Skip to content
2000
image of Diabetic Cardiomyopathy: An Update on Emerging Pathological
Mechanisms

Abstract

Diabetic Cardiomyopathy (DCM) is a notable consequence of diabetes mellitus, distinguished by cardiac dysfunction that occurs separately from coronary artery disease or hypertension. A recent study has revealed an intricate interaction of pathogenic processes that contribute to DCM. Important aspects involve the dysregulation of glucose metabolism, resulting in heightened oxidative stress and impaired mitochondrial function. In addition, persistent high blood sugar levels stimulate inflammatory pathways, which contribute to the development of heart fibrosis and remodelling. Additionally, changes in the way calcium is managed and the presence of insulin resistance are crucial factors in the formation and advancement of DCM. This may be due to the involvement of many molecular mechanistic pathways such as NLRP3, NF-κB, PKC, and MAPK with their downstream associated signaling pathways. Gaining a comprehensive understanding of these newly identified pathogenic pathways is crucial in order to design precise therapy approaches that can enhance the results for individuals suffering from diabetes. In addition, this review offers an in-depth review of not just pathogenic pathways and molecular mechanistic pathways but also diagnostic methods, treatment options, and clinical trials.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X331870241025094307
2024-11-04
2025-01-18
Loading full text...

Full text loading...

References

  1. Martín-Timón I. Sevillano-Collantes C. Segura-Galindo A. Del Cañizo-Gómez F.J. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength? World J. Diabetes 2014 5 4 444 470 10.4239/wjd.v5.i4.444 25126392
    [Google Scholar]
  2. Zhou Y. Suo W. Zhang X. Yang Y. Zhao W. Li H. Ni Q. Targeting epigenetics in diabetic cardiomyopathy: Therapeutic potential of flavonoids. Biomed. Pharmacother. 2023 157 114025 10.1016/j.biopha.2022.114025 36399824
    [Google Scholar]
  3. Tang Z. Wang P. Dong C. Zhang J. Wang X. Pei H. Oxidative Stress Signaling Mediated Pathogenesis of Diabetic Cardiomyopathy. Oxid. Med. Cell. Longev. 2022 2022 1 8 10.1155/2022/5913374 35103095
    [Google Scholar]
  4. Devi S. Chauhan S. Mannan A. Singh T.G. Targeting cardiovascular risk factors with eugenol: an anti-inflammatory perspective. Inflammopharmacology 2023 38085446
    [Google Scholar]
  5. Kim A.H. Jang J.E. Han J. Current status on the therapeutic strategies for heart failure and diabetic cardiomyopathy. Biomed. Pharmacother. 2022 145 112463 10.1016/j.biopha.2021.112463 34839258
    [Google Scholar]
  6. Behl T. Bungau S. Kumar K. Zengin G. Khan F. Kumar A. Kaur R. Venkatachalam T. Tit D.M. Vesa C.M. Barsan G. Mosteanu D.E. Pleotropic Effects of Polyphenols in Cardiovascular System. Biomed. Pharmacother. 2020 130 110714 10.1016/j.biopha.2020.110714 34321158
    [Google Scholar]
  7. Yang L. Zhao D. Ren J. Yang J. Endoplasmic reticulum stress and protein quality control in diabetic cardiomyopathy. Biochim. Biophys. Acta Mol. Basis Dis. 2015 1852 2 209 218 10.1016/j.bbadis.2014.05.006 24846717
    [Google Scholar]
  8. Lee Y.B. Han K. Kim B. Lee S.E. Jun J.E. Ahn J. Kim G. Jin S.M. Kim J.H. Risk of early mortality and cardiovascular disease in type 1 diabetes: a comparison with type 2 diabetes, a nationwide study. Cardiovasc. Diabetol. 2019 18 1 157 10.1186/s12933‑019‑0953‑7 31733656
    [Google Scholar]
  9. Grubić Rotkvić P. Planinić Z. Liberati Pršo A.M. Šikić J. Galić E. Rotkvić L. The Mystery of Diabetic Cardiomyopathy: From Early Concepts and Underlying Mechanisms to Novel Therapeutic Possibilities. Int. J. Mol. Sci. 2021 22 11 5973 10.3390/ijms22115973 34205870
    [Google Scholar]
  10. Corb Aron R.A. Abid A. Vesa C.M. Nechifor A.C. Behl T. Ghitea T.C. Munteanu M.A. Fratila O. Andronie-Cioara F.L. Toma M.M. Bungau S. Recognizing the Benefits of Pre-/Probiotics in Metabolic Syndrome and Type 2 Diabetes Mellitus Considering the Influence of Akkermansia muciniphila as a Key Gut Bacterium. Microorganisms 2021 9 3 618 10.3390/microorganisms9030618 33802777
    [Google Scholar]
  11. Trachanas K. Sideris S. Aggeli C. Poulidakis E. Gatzoulis K. Tousoulis D. Kallikazaros I. Diabetic cardiomyopathy: from pathophysiology to treatment. Hellenic J. Cardiol. 2014 55 5 411 421 25243440
    [Google Scholar]
  12. Rubler S. Dlugash J. Yuceoglu Y.Z. Kumral T. Branwood A.W. Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am. J. Cardiol. 1972 30 6 595 602 10.1016/0002‑9149(72)90595‑4 4263660
    [Google Scholar]
  13. Sears B. Perry M. The role of fatty acids in insulin resistance. Lipids Health Dis. 2015 14 1 121 10.1186/s12944‑015‑0123‑1 26415887
    [Google Scholar]
  14. Goldberg I.J. Trent C.M. Schulze P.C. Lipid metabolism and toxicity in the heart. Cell Metab. 2012 15 6 805 812 10.1016/j.cmet.2012.04.006 22682221
    [Google Scholar]
  15. Kolczynska K. Loza-Valdes A. Hawro I. Sumara G. Diacylglycerol-evoked activation of PKC and PKD isoforms in regulation of glucose and lipid metabolism: a review. Lipids Health Dis. 2020 19 1 113 10.1186/s12944‑020‑01286‑8 32466765
    [Google Scholar]
  16. Field B.C. Gordillo R. Scherer P.E. The Role of Ceramides in Diabetes and Cardiovascular Disease Regulation of Ceramides by Adipokines. Front. Endocrinol. (Lausanne) 2020 11 569250 10.3389/fendo.2020.569250 33133017
    [Google Scholar]
  17. Petersen M.C. Shulman G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol. Rev. 2018 98 4 2133 2223 10.1152/physrev.00063.2017 30067154
    [Google Scholar]
  18. Kruszewska J. Cudnoch-Jedrzejewska A. Czarzasta K. Remodeling and Fibrosis of the Cardiac Muscle in the Course of Obesity—Pathogenesis and Involvement of the Extracellular Matrix. Int. J. Mol. Sci. 2022 23 8 4195 10.3390/ijms23084195 35457013
    [Google Scholar]
  19. Clemente-Suárez V.J. Redondo-Flórez L. Beltrán-Velasco A.I. Martín-Rodríguez A. Martínez-Guardado I. Navarro-Jiménez E. Laborde-Cárdenas C.C. Tornero-Aguilera J.F. The Role of Adipokines in Health and Disease. Biomedicines 2023 11 5 1290 10.3390/biomedicines11051290 37238961
    [Google Scholar]
  20. Boucher J. Kleinridders A. Kahn C.R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol. 2014 6 1 a009191 10.1101/cshperspect.a009191 24384568
    [Google Scholar]
  21. Meex R.C.R. Blaak E.E. van Loon L.J.C. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. Obes. Rev. 2019 20 9 1205 1217 10.1111/obr.12862 31240819
    [Google Scholar]
  22. Dabravolski S.A. Sadykhov N.K. Kartuesov A.G. Borisov E.E. Sukhorukov V.N. Orekhov A.N. The Role of Mitochondrial Abnormalities in Diabetic Cardiomyopathy. Int. J. Mol. Sci. 2022 23 14 7863 10.3390/ijms23147863 35887211
    [Google Scholar]
  23. Bhargava S.K. Singh T.G. Mannan A. Singh S. Singh M. Gupta S. Pharmacological evaluation of Thuja occidentalis for the attenuation of neuropathy via AGEs and TNF-α inhibition in diabetic neuropathic rats. Environ. Sci. Pollut. Res. Int. 2022 29 40 60542 60557 10.1007/s11356‑022‑20106‑3 35420347
    [Google Scholar]
  24. Bhargava S.K. Singh T.G. Mannan A. Singh S. Gupta S. Pharmacological evaluation of Thuja occidentalis for the attenuation of nephropathy in streptozotocin-induced diabetes rats. Obes. Med. 2022 31 100391 10.1016/j.obmed.2022.100391
    [Google Scholar]
  25. Kumar S. Behl T. Sachdeva M. Sehgal A. Kumari S. Kumar A. Kaur G. Yadav H.N. Bungau S. Implicating the effect of ketogenic diet as a preventive measure to obesity and diabetes mellitus. Life Sci. 2021 264 118661 10.1016/j.lfs.2020.118661 33121986
    [Google Scholar]
  26. Lorenzo-Almorós A. Tuñón J. Orejas M. Cortés M. Egido J. Lorenzo Ó. Diagnostic approaches for diabetic cardiomyopathy. Cardiovasc. Diabetol. 2017 16 1 28 10.1186/s12933‑017‑0506‑x 28231848
    [Google Scholar]
  27. Fang Z.Y. Prins J.B. Marwick T.H. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr. Rev. 2004 25 4 543 567 10.1210/er.2003‑0012 15294881
    [Google Scholar]
  28. Chavali V. Tyagi S.C. Mishra P.K. Predictors and prevention of diabetic cardiomyopathy. Diabetes Metab. Syndr. Obes. 2013 6 151 160 23610527
    [Google Scholar]
  29. Falcão-Pires I. Leite-Moreira A.F. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail. Rev. 2012 17 3 325 344 10.1007/s10741‑011‑9257‑z 21626163
    [Google Scholar]
  30. Xu G. Chen J. Jing G. Shalev A. Preventing β-cell loss and diabetes with calcium channel blockers. Diabetes 2012 61 4 848 856 10.2337/db11‑0955 22442301
    [Google Scholar]
  31. Meusser B. Hirsch C. Jarosch E. Sommer T. ERAD: the long road to destruction. Nat. Cell Biol. 2005 7 8 766 772 10.1038/ncb0805‑766 16056268
    [Google Scholar]
  32. Jia G. Whaley-Connell A. Sowers J.R. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia 2018 61 1 21 28 10.1007/s00125‑017‑4390‑4 28776083
    [Google Scholar]
  33. Sun S. Yang S. An N. Wang G. Xu Q. Liu J. Mao Y. Astragalus polysaccharides inhibits cardiomyocyte apoptosis during diabetic cardiomyopathy via the endoplasmic reticulum stress pathway. J. Ethnopharmacol. 2019 238 111857 10.1016/j.jep.2019.111857 30959142
    [Google Scholar]
  34. Wu T. Dong Z. Geng J. Sun Y. Liu G. Kang W. Zhang Y. Ge Z. Valsartan protects against ER stress-induced myocardial apoptosis via CHOP/Puma signaling pathway in streptozotocin-induced diabetic rats. Eur. J. Pharm. Sci. 2011 42 5 496 502 10.1016/j.ejps.2011.02.005 21345370
    [Google Scholar]
  35. Guo R. Liu W. Liu B. Zhang B. Li W. Xu Y. SIRT1 suppresses cardiomyocyte apoptosis in diabetic cardiomyopathy: An insight into endoplasmic reticulum stress response mechanism. Int. J. Cardiol. 2015 191 36 45 10.1016/j.ijcard.2015.04.245 25965594
    [Google Scholar]
  36. Yu H. Zhen J. Yang Y. Gu J. Wu S. Liu Q. Ginsenoside Rg1 ameliorates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress‐induced apoptosis in a streptozotocin‐induced diabetes rat model. J. Cell. Mol. Med. 2016 20 4 623 631 10.1111/jcmm.12739 26869403
    [Google Scholar]
  37. Krebs J. Agellon L.B. Michalak M. Ca2+ homeostasis and endoplasmic reticulum (ER) stress: An integrated view of calcium signaling. Biochem. Biophys. Res. Commun. 2015 460 1 114 121 10.1016/j.bbrc.2015.02.004 25998740
    [Google Scholar]
  38. Xu J. Zhou Q. Xu W. Cai L. Endoplasmic reticulum stress and diabetic cardiomyopathy. Exp Diabetes Res. 2012 2012 827971 10.1155/2012/827971
    [Google Scholar]
  39. Matuz-Mares D. González-Andrade M. Araiza-Villanueva M.G. Vilchis-Landeros M.M. Vázquez-Meza H. Mitochondrial Calcium: Effects of Its Imbalance in Disease. Antioxidants 2022 11 5 801 10.3390/antiox11050801 35624667
    [Google Scholar]
  40. Battiprolu P.K. Gillette T.G. Wang Z.V. Lavandero S. Hill J.A. Diabetic cardiomyopathy: mechanisms and therapeutic targets. Drug Discov. Today Dis. Mech. 2010 7 2 e135 e143 10.1016/j.ddmec.2010.08.001 21274425
    [Google Scholar]
  41. Gollmer J. Zirlik A. Bugger H. Established and Emerging Mechanisms of Diabetic Cardiomyopathy. J. Lipid Atheroscler. 2019 8 1 26 47 10.12997/jla.2019.8.1.26 32821697
    [Google Scholar]
  42. Pereira L. Matthes J. Schuster I. Valdivia H.H. Herzig S. Richard S. Gómez A.M. Mechanisms of [Ca2+]i transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes 2006 55 3 608 615 10.2337/diabetes.55.03.06.db05‑1284 16505222
    [Google Scholar]
  43. Trost S.U. Belke D.D. Bluhm W.F. Meyer M. Swanson E. Dillmann W.H. Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes 2002 51 4 1166 1171 10.2337/diabetes.51.4.1166 11916940
    [Google Scholar]
  44. Al Kury L.T. Calcium Homeostasis in Ventricular Myocytes of Diabetic Cardiomyopathy. J Diabetes Res. 2020 2020 1942086
    [Google Scholar]
  45. Yoast R.E. Emrich S.M. Zhang X. Xin P. Arige V. Pathak T. Benson J.C. Johnson M.T. Abdelnaby A.E. Lakomski N. Hempel N. Han J.M. Dupont G. Yule D.I. Sneyd J. Trebak M. The Mitochondrial Ca2+ uniporter is a central regulator of interorganellar Ca2+ transfer and NFAT activation. J. Biol. Chem. 2021 297 4 101174 10.1016/j.jbc.2021.101174 34499925
    [Google Scholar]
  46. Lee S.H. Duron H.E. Chaudhuri D. Beyond the TCA cycle: new insights into mitochondrial calcium regulation of oxidative phosphorylation. Biochem. Soc. Trans. 2023 51 4 1661 1673 10.1042/BST20230012 37641565
    [Google Scholar]
  47. Patti M.E. Corvera S. The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr. Rev. 2010 31 3 364 395 10.1210/er.2009‑0027 20156986
    [Google Scholar]
  48. Duncan J.G. Mitochondrial dysfunction in diabetic cardiomyopathy. Biochim. Biophys. Acta Mol. Cell Res. 2011 1813 7 1351 1359 10.1016/j.bbamcr.2011.01.014 21256163
    [Google Scholar]
  49. Garg N. Singh T.G. Khan H. Arora S. Kaur A. Mannan A. Mechanistic Interventions of Selected Ocimum Species in Management of Diabetes, Obesity and Liver Disorders: Transformative Developments from Preclinical to Clinical Approaches. Biointerface Res. Appl. Chem. 2021 12 1 1304 1323 10.33263/BRIAC121.13041323
    [Google Scholar]
  50. Jia G. Hill M.A. Sowers J.R. Diabetic Cardiomyopathy. Circ. Res. 2018 122 4 624 638 10.1161/CIRCRESAHA.117.311586 29449364
    [Google Scholar]
  51. Behera R. Sharma V. Grewal A.K. Kumar A. Arora B. Najda A. Albadrani G.M. Altyar A.E. Abdel-Daim M.M. Singh T.G. Mechanistic correlation between mitochondrial permeability transition pores and mitochondrial ATP dependent potassium channels in ischemia reperfusion. Biomed. Pharmacother. 2023 162 114599 10.1016/j.biopha.2023.114599 37004326
    [Google Scholar]
  52. Chen J. Zhang Z. Cai L. Diabetic cardiomyopathy and its prevention by nrf2: current status. Diabetes Metab. J. 2014 38 5 337 345 10.4093/dmj.2014.38.5.337 25349820
    [Google Scholar]
  53. Cai L. Klein J.B. Kang Y.J. Metallothionein inhibits peroxynitrite-induced DNA and lipoprotein damage. J. Biol. Chem. 2000 275 50 38957 38960 10.1074/jbc.C000593200 11042194
    [Google Scholar]
  54. Fyhrquist F. Saijonmaa O. Renin‐angiotensin system revisited. J. Intern. Med. 2008 264 3 224 236 10.1111/j.1365‑2796.2008.01981.x 18793332
    [Google Scholar]
  55. Huynh K. Bernardo B.C. McMullen J.R. Ritchie R.H. Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol. Ther. 2014 142 3 375 415 10.1016/j.pharmthera.2014.01.003 24462787
    [Google Scholar]
  56. Lee W.S. Kim J. Diabetic cardiomyopathy: where we are and where we are going. Korean J. Intern. Med. (Korean. Assoc. Intern. Med.) 2017 32 3 404 421 10.3904/kjim.2016.208 28415836
    [Google Scholar]
  57. Boudina S. Abel E.D. Diabetic cardiomyopathy, causes and effects. Rev. Endocr. Metab. Disord. 2010 11 1 31 39 10.1007/s11154‑010‑9131‑7 20180026
    [Google Scholar]
  58. Manrique C. Lastra G. Habibi J. Wei Y. Morris E.M. Stump C.S. Sowers J.R. Methods in the evaluation of cardiovascular renin angiotensin aldosterone activation and oxidative stress. Methods Mol. Med. 2007 139 163 179 10.1007/978‑1‑59745‑571‑8_10 18287671
    [Google Scholar]
  59. Cooper S.A. Whaley-Connell A. Habibi J. Wei Y. Lastra G. Manrique C. Stas S. Sowers J.R. Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance. Am. J. Physiol. Heart Circ. Physiol. 2007 293 4 H2009 H2023 10.1152/ajpheart.00522.2007 17586614
    [Google Scholar]
  60. Catena C. Colussi G. Brosolo G. Iogna-Prat L. Sechi L.A. Aldosterone and aldosterone antagonists in cardiac disease: what is known, what is new. Am. J. Cardiovasc. Dis. 2012 2 1 50 57 22254214
    [Google Scholar]
  61. Mandavia C.H. Aroor A.R. DeMarco V.G. Sowers J.R. Molecular and metabolic mechanisms of cardiac dysfunction in diabetes. Life Sci. 2013 92 11 601 608 10.1016/j.lfs.2012.10.028 23147391
    [Google Scholar]
  62. Westermann D. Rutschow S. Jäger S. Linderer A. Anker S. Riad A. Unger T. Schultheiss H.P. Pauschinger M. Tschöpe C. Contributions of inflammation and cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiomyopathy: the role of angiotensin type 1 receptor antagonism. Diabetes 2007 56 3 641 646 10.2337/db06‑1163 17327431
    [Google Scholar]
  63. Syed A.A. Reza M.I. Shafiq M. Kumariya S. Katekar R. Hanif K. Gayen J.R. Cissus quadrangularis extract mitigates diabetic cardiomyopathy by inhibiting RAAS activation, inflammation and oxidative stress. Biomarkers 2022 27 8 743 752 10.1080/1354750X.2022.2107703 35896310
    [Google Scholar]
  64. Byrne N.J. Rajasekaran N.S. Abel E.D. Bugger H. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic. Biol. Med. 2021 169 317 342 10.1016/j.freeradbiomed.2021.03.046 33910093
    [Google Scholar]
  65. Singh R. Farooq S.A. Mannan A. Singh T.G. Najda A. Grażyna Z. Albadrani G.M. Sayed A.A. Abdel-Daim M.M. Animal models of diabetic microvascular complications: Relevance to clinical features. Biomed. Pharmacother. 2022 145 112305 10.1016/j.biopha.2021.112305 34872802
    [Google Scholar]
  66. Zhang X. Chen C. A new insight of mechanisms, diagnosis and treatment of diabetic cardiomyopathy. Endocrine 2012 41 3 398 409 10.1007/s12020‑012‑9623‑1 22322947
    [Google Scholar]
  67. Mannan A. Garg N. Singh T.G. Kang H.K. Peroxisome Proliferator-Activated Receptor-Gamma (PPAR-ɣ): Molecular Effects and Its Importance as a Novel Therapeutic Target for Cerebral Ischemic Injury. Neurochem. Res. 2021 46 11 2800 2831 10.1007/s11064‑021‑03402‑1 34282491
    [Google Scholar]
  68. Herrero P. Peterson L.R. McGill J.B. Matthew S. Lesniak D. Dence C. Gropler R.J. Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J. Am. Coll. Cardiol. 2006 47 3 598 604 10.1016/j.jacc.2005.09.030 16458143
    [Google Scholar]
  69. Parim B. Sathibabu Uddandrao V.V. Saravanan G. Diabetic cardiomyopathy: molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy. Heart Fail. Rev. 2019 24 2 279 299 10.1007/s10741‑018‑9749‑1 30349977
    [Google Scholar]
  70. Arora A. Behl T. Sehgal A. Singh S. Sharma N. Bhatia S. Sobarzo-Sanchez E. Bungau S. Unravelling the involvement of gut microbiota in type 2 diabetes mellitus. Life Sci. 2021 273 119311 10.1016/j.lfs.2021.119311 33662428
    [Google Scholar]
  71. An D. Rodrigues B. Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 2006 291 4 H1489 H1506 10.1152/ajpheart.00278.2006 16751293
    [Google Scholar]
  72. Velez M. Kohli S. Sabbah H.N. Animal models of insulin resistance and heart failure. Heart Fail. Rev. 2014 19 1 1 13 10.1007/s10741‑013‑9387‑6 23456447
    [Google Scholar]
  73. Lee T.I. Kao Y.H. Chen Y.C. Huang J.H. Hsiao F.C. Chen Y.J. Peroxisome proliferator-activated receptors modulate cardiac dysfunction in diabetic cardiomyopathy. Diabetes Res. Clin. Pract. 2013 100 3 330 339 10.1016/j.diabres.2013.01.008 23369225
    [Google Scholar]
  74. Bugger H. Abel E.D. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 2014 57 4 660 671 10.1007/s00125‑014‑3171‑6 24477973
    [Google Scholar]
  75. Baev A.Y. Vinokurov A.Y. Novikova I.N. Dremin V.V. Potapova E.V. Abramov A.Y. Interaction of Mitochondrial Calcium and ROS in Neurodegeneration. Cells 2022 11 4 706 10.3390/cells11040706 35203354
    [Google Scholar]
  76. Bhatti J.S. Bhatti G.K. Reddy P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders — A step towards mitochondria based therapeutic strategies. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2017 1863 5 1066 1077
    [Google Scholar]
  77. Nishikawa T. Edelstein D. Du X.L. Yamagishi S. Matsumura T. Kaneda Y. Yorek M.A. Beebe D. Oates P.J. Hammes H.P. Giardino I. Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000 404 6779 787 790 10.1038/35008121 10783895
    [Google Scholar]
  78. Zorov D.B. Juhaszova M. Sollott S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014 94 3 909 950 10.1152/physrev.00026.2013 24987008
    [Google Scholar]
  79. Tarquini R. Lazzeri C. Pala L. Rotella C.M. Gensini G.F. The diabetic cardiomyopathy. Acta Diabetol. 2011 48 3 173 181 10.1007/s00592‑010‑0180‑x 20198391
    [Google Scholar]
  80. Zhao W. Zhao T. Chen Y. Ahokas R.A. Sun Y. Oxidative stress mediates cardiac fibrosis by enhancing transforming growth factor-beta1 in hypertensive rats. Mol. Cell. Biochem. 2008 317 1-2 43 50 10.1007/s11010‑008‑9803‑8 18581202
    [Google Scholar]
  81. Kaludercic N. Mialet-Perez J. Paolocci N. Parini A. Di Lisa F. Monoamine oxidases as sources of oxidants in the heart. J. Mol. Cell. Cardiol. 2014 73 34 42 10.1016/j.yjmcc.2013.12.032 24412580
    [Google Scholar]
  82. Mannan A. Singh T.G. Singh V. Garg N. Kaur A. Singh M. Insights into the Mechanism of the Therapeutic Potential of Herbal Monoamine Oxidase Inhibitors in Neurological Diseases. Curr. Drug Targets 2022 23 3 286 310 10.2174/1389450122666210707120256 34238153
    [Google Scholar]
  83. Ni R. Cao T. Xiong S. Ma J. Fan G.C. Lacefield J.C. Lu Y. Tissier S.L. Peng T. Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy. Free Radic. Biol. Med. 2016 90 12 23 10.1016/j.freeradbiomed.2015.11.013 26577173
    [Google Scholar]
  84. Umbarkar P. Singh S. Arkat S. Bodhankar S.L. Lohidasan S. Sitasawad S.L. Monoamine oxidase-A is an important source of oxidative stress and promotes cardiac dysfunction, apoptosis, and fibrosis in diabetic cardiomyopathy. Free Radic. Biol. Med. 2015 87 263 273 10.1016/j.freeradbiomed.2015.06.025 26122707
    [Google Scholar]
  85. Ding W. Feng H. Li W.J. Liao H.H. Zhang N. Zhou Z.Y. Mou S.Q. Lin Z. Xia-He N.Z. Xia H. Tang Q.Z. Apocynin attenuates diabetic cardiomyopathy by suppressing ASK1-p38/JNK signaling. Eur. J. Pharmacol. 2021 909 174402 10.1016/j.ejphar.2021.174402 34348125
    [Google Scholar]
  86. Rajesh M. Mukhopadhyay P. Bátkai S. Mukhopadhyay B. Patel V. Haskó G. Szabó C. Mabley J.G. Liaudet L. Pacher P. Xanthine oxidase inhibitor allopurinol attenuates the development of diabetic cardiomyopathy. J. Cell. Mol. Med. 2009 13 8b 2330 2341 10.1111/j.1582‑4934.2008.00564.x 19175688
    [Google Scholar]
  87. Jo H. Otani H. Jo F. Shimazu T. Okazaki T. Yoshioka K. Fujita M. Kosaki A. Iwasaka T. Inhibition of nitric oxide synthase uncoupling by sepiapterin improves left ventricular function in streptozotocin-induced diabetic mice. Clin. Exp. Pharmacol. Physiol. 2011 38 8 485 493 10.1111/j.1440‑1681.2011.05535.x 21554376
    [Google Scholar]
  88. Toldo S. Mezzaroma E. Buckley L.F. Potere N. Di Nisio M. Biondi-Zoccai G. Van Tassell B.W. Abbate A. Targeting the NLRP3 inflammasome in cardiovascular diseases. Pharmacol. Ther. 2022 236 108053 10.1016/j.pharmthera.2021.108053 34906598
    [Google Scholar]
  89. Sun Y. Ding S. NLRP3 Inflammasome in Diabetic Cardiomyopathy and Exercise Intervention. Int. J. Mol. Sci. 2021 22 24 13228 10.3390/ijms222413228 34948026
    [Google Scholar]
  90. Swanson K.V. Deng M. Ting J.P.Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 2019 19 8 477 489 10.1038/s41577‑019‑0165‑0 31036962
    [Google Scholar]
  91. Luo B. Huang F. Liu Y. Liang Y. Wei Z. Ke H. Zeng Z. Huang W. He Y. NLRP3 Inflammasome as a Molecular Marker in Diabetic Cardiomyopathy. Front. Physiol. 2017 8 519 10.3389/fphys.2017.00519 28790925
    [Google Scholar]
  92. Ding K. Song C. Hu H. Yin K. Huang H. Tang H. The Role of NLRP3 Inflammasome in Diabetic Cardiomyopathy and Its Therapeutic Implications. Oxid. Med. Cell. Longev. 2022 2022 1 19 10.1155/2022/3790721 36111168
    [Google Scholar]
  93. Robinson N. Ganesan R. Hegedűs C. Kovács K. Kufer T.A. Virág L. Programmed necrotic cell death of macrophages: Focus on pyroptosis, necroptosis, and parthanatos. Redox Biol. 2019 26 101239 10.1016/j.redox.2019.101239 31212216
    [Google Scholar]
  94. Luo B. Li B. Wang W. Liu X. Xia Y. Zhang C. Zhang M. Zhang Y. An F. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS One 2014 9 8 e104771 10.1371/journal.pone.0104771 25136835
    [Google Scholar]
  95. Yang F. Qin Y. Wang Y. Meng S. Xian H. Che H. Lv J. Li Y. Yu Y. Bai Y. Wang L. Metformin Inhibits the NLRP3 Inflammasome via AMPK/mTOR-dependent Effects in Diabetic Cardiomyopathy. Int. J. Biol. Sci. 2019 15 5 1010 1019 10.7150/ijbs.29680 31182921
    [Google Scholar]
  96. Li X. Li Z. Li B. Zhu X. Lai X. Klotho improves diabetic cardiomyopathy by suppressing the NLRP3 inflammasome pathway. Life Sci. 2019 234 116773 10.1016/j.lfs.2019.116773 31422095
    [Google Scholar]
  97. Luo B. Li B. Wang W. Liu X. Liu X. Xia Y. Zhang C. Zhang Y. Zhang M. An F. Rosuvastatin alleviates diabetic cardiomyopathy by inhibiting NLRP3 inflammasome and MAPK pathways in a type 2 diabetes rat model. Cardiovasc. Drugs Ther. 2014 28 1 33 43 10.1007/s10557‑013‑6498‑1 24254031
    [Google Scholar]
  98. Wang Y. Li H. Li Y. Zhao Y. Xiong F. Liu Y. Xue H. Yang Z. Ni S. Sahil A. Che H. Wang L. Coriolus versicolor alleviates diabetic cardiomyopathy by inhibiting cardiac fibrosis and NLRP3 inflammasome activation. Phytother. Res. 2019 33 10 2737 2748 10.1002/ptr.6448 31338905
    [Google Scholar]
  99. Sun X. Sun X. Meng H. Wu J. Guo X. Du L. Wu H. Krill Oil Inhibits NLRP3 Inflammasome Activation in the Prevention of the Pathological Injuries of Diabetic Cardiomyopathy. Nutrients 2022 14 2 368 10.3390/nu14020368 35057549
    [Google Scholar]
  100. Zhang H. Chen X. Zong B. Yuan H. Wang Z. Wei Y. Wang X. Liu G. Zhang J. Li S. Cheng G. Wang Y. Ma Y. Gypenosides improve diabetic cardiomyopathy by inhibiting ROS ‐mediated NLRP 3 inflammasome activation. J. Cell. Mol. Med. 2018 22 9 4437 4448 10.1111/jcmm.13743 29993180
    [Google Scholar]
  101. Soares-Silva M. Diniz F.F. Gomes G.N. Bahia D. The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids. Front. Microbiol. 2016 7 183 10.3389/fmicb.2016.00183 26941717
    [Google Scholar]
  102. Dhiman S. Mannan A. Taneja A. Mohan M. Singh T.G. Sirtuin dysregulation in Parkinson’s disease: Implications of acetylation and deacetylation processes. Life Sci. 2024 342 122537 10.1016/j.lfs.2024.122537 38428569
    [Google Scholar]
  103. Zhang W. Liu H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002 12 1 9 18 10.1038/sj.cr.7290105 11942415
    [Google Scholar]
  104. Avagimyan A. Popov S. Shalnova S. The Pathophysiological Basis of Diabetic Cardiomyopathy Development. Curr. Probl. Cardiol. 2022 47 9 101156 10.1016/j.cpcardiol.2022.101156 35192869
    [Google Scholar]
  105. Xu Z. Sun J. Tong Q. Lin Q. Qian L. Park Y. Zheng Y. The Role of ERK1/2 in the Development of Diabetic Cardiomyopathy. Int. J. Mol. Sci. 2016 17 12 2001 10.3390/ijms17122001 27941647
    [Google Scholar]
  106. Adhikary L. Chow F. Nikolic-Paterson D.J. Stambe C. Dowling J. Atkins R.C. Tesch G.H. Abnormal p38 mitogen-activated protein kinase signalling in human and experimental diabetic nephropathy. Diabetologia 2004 47 7 1210 1222 10.1007/s00125‑004‑1437‑0 15232685
    [Google Scholar]
  107. Westermann D. Rutschow S. Van Linthout S. Linderer A. Bücker-Gärtner C. Sobirey M. Riad A. Pauschinger M. Schultheiss H.P. Tschöpe C. Inhibition of p38 mitogen-activated protein kinase attenuates left ventricular dysfunction by mediating pro-inflammatory cardiac cytokine levels in a mouse model of diabetes mellitus. Diabetologia 2006 49 10 2507 2513 10.1007/s00125‑006‑0385‑2 16937126
    [Google Scholar]
  108. Wang S. Ding L. Ji H. Xu Z. Liu Q. Zheng Y. The Role of p38 MAPK in the Development of Diabetic Cardiomyopathy. Int. J. Mol. Sci. 2016 17 7 1037 10.3390/ijms17071037 27376265
    [Google Scholar]
  109. Van Linthout S. Riad A. Dhayat N. Spillmann F. Du J. Dhayat S. Westermann D. Hilfiker-Kleiner D. Noutsias M. Laufs U. Schultheiss H.P. Tschöpe C. Anti-inflammatory effects of atorvastatin improve left ventricular function in experimental diabetic cardiomyopathy. Diabetologia 2007 50 9 1977 1986 10.1007/s00125‑007‑0719‑8 17589825
    [Google Scholar]
  110. Fan Z. Dong J. Mu Y. Liu X. Nesfatin-1 protects against diabetic cardiomyopathy in the streptozotocin-induced diabetic mouse model via the p38-MAPK pathway. Bioengineered 2022 13 6 14670 14681 10.1080/21655979.2022.2066748 35818327
    [Google Scholar]
  111. Wang Y. Inhibition of JNK by novel curcumin analog C66 prevents diabetic cardiomyopathy with a preservation of cardiac metallothionein expression. Am J Physiol Endocrinol Metab 2014 306 11 E1239-47
    [Google Scholar]
  112. Marrocco V. Bogomolovas J. Ehler E. dos Remedios C.G. Yu J. Gao C. Lange S. PKC and PKN in heart disease. J. Mol. Cell. Cardiol. 2019 128 212 226 10.1016/j.yjmcc.2019.01.029 30742812
    [Google Scholar]
  113. Newton A.C. Antal C.E. Steinberg S.F. Protein kinase C mechanisms that contribute to cardiac remodelling. Clin. Sci. (Lond.) 2016 130 17 1499 1510 10.1042/CS20160036 27433023
    [Google Scholar]
  114. Singh R.M. Protein kinase C and cardiac dysfunction: a review. Heart Fail. Rev. 2017 22
    [Google Scholar]
  115. Geraldes P. King G.L. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ. Res. 2010 106 8 1319 1331 10.1161/CIRCRESAHA.110.217117 20431074
    [Google Scholar]
  116. Giacco F. Brownlee M. Oxidative stress and diabetic complications. Circ. Res. 2010 107 9 1058 1070 10.1161/CIRCRESAHA.110.223545 21030723
    [Google Scholar]
  117. Way K.J. Isshiki K. Suzuma K. Yokota T. Zvagelsky D. Schoen F.J. Sandusky G.E. Pechous P.A. Vlahos C.J. Wakasaki H. King G.L. Expression of connective tissue growth factor is increased in injured myocardium associated with protein kinase C beta2 activation and diabetes. Diabetes 2002 51 9 2709 2718 10.2337/diabetes.51.9.2709 12196463
    [Google Scholar]
  118. Lei S. Li H. Xu J. Liu Y. Gao X. Wang J. Ng K.F.J. Lau W.B. Ma X. Rodrigues B. Irwin M.G. Xia Z. Hyperglycemia-induced protein kinase C β2 activation induces diastolic cardiac dysfunction in diabetic rats by impairing caveolin-3 expression and Akt/eNOS signaling. Diabetes 2013 62 7 2318 2328 10.2337/db12‑1391 23474486
    [Google Scholar]
  119. Connelly K.A. Kelly D.J. Zhang Y. Prior D.L. Advani A. Cox A.J. Thai K. Krum H. Gilbert R.E. Inhibition of protein kinase C-beta by ruboxistaurin preserves cardiac function and reduces extracellular matrix production in diabetic cardiomyopathy. Circ. Heart Fail. 2009 2 2 129 137 10.1161/CIRCHEARTFAILURE.108.765750 19808328
    [Google Scholar]
  120. Soetikno V. Sari F.R. Sukumaran V. Lakshmanan A.P. Mito S. Harima M. Thandavarayan R.A. Suzuki K. Nagata M. Takagi R. Watanabe K. Curcumin prevents diabetic cardiomyopathy in streptozotocin-induced diabetic rats: Possible involvement of PKC–MAPK signaling pathway. Eur. J. Pharm. Sci. 2012 47 3 604 614 10.1016/j.ejps.2012.04.018 22564708
    [Google Scholar]
  121. Bagul P.K. Resveratrol ameliorates cardiac oxidative stress in diabetes through deacetylation of NFkB-p65 and histone 3. J. Nutr. Biochem. 2015 26
    [Google Scholar]
  122. Valen G. Nuclear factor kappa-B and the heart. J. Am. Coll. Cardiol. 2001 38
    [Google Scholar]
  123. Mohan M. Mannan A. Singh T.G. Therapeutic implication of Sonic Hedgehog as a potential modulator in ischemic injury. Pharmacol. Rep. 2023 75 4 838 860 10.1007/s43440‑023‑00505‑0 37347388
    [Google Scholar]
  124. Singh S. Singh T.G. Role of Nuclear Factor Kappa B (NF-κB) Signalling in Neurodegenerative Diseases: An Mechanistic Approach. Curr. Neuropharmacol. 2020 18 10 918 935 10.2174/1570159X18666200207120949 32031074
    [Google Scholar]
  125. Min W. Bin Z.W. Quan Z.B. Hui Z.J. Sheng F.G. The signal transduction pathway of PKC/NF-κB/c-fos may be involved in the influence of high glucose on the cardiomyocytes of neonatal rats. Cardiovasc. Diabetol. 2009 8 1 8 10.1186/1475‑2840‑8‑8 19210763
    [Google Scholar]
  126. Mazière C. Mazière J.C. Activation of transcription factors and gene expression by oxidized low-density lipoprotein. Free Radic. Biol. Med. 2009 46 2 127 137 10.1016/j.freeradbiomed.2008.10.024 18996472
    [Google Scholar]
  127. Ricote M. Li A.C. Willson T.M. Kelly C.J. Glass C.K. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 1998 391 6662 79 82 10.1038/34178 9422508
    [Google Scholar]
  128. Li H. Malhotra S. Kumar A. Nuclear factor-kappa B signaling in skeletal muscle atrophy. J. Mol. Med. (Berl.) 2008 86 10 1113 1126 10.1007/s00109‑008‑0373‑8 18574572
    [Google Scholar]
  129. Brown K.D. Claudio E. Siebenlist U. The roles of the classical and alternative nuclear factor-kappaB pathways: potential implications for autoimmunity and rheumatoid arthritis. Arthritis Res. Ther. 2008 10 4 212 10.1186/ar2457 18771589
    [Google Scholar]
  130. Matsukura S. Kokubu F. Kurokawa M. Kawaguchi M. Ieki K. Kuga H. Odaka M. Suzuki S. Watanabe S. Takeuchi H. Kasama T. Adachi M. Synthetic double‐stranded RNA induces multiple genes related to inflammation through Toll‐like receptor 3 depending on NF‐κB and/or IRF‐3 in airway epithelial cells. Clin. Exp. Allergy 2006 36 8 1049 1062 10.1111/j.1365‑2222.2006.02530.x 16911361
    [Google Scholar]
  131. Jia G. DeMarco V.G. Sowers J.R. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat. Rev. Endocrinol. 2016 12 3 144 153 10.1038/nrendo.2015.216 26678809
    [Google Scholar]
  132. Mariappan N. Elks C.M. Sriramula S. Guggilam A. Liu Z. Borkhsenious O. Francis J. NF-κB-induced oxidative stress contributes to mitochondrial and cardiac dysfunction in type II diabetes. Cardiovasc. Res. 2010 85 3 473 483 10.1093/cvr/cvp305 19729361
    [Google Scholar]
  133. Hj L. Yl F. Hh L. Apigenin alleviates STZ-induced diabetic cardiomyopathy. Mol Cell Biochem. 2017 428 9 21
    [Google Scholar]
  134. Alshehri A.S. El-Kott A.F. Eleawa S.M. El-Gerbed M.S.A. Khalifa H.S. El-Kenawy A.E. Albadrani G.M. Abdel-Daim M.M. Kaempferol protects against streptozotocin-induced diabetic cardiomyopathy in rats by a hypoglycemic effect and upregulating SIRT1. J. Physiol. Pharmacol. 2021 72 3 72 34810287
    [Google Scholar]
  135. Levelt E. Gulsin G. Neubauer S. McCann G.P. MECHANISMS IN ENDOCRINOLOGY: Diabetic cardiomyopathy: pathophysiology and potential metabolic interventions state of the art review. Eur. J. Endocrinol. 2018 178 4 R127 R139 10.1530/EJE‑17‑0724 29440374
    [Google Scholar]
  136. Borghetti G. von Lewinski D. Eaton D.M. Sourij H. Houser S.R. Wallner M. Diabetic Cardiomyopathy: Current and Future Therapies. Beyond Glycemic Control. Front. Physiol. 2018 9 1514 10.3389/fphys.2018.01514 30425649
    [Google Scholar]
  137. Murtaza G. Virk H.U.H. Khalid M. Lavie C.J. Ventura H. Mukherjee D. Ramu V. Bhogal S. Kumar G. Shanmugasundaram M. Paul T.K. Diabetic cardiomyopathy - A comprehensive updated review. Prog. Cardiovasc. Dis. 2019 62 4 315 326 10.1016/j.pcad.2019.03.003 30922976
    [Google Scholar]
  138. Berezin A.E. Berezin A.A. Circulating Cardiac Biomarkers in Diabetes Mellitus: A New Dawn for Risk Stratification—A Narrative Review. Diabetes Ther. 2020 11 6 1271 1291 10.1007/s13300‑020‑00835‑9 32430864
    [Google Scholar]
  139. Abdelrahman A.H. Salama I.I. Salama S.I. Elmosalami D.M. Ibrahim M.H. Hassan E.M. Dimitry M.O. Aboafya Z.I. Mohammad M.G. Amin M. Role of some serum biomarkers in the early detection of diabetic cardiomyopathy. Future Sci. OA 2021 7 5 FSO682 10.2144/fsoa‑2020‑0184 34046187
    [Google Scholar]
  140. Kumar M. Dev S. Khalid M.U. Siddenthi S.M. Noman M. John C. Akubuiro C. Haider A. Rani R. Kashif M. Varrassi G. Khatri M. Kumar S. Mohamad T. The Bidirectional Link Between Diabetes and Kidney Disease: Mechanisms and Management. Cureus 2023 15 9 e45615 10.7759/cureus.45615 37868469
    [Google Scholar]
  141. Pergola V. Cabrelle G. Mattesi G. Cattarin S. Furlan A. Dellino C.M. Continisio S. Montonati C. Giorgino A. Giraudo C. Leoni L. Bariani R. Barbiero G. Bauce B. Mele D. Perazzolo Marra M. De Conti G. Iliceto S. Motta R. Added Value of CCTA-Derived Features to Predict MACEs in Stable Patients Undergoing Coronary Computed Tomography. Diagnostics (Basel) 2022 12 6 1446 10.3390/diagnostics12061446 35741256
    [Google Scholar]
  142. Tassetti L. Sfriso E. Torlone F. Baggiano A. Mushtaq S. Cannata F. Del Torto A. Fazzari F. Fusini L. Junod D. Maragna R. Volpe A. Carrabba N. Conte E. Guglielmo M. La Mura L. Pergola V. Pedrinelli R. Indolfi C. Sinagra G. Perrone Filardi P. Guaricci A.I. Pontone G. The Role of Multimodality Imaging (CT & MR) as a Guide to the Management of Chronic Coronary Syndromes. J. Clin. Med. 2024 13 12 3450 10.3390/jcm13123450 38929984
    [Google Scholar]
  143. Sperlongano S. D’Andrea A. Mele D. Russo V. Pergola V. Carbone A. Ilardi F. Di Maio M. Bottino R. Giallauria F. Bossone E. Golino P. Left Ventricular Deformation and Vortex Analysis in Heart Failure: From Ultrasound Technique to Current Clinical Application. Diagnostics (Basel) 2021 11 5 892 10.3390/diagnostics11050892 34067703
    [Google Scholar]
  144. Jm P. Gi V. Diabetic cardiomyopathy: Pathophysiology, diagnostic evaluation and management. World J. Diabetes 2013 4
    [Google Scholar]
  145. Mordi I.R. Non-Invasive Imaging in Diabetic Cardiomyopathy. J. Cardiovasc. Dev. Dis. 2019 6 2 18 10.3390/jcdd6020018 30995812
    [Google Scholar]
  146. Youssef M.E. El-Azab M.F. Abdel-Dayem M.A. Yahya G. Alanazi I.S. Saber S. Electrocardiographic and histopathological characterizations of diabetic cardiomyopathy in rats. Environ. Sci. Pollut. Res. Int. 2022 29 17 25723 25732 10.1007/s11356‑021‑17831‑6 34845640
    [Google Scholar]
  147. Maya L. Villarreal F.J. Diagnostic approaches for diabetic cardiomyopathy and myocardial fibrosis. J. Mol. Cell. Cardiol. 2010 48 3 524 529 10.1016/j.yjmcc.2009.06.021 19595694
    [Google Scholar]
  148. Sasso F.C. Rambaldi P.F. Carbonara O. Nasti R. Torella M. Rotondo A. Torella R. Mansi L. Perspectives of nuclear diagnostic imaging in diabetic cardiomyopathy. Nutr. Metab. Cardiovasc. Dis. 2010 20 3 208 216 10.1016/j.numecd.2009.08.013 19939648
    [Google Scholar]
  149. Kumric M. Ticinovic Kurir T. Borovac J.A. Bozic J. Role of novel biomarkers in diabetic cardiomyopathy. World J. Diabetes 2021 12 6 685 705 10.4239/wjd.v12.i6.685 34168722
    [Google Scholar]
  150. Kodama S. Tanaka S. Heianza Y. Fujihara K. Horikawa C. Shimano H. Saito K. Yamada N. Ohashi Y. Sone H. Association between physical activity and risk of all-cause mortality and cardiovascular disease in patients with diabetes: a meta-analysis. Diabetes Care 2013 36 2 471 479 10.2337/dc12‑0783 23349151
    [Google Scholar]
  151. Hordern M.D. Coombes J.S. Cooney L.M. Jeffriess L. Prins J.B. Marwick T.H. Effects of exercise intervention on myocardial function in type 2 diabetes. Heart 2009 95 16 1343 1349 10.1136/hrt.2009.165571 19429570
    [Google Scholar]
  152. Sivasankar D. George M. Sriram D.K. Novel approaches in the treatment of diabetic cardiomyopathy. Biomed. Pharmacother. 2018 106 1039 1045 10.1016/j.biopha.2018.07.051 30119169
    [Google Scholar]
  153. Vaccaro O. Masulli M. Bonora E. Del Prato S. Giorda C.B. Maggioni A.P. Mocarelli P. Nicolucci A. Rivellese A.A. Squatrito S. Riccardi G. Addition of either pioglitazone or a sulfonylurea in type 2 diabetic patients inadequately controlled with metformin alone: Impact on cardiovascular events. A randomized controlled trial. Nutr. Metab. Cardiovasc. Dis. 2012 22 11 997 1006 10.1016/j.numecd.2012.09.003 23063367
    [Google Scholar]
  154. Grimm D. Jabusch H.C. Kossmehl P. Huber M. Fredersdorf S. Griese D.P. Krämer B.K. Kromer E.P. Experimental diabetes and left ventricular hypertrophy. Cardiovasc. Pathol. 2002 11 4 229 237 10.1016/S1054‑8807(01)00116‑8 12140129
    [Google Scholar]
  155. Deedwania P.C. Giles T.D. Klibaner M. Ghali J.K. Herlitz J. Hildebrandt P. Kjekshus J. Spinar J. Vitovec J. Stanbrook H. Wikstrand J. Efficacy, safety and tolerability of metoprolol CR/XL in patients with diabetes and chronic heart failure: Experiences from MERIT-HF. Am. Heart J. 2005 149 1 159 167 10.1016/j.ahj.2004.05.056 15660048
    [Google Scholar]
  156. Shah A.M. Shin S.H. Takeuchi M. Skali H. Desai A.S. Køber L. Maggioni A.P. Rouleau J.L. Kelly R.Y. Hester A. Keefe D. McMurray J.J.V. Pfeffer M.A. Solomon S.D. Left ventricular systolic and diastolic function, remodelling, and clinical outcomes among patients with diabetes following myocardial infarction and the influence of direct renin inhibition with aliskiren. Eur. J. Heart Fail. 2012 14 2 185 192 10.1093/eurjhf/hfr125 21965526
    [Google Scholar]
  157. Kawasaki D. Kosugi K. Waki H. Yamamoto K. Tsujino T. Masuyama T. Role of activated renin-angiotensin system in myocardial fibrosis and left ventricular diastolic dysfunction in diabetic patients--reversal by chronic angiotensin II type 1A receptor blockade. Circ. J. 2007 71 4 524 529 10.1253/circj.71.524 17384453
    [Google Scholar]
  158. Isfort M. Stevens S.C.W. Schaffer S. Jong C.J. Wold L.E. Metabolic dysfunction in diabetic cardiomyopathy. Heart Fail. Rev. 2014 19 1 35 48 10.1007/s10741‑013‑9377‑8 23443849
    [Google Scholar]
  159. Tate M. Grieve D.J. Ritchie R.H. Are targeted therapies for diabetic cardiomyopathy on the horizon? Clin. Sci. (Lond.) 2017 131 10 897 915 10.1042/CS20160491 28473471
    [Google Scholar]
  160. Al-Rasheed N.M. Al-Rasheed N.M. Hasan I.H. Al-Amin M.A. Al-Ajmi H.N. Mohamad R.A. Mahmoud A.M. Simvastatin Ameliorates Diabetic Cardiomyopathy by Attenuating Oxidative Stress and Inflammation in Rats. Oxid. Med. Cell. Longev. 2017 2017 1 1092015 10.1155/2017/1092015 29138670
    [Google Scholar]
  161. Ewang-Emukowhate M. Wierzbicki A.S. Lipid-Lowering Agents. J. Cardiovasc. Pharmacol. Ther. 2013 18 5 401 411 10.1177/1074248413492906 23811423
    [Google Scholar]
  162. Carillion A. Feldman S. Na N. Biais M. Carpentier W. Birenbaum A. Cagnard N. Loyer X. Bonnefont-Rousselot D. Hatem S. Riou B. Amour J. Atorvastatin reduces β-Adrenergic dysfunction in rats with diabetic cardiomyopathy. PLoS One 2017 12 7 e0180103 10.1371/journal.pone.0180103 28727746
    [Google Scholar]
  163. Jia W. Bai T. Zeng J. Niu Z. Fan D. Xu X. Luo M. Wang P. Zou Q. Dai X. Combined Administration of Metformin and Atorvastatin Attenuates Diabetic Cardiomyopathy by Inhibiting Inflammation, Apoptosis, and Oxidative Stress in Type 2 Diabetic Mice. Front. Cell Dev. Biol. 2021 9 634900 10.3389/fcell.2021.634900 33718370
    [Google Scholar]
  164. Hayat S.A. Patel B. Khattar R.S. Malik R.A. Diabetic cardiomyopathy: mechanisms, diagnosis and treatment. Clin. Sci. (Lond.) 2004 107 6 539 557 10.1042/CS20040057 15341511
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X331870241025094307
Loading
/content/journals/ccr/10.2174/011573403X331870241025094307
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test