. Gullestad L. Yndestad A. Ueland T. Wnt5a is elevated in heart failure and affects cardiac fibroblast function. J. Mol. Med. (Berl.) 2017 95 7 767 777 10.1007/s00109‑017‑1529‑1 28357477
    [Google Scholar]
  39. Działo E. Rudnik M. Koning R. Czepiel M. Tkacz K. Baj-Krzyworzeka M. Distler O. Siedlar M. Kania G. Błyszczuk P. WNT3a and WNT5a transported by exosomes activate WNT signaling pathways in human cardiac fibroblasts. Int. J. Mol. Sci. 2019 20 6 1436 10.3390/ijms20061436 30901906
    [Google Scholar]
  40. Abraityte A. Lunde I.G. Askevold E.T. Michelsen A.E. Christensen G. Aukrust P. Yndestad A. Fiane A. Andreassen A. Aakhus S. Dahl C.P. Gullestad L. Broch K. Ueland T. Wnt5a is associated with right ventricular dysfunction and adverse outcome in dilated cardiomyopathy. Sci. Rep. 2017 7 1 3490 10.1038/s41598‑017‑03625‑9 28615692
    [Google Scholar]
  41. Dawson K. Aflaki M. Nattel S. Role of the Wnt‐Frizzled system in cardiac pathophysiology: A rapidly developing, poorly understood area with enormous potential. J. Physiol. 2013 591 6 1409 1432 10.1113/jphysiol.2012.235382 23207593
    [Google Scholar]
  42. Hagenmueller M. Riffel J.H. Bernhold E. Fan J. Katus H.A. Hardt S.E. Dapper‐1 is essential for Wnt5a induced cardiomyocyte hypertrophy by regulating the Wnt/PCP pathway. FEBS Lett. 2014 588 14 2230 2237 10.1016/j.febslet.2014.05.039 24879894
    [Google Scholar]
  43. Wang Y. Sano S. Oshima K. Sano M. Watanabe Y. Katanasaka Y. Yura Y. Jung C. Anzai A. Swirski F.K. Gokce N. Walsh K. Wnt5a-mediated neutrophil recruitment has an obligatory role in pressure overload–induced cardiac dysfunction. Circulation 2019 140 6 487 499 10.1161/CIRCULATIONAHA.118.038820 31170826
    [Google Scholar]
  44. Abou Ziki M.D. Mani A. The interplay of canonical and noncanonical Wnt signaling in metabolic syndrome. Nutr. Res. 2019 70 18 25 10.1016/j.nutres.2018.06.009 30049588
    [Google Scholar]
  45. Wang J. Cui C. Chim Y.N. Yao H. Shi L. Xu J. Wang J. Wong R.M.Y. Leung K.S. Chow S.K.H. Cheung W.H. Vibration and β‐hydroxy‐β‐methylbutyrate treatment suppresses intramuscular fat infiltration and adipogenic differentiation in sarcopenic mice. J. Cachexia Sarcopenia Muscle 2020 11 2 564 577 10.1002/jcsm.12535 31994349
    [Google Scholar]
  46. Wang S. Song K. Srivastava R. Dong C. Go G.W. Li N. Iwakiri Y. Mani A. Nonalcoholic fatty liver disease induced by noncanonical Wnt and its rescue by Wnt3a. FASEB J. 2015 29 8 3436 3445 10.1096/fj.15‑271171 25917329
    [Google Scholar]
  47. Moorer M.C. Riddle R.C. Regulation of osteoblast metabolism by Wnt signaling. Endocrinol. Metab. (Seoul) 2018 33 3 318 330 10.3803/EnM.2018.33.3.318 30112869
    [Google Scholar]
  48. Serrat R. López-Doménech G. Mirra S. Quevedo M. Garcia-Fernàndez J. Ulloa F. Burgaya F. Soriano E. The non-canonical Wnt/PKC pathway regulates mitochondrial dynamics through degradation of the arm-like domain-containing protein Alex3. PLoS One 2013 8 7 e67773 10.1371/journal.pone.0067773 23844091
    [Google Scholar]
  49. Li H.X. Lin J. Jiang B. Yang X.J. Wnt11 preserves mitochondrial membrane potential and protects cardiomyocytes against hypoxia through paracrine signaling. J. Cell. Biochem. 2020 121 2 1144 1155 10.1002/jcb.29349 31463993
    [Google Scholar]
  50. van der Pol A. van Gilst W.H. Voors A.A. van der Meer P. Treating oxidative stress in heart failure: Past, present and future. Eur. J. Heart Fail. 2019 21 4 425 435 10.1002/ejhf.1320 30338885
    [Google Scholar]
  51. Iwata K. Matsuno K. Murata A. Zhu K. Fukui H. Ikuta K. Katsuyama M. Ibi M. Matsumoto M. Ohigashi M. Wen X. Zhang J. Cui W. Yabe-Nishimura C. Up-regulation of NOX1/NADPH oxidase following drug-induced myocardial injury promotes cardiac dysfunction and fibrosis. Free Radic. Biol. Med. 2018 120 277 288 10.1016/j.freeradbiomed.2018.03.053 29609020
    [Google Scholar]
  52. Heusch G. Myocardial ischaemia–reperfusion injury and cardioprotection in perspective. Nat. Rev. Cardiol. 2020 17 12 773 789 10.1038/s41569‑020‑0403‑y 32620851
    [Google Scholar]
  53. Matsushima S. Tsutsui H. Sadoshima J. Physiological and pathological functions of NADPH oxidases during myocardial ischemia–reperfusion. Trends Cardiovasc. Med. 2014 24 5 202 205 10.1016/j.tcm.2014.03.003 24880746
    [Google Scholar]
  54. Chen B. Chen X. Liu C. Li J. Liu F. Huang Y. Co-expression of Akt1 and Wnt11 promotes the proliferation and cardiac differentiation of mesenchymal stem cells and attenuates hypoxia/reoxygenation-induced cardiomyocyte apoptosis. Biomed. Pharmacother. 2018 108 508 514 10.1016/j.biopha.2018.09.047 30243083
    [Google Scholar]
  55. Brault V. Moore R. Kutsch S. Ishibashi M. Rowitch D.H. McMahon A.P. Sommer L. Boussadia O. Kemler R. Inactivation of the β-catenin gene by Wnt1-Cre -mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 2001 128 8 1253 1264 10.1242/dev.128.8.1253 11262227
    [Google Scholar]
  56. Yin C. Ye Z. Wu J. Huang C. Pan L. Ding H. Zhong L. Guo L. Zou Y. Wang X. Wang Y. Gao P. Jin X. Yan X. Zou Y. Huang R. Gong H. Elevated Wnt2 and Wnt4 activate NF-κB signaling to promote cardiac fibrosis by cooperation of Fzd4/2 and LRP6 following myocardial infarction. EBioMedicine 2021 74 103745 10.1016/j.ebiom.2021.103745 34911029
    [Google Scholar]
  57. Ueno S. Weidinger G. Osugi T. Kohn A.D. Golob J.L. Pabon L. Reinecke H. Moon R.T. Murry C.E. Biphasic role for Wnt/β-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc. Natl. Acad. Sci. USA 2007 104 23 9685 9690 10.1073/pnas.0702859104 17522258
    [Google Scholar]
  58. Zou Y. Pan L. Shen Y. Wang X. Huang C. Wang H. Jin X. Yin C. Wang Y. Jia J. Qian J. Zou Y. Gong H. Ge J. Cardiac Wnt5a and Wnt11 promote fibrosis by the crosstalk of FZD5 and EGFR signaling under pressure overload. Cell Death Dis. 2021 12 10 877 10.1038/s41419‑021‑04152‑2 34564708
    [Google Scholar]
  59. Bond J. Sedmera D. Jourdan J. Zhang Y. Eisenberg C.A. Eisenberg L.M. Gourdie R.G. Wnt11 and Wnt7a are up‐regulated in association with differentiation of cardiac conduction cells in vitro and in vivo. Dev. Dyn. 2003 227 4 536 543 10.1002/dvdy.10333 12889062
    [Google Scholar]
  60. Zamora M. Männer J. Ruiz-Lozano P. Epicardium-derived progenitor cells require β-catenin for coronary artery formation. Proc. Natl. Acad. Sci. USA 2007 104 46 18109 18114 10.1073/pnas.0702415104 17989236
    [Google Scholar]
  61. Halmetoja E. Nagy I. Szabo Z. Alakoski T. Yrjölä R. Vainio L. Viitavaara E. Lin R. Rahtu-Korpela L. Vainio S. Kerkelä R. Magga J. Wnt11 in regulation of physiological and pathological cardiac growth. FASEB J. 2022 36 10 e22544 10.1096/fj.202101856RRRR 36098469
    [Google Scholar]
  62. Garcia-Martín A. Reyes-Garcia R. García-Fontana B. Morales-Santana S. Coto-Montes A. Muñoz-Garach M. Rozas-Moreno P. Muñoz-Torres M. Relationship of Dickkopf1 (DKK1) with cardiovascular disease and bone metabolism in Caucasian type 2 diabetes mellitus. PLoS One 2014 9 11 e111703 10.1371/journal.pone.0111703 25369286
    [Google Scholar]
  63. Piek A. Smit L. Suthahar N. Bakker S.J.L. de Boer R.A. Silljé H.H.W. The emerging plasma biomarker Dickkopf-3 (DKK3) and its association with renal and cardiovascular disease in the general population. Sci. Rep. 2021 11 1 8642 10.1038/s41598‑021‑88107‑9 33883651
    [Google Scholar]
  64. Iyer L.M. Nagarajan S. Woelfer M. Schoger E. Khadjeh S. Zafiriou M.P. A context-specific cardiac β-catenin and GATA4 interaction influences TCF7L2 occupancy and remodels chromatin driving disease progression in the adult heart. Nucleic Acids Res. 2024 46 6 2850 2867 10.1093/nar/gky049
    [Google Scholar]
  65. Borrell-Pages M. Vilahur G. Romero J.C. Casaní L. Bejar M.T. Badimon L. LRP5/canonical Wnt signalling and healing of ischemic myocardium. Basic Res. Cardiol. 2016 111 6 67 10.1007/s00395‑016‑0585‑y 27704249
    [Google Scholar]
  66. Wu Y. Zhou L. Liu H. Duan R. Zhou H. Zhang F. He X. Lu D. Xiong K. Xiong M. Zhuang J. Liu Y. Li L. Liang D. Chen Y.H. LRP6 downregulation promotes cardiomyocyte proliferation and heart regeneration. Cell Res. 2021 31 4 450 462 10.1038/s41422‑020‑00411‑7 32973339
    [Google Scholar]
  67. Zhao Z. Liu H. Li Y. Tian J. Deng S. Wnt-C59 attenuates pressure overload-induced cardiac hypertrophy via interruption of Wnt pathway. Med. Sci. Monit. 2020 26 e923025 10.12659/MSM.923025 32279067
    [Google Scholar]
  68. Jiang J. Lan C. Li L. Yang D. Xia X. Liao Q. Fu W. Chen X. An S. Wang W.E. Zeng C. A novel porcupine inhibitor blocks WNT pathways and attenuates cardiac hypertrophy. Biochim. Biophys. Acta Mol. Basis Dis. 2018 1864 10 3459 3467 10.1016/j.bbadis.2018.07.035 30076960
    [Google Scholar]
  69. Wu H. Tang L. Wang X. Li L. Chen X. He Y. Yang D. Shi Y. Shou J. Zhang Z. Wang L. Lu B. An S.M. Zeng C. Wang W.E. Porcupine inhibitor CGX1321 alleviates heart failure with preserved ejection fraction in mice by blocking WNT signaling. Acta Pharmacol. Sin. 2023 44 6 1149 1160 10.1038/s41401‑022‑01025‑y 36473990
    [Google Scholar]
  70. Meyer I.S. Li X. Meyer C. Voloshanenko O. Pohl S. Boutros M. Katus H.A. Frey N. Leuschner F. Blockade of Wnt secretion attenuates myocardial ischemia–reperfusion injury by modulating the inflammatory response. Int. J. Mol. Sci. 2022 23 20 12252 10.3390/ijms232012252 36293109
    [Google Scholar]
  71. Bastakoty D. Saraswati S. Joshi P. Atkinson J. Feoktistov I. Liu J. Harris J.L. Young P.P. Temporary, systemic inhibition of the WNT/β-catenin pathway promotes regenerative cardiac repair following myocardial infarct. Cell Stem Cells Regen. Med. 2016 2 2 10.16966/2472‑6990.111 28042617
    [Google Scholar]
  72. Barrott J.J. Cash G.M. Smith A.P. Barrow J.R. Murtaugh L.C. Deletion of mouse Porcn blocks Wnt ligand secretion and reveals an ectodermal etiology of human focal dermal hypoplasia/Goltz syndrome. Proc. Natl. Acad. Sci. USA 2011 108 31 12752 12757 10.1073/pnas.1006437108 21768372
    [Google Scholar]
  73. Chen B. Dodge M.E. Tang W. Lu J. Ma Z. Fan C.W. Wei S. Hao W. Kilgore J. Williams N.S. Roth M.G. Amatruda J.F. Chen C. Lum L. Small molecule–mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol. 2009 5 2 100 107 10.1038/nchembio.137 19125156
    [Google Scholar]
  74. Madan B. Ke Z. Harmston N. Ho S.Y. Frois A.O. Alam J. Jeyaraj D.A. Pendharkar V. Ghosh K. Virshup I.H. Manoharan V. Ong E.H.Q. Sangthongpitag K. Hill J. Petretto E. Keller T.H. Lee M.A. Matter A. Virshup D.M. Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene 2016 35 17 2197 2207 10.1038/onc.2015.280 26257057
    [Google Scholar]
  75. Gurney A. Axelrod F. Bond C.J. Cain J. Chartier C. Donigan L. Fischer M. Chaudhari A. Ji M. Kapoun A.M. Lam A. Lazetic S. Ma S. Mitra S. Park I.K. Pickell K. Sato A. Satyal S. Stroud M. Tran H. Yen W.C. Lewicki J. Hoey T. Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc. Natl. Acad. Sci. USA 2012 109 29 11717 11722 10.1073/pnas.1120068109 22753465
    [Google Scholar]
  76. Uitterdijk A. Hermans K.C.M. de Wijs-Meijler D.P.M. Daskalopoulos E.P. Reiss I.K. Duncker D.J. Matthijs Blankesteijn W. Merkus D. UM206, a selective Frizzled antagonist, attenuates adverse remodeling after myocardial infarction in swine. Lab. Invest. 2016 96 2 168 176 10.1038/labinvest.2015.139 26658451
    [Google Scholar]
  77. van Dinther M. Zhang J. Weidauer S.E. Boschert V. Muth E.M. Knappik A. de Gorter D.J.J. van Kasteren P.B. Frisch C. Mueller T.D. ten Dijke P. Anti-Sclerostin antibody inhibits internalization of Sclerostin and Sclerostin-mediated antagonism of Wnt/LRP6 signaling. PLoS One 2013 8 4 e62295 10.1371/journal.pone.0062295 23638027
    [Google Scholar]
  78. Shan J. Shi D.L. Wang J. Zheng J. Identification of a specific inhibitor of the dishevelled PDZ domain. Biochemistry 2005 44 47 15495 15503 10.1021/bi0512602 16300398
    [Google Scholar]
  79. Kim H.Y. Choi S. Yoon J.H. Lim H.J. Lee H. Choi J. Ro E.J. Heo J.N. Lee W. No K.T. Choi K.Y. Small molecule inhibitors of the Dishevelled‐CXXC 5 interaction are new drug candidates for bone anabolic osteoporosis therapy. EMBO Mol. Med. 2016 8 4 375 387 10.15252/emmm.201505714 26941261
    [Google Scholar]
  80. Huang S.M.A. Mishina Y.M. Liu S. Cheung A. Stegmeier F. Michaud G.A. Charlat O. Wiellette E. Zhang Y. Wiessner S. Hild M. Shi X. Wilson C.J. Mickanin C. Myer V. Fazal A. Tomlinson R. Serluca F. Shao W. Cheng H. Shultz M. Rau C. Schirle M. Schlegl J. Ghidelli S. Fawell S. Lu C. Curtis D. Kirschner M.W. Lengauer C. Finan P.M. Tallarico J.A. Bouwmeester T. Porter J.A. Bauer A. Cong F. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 2009 461 7264 614 620 10.1038/nature08356 19759537
    [Google Scholar]
  81. Zhou M.W. Yin W.T. Jiang R.H. Lee J.H. Kim C.D. Lee J.H. Zhu M.J. Yoon T.J. Inhibition of collagen synthesis by IWR-1 in normal and keloid-derived skin fibroblasts. Life Sci. 2017 173 86 93 10.1016/j.lfs.2016.12.003 27939785
    [Google Scholar]
  82. Gwak J. Hwang S.G. Park H.S. Choi S.R. Park S.H. Kim H. Ha N.C. Bae S.J. Han J.K. Kim D.E. Cho J.W. Oh S. Small molecule-based disruption of the Axin/β-catenin protein complex regulates mesenchymal stem cell differentiation. Cell Res. 2012 22 1 237 247 10.1038/cr.2011.127 21826110
    [Google Scholar]
  83. Harada Y. Ishii I. Hatake K. Kasahara T. Pyrvinium pamoate inhibits proliferation of myeloma/erythroleukemia cells by suppressing mitochondrial respiratory complex I and STAT3. Cancer Lett. 2012 319 1 83 88 10.1016/j.canlet.2011.12.034 22210382
    [Google Scholar]
  84. Kim S.Y. Dunn I.F. Firestein R. Gupta P. Wardwell L. Repich K. Schinzel A.C. Wittner B. Silver S.J. Root D.E. Boehm J.S. Ramaswamy S. Lander E.S. Hahn W.C. CK1epsilon is required for breast cancers dependent on beta-catenin activity. PLoS One 2010 5 2 e8979 10.1371/journal.pone.0008979 20126544
    [Google Scholar]
  85. Laco F. Low J.L. Seow J. Woo T.L. Zhong Q. Seayad J. Liu Z. Wei H. Reuveny S. Elliott D.A. Chai C.L.L. Oh S.K.W. Cardiomyocyte differentiation of pluripotent stem cells with SB203580 analogues correlates with Wnt pathway CK1 inhibition independent of p38 MAPK signaling. J. Mol. Cell. Cardiol. 2015 80 56 70 10.1016/j.yjmcc.2014.12.003 25528965
    [Google Scholar]
  86. Rosenberg L.H. Lafitte M. Quereda V. Grant W. Chen W. Bibian M. Noguchi Y. Fallahi M. Yang C. Chang J.C. Roush W.R. Cleveland J.L. Duckett D.R. Therapeutic targeting of casein kinase 1δ in breast cancer. Sci. Transl. Med. 2015 7 318 318ra202 10.1126/scitranslmed.aac8773 26676609
    [Google Scholar]
  87. Coghlan M.P. Culbert A.A. Cross D.A.E. Corcoran S.L. Yates J.W. Pearce N.J. Rausch O.L. Murphy G.J. Carter P.S. Roxbee Cox L. Mills D. Brown M.J. Haigh D. Ward R.W. Smith D.G. Murray K.J. Reith A.D. Holder J.C. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem. Biol. 2000 7 10 793 803 10.1016/S1074‑5521(00)00025‑9 11033082
    [Google Scholar]
  88. Ahn J. Lee H. Kim S. Ha T. Curcumin-induced suppression of adipogenic differentiation is accompanied by activation of Wnt/β-catenin signaling. Am. J. Physiol. Cell Physiol. 2010 298 6 C1510 C1516 10.1152/ajpcell.00369.2009 20357182
    [Google Scholar]
  89. Kim H.M. Kim C.S. Lee J.H. Jang S.J. Hwang J.J. Ro S. Choi J. CG0009, a novel glycogen synthase kinase 3 inhibitor, induces cell death through cyclin D1 depletion in breast cancer cells. PLoS One 2013 8 4 e60383 10.1371/journal.pone.0060383 23565238
    [Google Scholar]
  90. Arensman M.D. Telesca D. Lay A.R. Kershaw K.M. Wu N. Donahue T.R. Dawson D.W. The CREB-binding protein inhibitor ICG-001 suppresses pancreatic cancer growth. Mol. Cancer Ther. 2014 13 10 2303 2314 10.1158/1535‑7163.MCT‑13‑1005 25082960
    [Google Scholar]
  91. Grigson E.R. Ozerova M. Pisklakova A. Liu H. Sullivan D.M. Nefedova Y. Canonical Wnt pathway inhibitor ICG-001 induces cytotoxicity of multiple myeloma cells in Wnt-independent manner. PLoS One 2015 10 1 e0117693 10.1371/journal.pone.0117693 25635944
    [Google Scholar]
  92. Zimmerli D. Hausmann G. Cantù C. Basler K. Pharmacological interventions in the Wnt pathway: Inhibition of Wnt secretion versus disrupting the protein–protein interfaces of nuclear factors. Br. J. Pharmacol. 2017 174 24 4600 4610 10.1111/bph.13864 28521071
    [Google Scholar]
  93. Liu C. Takada K. Zhu D. Targeting Wnt/β-catenin pathway for drug therapy. Med. Drug Discov. 2020 8 100066 10.1016/j.medidd.2020.100066
    [Google Scholar]
  94. Krishna S.M. Seto S.W. Jose R.J. Li J. Morton S.K. Biros E. Wang Y. Nsengiyumva V. Lindeman J.H.N. Loots G.G. Rush C.M. Craig J.M. Golledge J. Wnt signaling pathway inhibitor sclerostin inhibits angiotensin II–induced aortic aneurysm and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2017 37 3 553 566 10.1161/ATVBAHA.116.308723 28062506
    [Google Scholar]
  95. Wo D. Peng J. Ren D. Qiu L. Chen J. Zhu Y. Yan Y. Yan H. Wu J. Ma E. Zhong T.P. Chen Y. Liu Z. Liu S. Ao L. Liu Z. Jiang C. Peng J. Zou Y. Qian Q. Zhu W. Opposing roles of wnt inhibitors IGFBP-4 and Dkk1 in cardiac ischemia by differential targeting of LRP5/6 and β-catenin. Circulation 2016 134 24 1991 2007 10.1161/CIRCULATIONAHA.116.024441 27803037
    [Google Scholar]
  96. Hoeflich A. David R. Hjortebjerg R. Current IGFBP-related biomarker research in cardiovascular disease - We need more structural and functional information in clinical studies. Front. Endocrinol. (Lausanne) 2018 9 388 10.3389/fendo.2018.00388 30061864
    [Google Scholar]
  97. Foulquier S. Daskalopoulos E.P. Lluri G. Hermans K.C.M. Deb A. Blankesteijn W.M. WNT signaling in cardiac and vascular disease. Pharmacol. Rev. 2018 70 1 68 141 10.1124/pr.117.013896 29247129
    [Google Scholar]
  98. Heallen T. Zhang M. Wang J. Bonilla-Claudio M. Klysik E. Johnson R.L. Martin J.F. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 2011 332 6028 458 461 10.1126/science.1199010 21512031
    [Google Scholar]
  99. Tao J. Wei X. Huang Y. Liu F. Wu Y. Adi D. Xiang Y. Chen Y. Ma Y. Chen B. Sfrp1 protects against acute myocardial ischemia (AMI) injury in aged mice by inhibiting the Wnt/β-catenin signaling pathway. J. Cardiothorac. Surg. 2021 16 1 12 10.1186/s13019‑020‑01389‑4 33468190
    [Google Scholar]
  100. Kamdem N. Roske Y. Kovalskyy D. Platonov M.O. Balinskyi O. Kreuchwig A. Saupe J. Fang L. Diehl A. Schmieder P. Krause G. Rademann J. Heinemann U. Birchmeier W. Oschkinat H. Small-molecule inhibitors of the PDZ domain of Dishevelled proteins interrupt Wnt signalling. Magn. Reson. (Gött.) 2021 2 1 355 374 10.5194/mr‑2‑355‑2021 37904770
    [Google Scholar]
  101. Hosseini F.S. Amanlou A. Amanlou M. Tankyrase inhibitor for cardiac tissue regeneration: An in-silico approach. Iran. J. Pharm. Res. 2021 20 4 315 328 [From NLM.]. 10.22037/ijpr.2021.115367.15339 35194449
    [Google Scholar]
  102. Wang H. Segersvärd H. Siren J. Perttunen S. Immonen K. Kosonen R. Chen Y.C. Tolva J. Laivuori M. Mäyränpää M.I. Kovanen P.T. Sinisalo J. Laine M. Tikkanen I. Lakkisto P. Tankyrase inhibition attenuates cardiac dilatation and dysfunction in ischemic heart failure. Int. J. Mol. Sci. 2022 23 17 10059 10.3390/ijms231710059 36077457
    [Google Scholar]
  103. Antos C.L. McKinsey T.A. Frey N. Kutschke W. McAnally J. Shelton J.M. Richardson J.A. Hill J.A. Olson E.N. Activated glycogen synthase-3β suppresses cardiac hypertrophy in vivo. Proc. Natl. Acad. Sci. USA 2002 99 2 907 912 10.1073/pnas.231619298 11782539
    [Google Scholar]
  104. Lal H. Ahmad F. Woodgett J. Force T. The GSK-3 family as therapeutic target for myocardial diseases. Circ. Res. 2015 116 1 138 149 10.1161/CIRCRESAHA.116.303613 25552693
    [Google Scholar]
  105. Jeong C.W. Yoo K.Y. Lee S.H. Jeong H.J. Lee C.S. Kim S.J. Curcumin protects against regional myocardial ischemia/reperfusion injury through activation of RISK/GSK-3β and inhibition of p38 MAPK and JNK. J. Cardiovasc. Pharmacol. Ther. 2012 17 4 387 394 10.1177/1074248412438102 22396328
    [Google Scholar]
  106. Thorne C.A. Hanson A.J. Schneider J. Tahinci E. Orton D. Cselenyi C.S. Jernigan K.K. Meyers K.C. Hang B.I. Waterson A.G. Kim K. Melancon B. Ghidu V.P. Sulikowski G.A. LaFleur B. Salic A. Lee L.A. Miller D.M. Lee E. Small-molecule inhibition of Wnt signaling through activation of casein kinase 1α. Nat. Chem. Biol. 2010 6 11 829 836 10.1038/nchembio.453 20890287
    [Google Scholar]
  107. Cruciat C.M. Casein kinase 1 and Wnt/β-catenin signaling. Curr. Opin. Cell Biol. 2014 31 46 55 10.1016/j.ceb.2014.08.003 25200911
    [Google Scholar]
  108. Saraswati S. Alfaro M.P. Thorne C.A. Atkinson J. Lee E. Young P.P. Pyrvinium, a potent small molecule Wnt inhibitor, promotes wound repair and post-MI cardiac remodeling. PLoS One 2010 5 11 e15521 10.1371/journal.pone.0015521 21170416
    [Google Scholar]
  109. del Valle-Pérez B. Arqués O. Vinyoles M. de Herreros A.G. Duñach M. Coordinated action of CK1 isoforms in canonical Wnt signaling. Mol. Cell. Biol. 2011 31 14 2877 2888 10.1128/MCB.01466‑10 21606194
    [Google Scholar]
  110. Venerando A. Girardi C. Ruzzene M. Pinna L.A. Pyrvinium pamoate does not activate protein kinase CK1, but promotes Akt/PKB down-regulation and GSK3 activation. Biochem. J. 2013 452 1 131 137 10.1042/BJ20121140 23438105
    [Google Scholar]
  111. Cheong J.K. Hung N.T. Wang H. Tan P. Voorhoeve P.M. Lee S.H. Virshup D.M. IC261 induces cell cycle arrest and apoptosis of human cancer cells via CK1δ/ɛ and Wnt/β-catenin independent inhibition of mitotic spindle formation. Oncogene 2011 30 22 2558 2569 10.1038/onc.2010.627 21258417
    [Google Scholar]
  112. Tejeda-Muñoz N. Robles-Flores M. Glycogen synthase kinase 3 in Wnt signaling pathway and cancer. IUBMB Life 2015 67 12 914 922 10.1002/iub.1454 26600003
    [Google Scholar]
  113. Veerman C.C. Wilde A.A.M. Lodder E.M. The cardiac sodium channel gene SCN5A and its gene product NaV1.5: Role in physiology and pathophysiology. Gene 2015 573 2 177 187 10.1016/j.gene.2015.08.062 26361848
    [Google Scholar]
  114. Li R.G. Wnt/beta-catenin mediated regulation of murine and human cardiac electrophysiology and arrhythmogenesis. Doctor of Philosophy, Washington University in St. Louis 2020
    [Google Scholar]
  115. Li G. Brumback B.D. Huang L. Zhang D.M. Yin T. Lipovsky C.E. Hicks S.C. Jimenez J. Boyle P.M. Rentschler S.L. Acute glycogen synthase kinase-3 inhibition modulates human cardiac conduction. JACC Basic Transl. Sci. 2022 7 10 1001 1017 10.1016/j.jacbts.2022.04.007 36337924
    [Google Scholar]
  116. Sasaki T. Hwang H. Nguyen C. Kloner R.A. Kahn M. The small molecule Wnt signaling modulator ICG-001 improves contractile function in chronically infarcted rat myocardium. PLoS One 2013 8 9 e75010 10.1371/journal.pone.0075010 24069374
    [Google Scholar]
  117. Sabatino L. Pancione M. Votino C. Colangelo T. Lupo A. Novellino E. Lavecchia A. Colantuoni V. Emerging role of the β-catenin-PPARγ axis in the pathogenesis of colorectal cancer. World J. Gastroenterol. 2014 20 23 7137 7151 10.3748/wjg.v20.i23.7137 24966585
    [Google Scholar]
  118. Teo J.L. Ma H. Nguyen C. Lam C. Kahn M. Specific inhibition of CBP/β-catenin interaction rescues defects in neuronal differentiation caused by a presenilin-1 mutation. Proc. Natl. Acad. Sci. USA 2005 102 34 12171 12176 10.1073/pnas.0504600102 16093313
    [Google Scholar]
  119. Henderson W.R. Chi E.Y. Ye X. Nguyen C. Tien Y. Zhou B. Borok Z. Knight D.A. Kahn M. Inhibition of Wnt/β-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc. Natl. Acad. Sci. USA 2010 107 32 14309 14314 10.1073/pnas.1001520107 20660310
    [Google Scholar]
  120. Xie S. Fu W. Yu G. Hu X. Lai K.S. Peng X. Zhou Y. Zhu X. Christov P. Sawyer L. Ni T.T. Sulikowski G.A. Yang Z. Lee E. Zeng C. Wang W.E. Zhong T.P. Discovering small molecules as Wnt inhibitors that promote heart regeneration and injury repair. J. Mol. Cell Biol. 2020 12 1 42 54 10.1093/jmcb/mjz023 30925593
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X333038241023153349
Loading
/content/journals/ccr/10.2174/011573403X333038241023153349
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test