Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Atherosclerosis and associated cardiovascular diseases are the leading causes of illness and mortality worldwide. The development of atherosclerosis is a complex process involving oxidative stress, surplus lipid deposition and retention, endothelial dysfunction, and chronic inflammation. Developing novel anti-atherogenic and repurposing existing drugs requires the use of suitable animal models to characterise the fundamental mechanisms underlying atherosclerosis initiation and progression and to evaluate potential therapeutic effects. Commonly used rodent models, however, are not always appropriate, and other models may be required to translate these discoveries into valuable preventive and treatment agents for human applications. Recent advances in gene-editing tools for large animals have allowed the creation of animals that develop atherosclerosis faster and more similarly to humans in terms of lesion localisation and histopathology. In this review, we discuss the major advantages and drawbacks of the main non-rodent animal models of atherosclerosis, particularly rabbits, pigs, zebrafish, and non-human primates. Moreover, we review the application of recently invented novel therapeutic methods and agents, and repurposed existing drugs (such as antidiabetic and anticancer) for atherosclerosis treatment, the efficacy of which is verified on non-rodent animal models of atherosclerosis. In total, the proper selection of a suitable animal model of atherosclerosis facilitates reproducible and rigorous translational research in repurposing of existing drugs, discovering new therapeutic strategies, and validating novel anti-atherosclerotic drugs.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X316529240919103119
2024-10-03
2025-05-30
Loading full text...

Full text loading...

References

  1. GibbonsG.H. SeidmanC.E. TopolE.J. Conquering atherosclerotic cardiovascular disease - 50 Years of Progress.N. Engl. J. Med.2021384978578810.1056/NEJMp2033115 33657686
    [Google Scholar]
  2. LibbyP. The biology of atherosclerosis comes full circle: lessons for conquering cardiovascular disease.Nat. Rev. Cardiol.2021181068368410.1038/s41569‑021‑00609‑1 34385684
    [Google Scholar]
  3. LibbyP. Inflammation in atherosclerosis.Nature2002420691786887410.1038/nature01323 12490960
    [Google Scholar]
  4. OrekhovA.N. SummerhillV.I. KhotinaV.A. PopovM.A. UzokovJ.K. SukhorukovV.N. Role of mitochondria in the chronification of inflammation: Focus on dysfunctional mitophagy and mitochondrial dna mutations.Gene Expr.202322432934410.14218/GE.2023.00061
    [Google Scholar]
  5. LibbyP. The changing landscape of atherosclerosis.Nature2021592785552453310.1038/s41586‑021‑03392‑8 33883728
    [Google Scholar]
  6. MushenkovaN.V. SummerhillV.I. ZhangD. RomanenkoE.B. GrechkoA.V. OrekhovA.N. Current advances in the diagnostic imaging of atherosclerosis: Insights into the pathophysiology of vulnerable plaque.Int. J. Mol. Sci.2020218299210.3390/ijms21082992 32340284
    [Google Scholar]
  7. HoT.W.W. HenryA. LeeW.L. LDL transcytosis by the arterial endothelium—atherosclerosis by a thousand cuts?Curr. Atheroscler. Rep.202325845746510.1007/s11883‑023‑01118‑x 37358804
    [Google Scholar]
  8. GlanzV. BezsonovE.E. SoldatovV. OrekhovA.N. Thirty-five-year history of desialylated lipoproteins discovered by vladimir tertov.Biomedicines2022105117410.3390/biomedicines10051174 35625910
    [Google Scholar]
  9. LankinV.Z. TikhazeA.K. MelkumyantsA.M. Dicarbonyl-dependent modification of ldl as a key factor of endothelial dysfunction and atherosclerotic vascular wall damage.Antioxidants2022118156510.3390/antiox11081565 36009284
    [Google Scholar]
  10. PoznyakA.V. SukhorukovV.N. SurkovaR. OrekhovN.A. OrekhovA.N. Glycation of LDL: AGEs, impact on lipoprotein function, and involvement in atherosclerosis.Front. Cardiovasc. Med.202310109418810.3389/fcvm.2023.1094188 36760567
    [Google Scholar]
  11. PoznyakA.V. KashirskikhD.A. PostnovA.Y. PopovM.A. SukhorukovV.N. OrekhovA.N. Sialic acid as the potential link between lipid metabolism and inflammation in the pathogenesis of atherosclerosis.Braz. J. Med. Biol. Res.202356e1297210.1590/1414‑431x2023e12972 38088673
    [Google Scholar]
  12. XuS. IlyasI. LittleP.J. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: From mechanism to pharmacotherapies.Pharmacol. Rev.202173392496710.1124/pharmrev.120.000096 34088867
    [Google Scholar]
  13. NikiforovN.G. KirichenkoT.V. KubekinaM.V. Macrophages derived from LPS-stimulated monocytes from individuals with subclinical atherosclerosis were characterized by increased pro-inflammatory activity.Cytokine202317215641110.1016/j.cyto.2023.156411 37918051
    [Google Scholar]
  14. GuiY. ZhengH. CaoR.Y. Foam cells in atherosclerosis: Novel insights into its origins, consequences, and molecular mechanisms.Front. Cardiovasc. Med.2022984594210.3389/fcvm.2022.845942 35498045
    [Google Scholar]
  15. GalindoC.L. KhanS. ZhangX. YehY.S. LiuZ. RazaniB. Lipid-laden foam cells in the pathology of atherosclerosis: shedding light on new therapeutic targets.Expert Opin. Ther. Targets202327121231124510.1080/14728222.2023.2288272 38009300
    [Google Scholar]
  16. XieY ChenH QuP QiaoX GuoL LiuL Novel insight on the role of Macrophages in atherosclerosis: Focus on polarization, apoptosis and efferocytosis. Int Immunopharmacol 2022113PtA10926010.1016/j.intimp.2022.10926036252496
    [Google Scholar]
  17. JohnsonJ.L. Metalloproteinases in atherosclerosis.Eur. J. Pharmacol.20178169310610.1016/j.ejphar.2017.09.007 28893577
    [Google Scholar]
  18. HafianeA. Vulnerable plaque, characteristics, detection, and potential therapies.J. Cardiovasc. Dev. Dis.2019632610.3390/jcdd6030026 31357630
    [Google Scholar]
  19. NeelsJ.G. GollentzC. ChinettiG. Macrophage death in atherosclerosis: potential role in calcification.Front. Immunol.202314121561210.3389/fimmu.2023.1215612 37469518
    [Google Scholar]
  20. TintutY. HondaH.M. DemerL.L. Biomolecules orchestrating cardiovascular calcification.Biomolecules20211110148210.3390/biom11101482 34680115
    [Google Scholar]
  21. SoehnleinO. LibbyP. Targeting inflammation in atherosclerosis — from experimental insights to the clinic.Nat. Rev. Drug Discov.202120858961010.1038/s41573‑021‑00198‑1 33976384
    [Google Scholar]
  22. PoznyakA.V. OrekhovaV.A. SukhorukovV.N. KhotinaV.A. PopovM.A. OrekhovA.N. Atheroprotective aspects of heat shock proteins.Int. J. Mol. Sci.202324141175010.3390/ijms241411750 37511509
    [Google Scholar]
  23. PoznyakA.V. SukhorukovV.N. PopovM.A. ChegodaevY.S. PostnovA.Y. OrekhovA.N. Mechanisms of the wnt pathways as a potential target pathway in atherosclerosis.J. Lipid Atheroscler.202312322323610.12997/jla.2023.12.3.223 37800111
    [Google Scholar]
  24. ShimJ. Al-MashhadiR.H. SørensenC.B. BentzonJ.F. Large animal models of atherosclerosis – new tools for persistent problems in cardiovascular medicine.J. Pathol.2016238225726610.1002/path.4646 26414760
    [Google Scholar]
  25. PoznyakA.V. GrechkoA.V. WetzkerR. OrekhovA.N. In Search for Genes Related to Atherosclerosis and Dyslipidemia Using Animal Models.202010.3390/ijms21062097
    [Google Scholar]
  26. SuJ.H. HongY. HanC.C. Dual action of macrophage miR‐204 confines cyclosporine A‐induced atherosclerosis.Br. J. Pharmacol.2024181564065810.1111/bph.16240 37702564
    [Google Scholar]
  27. ZhangH. ReillyM.P. Novel mechanistic links between high-protein diets and atherosclerosis.Nat. Metab.2020217810.1038/s42255‑019‑0163‑3 32694688
    [Google Scholar]
  28. HandkeJ. KummerL. WeigandM.A. LarmannJ. Modulation of peripheral CD4+CD25+Foxp3+ regulatory t cells ameliorates surgical stress-induced atherosclerotic plaque progression in apoe-deficient mice.Front. Cardiovasc. Med.2021868245810.3389/fcvm.2021.682458 34485396
    [Google Scholar]
  29. IlyasI. LittleP.J. LiuZ. Mouse models of atherosclerosis in translational research.Trends Pharmacol. Sci.2022431192093910.1016/j.tips.2022.06.009 35902281
    [Google Scholar]
  30. SunY. YaoJ. WangC. Epigenetic modification of TWIST1 in macrophages promotes hypertension-induced atherosclerotic plaque instability.Int. Immunopharmacol.202412711131310.1016/j.intimp.2023.111313 38134595
    [Google Scholar]
  31. ZouT. LiuZ. CaoP. Fisetin treatment alleviates kidney injury in mice with diabetes-exacerbated atherosclerosis through inhibiting CD36/fibrosis pathway.Acta Pharmacol. Sin.202344102065207410.1038/s41401‑023‑01106‑6 37225845
    [Google Scholar]
  32. PoznyakA.V. SilaevaY.Y. OrekhovA.N. DeykinA.V. Animal models of human atherosclerosis: current progress.Braz. J. Med. Biol. Res.2020536e955710.1590/1414‑431x20209557 32428130
    [Google Scholar]
  33. ZhaoY. QuH. WangY. XiaoW. ZhangY. ShiD. Small rodent models of atherosclerosis.Biomed. Pharmacother.202012911042610.1016/j.biopha.2020.110426 32574973
    [Google Scholar]
  34. WuW. XieM. QiuH. The progress of advanced ultrasonography in assessing aortic stiffness and the application discrepancy between humans and rodents.Diagnostics (Basel)202111345410.3390/diagnostics11030454 33800855
    [Google Scholar]
  35. BentzonJ.F. FalkE. Atherosclerotic lesions in mouse and man: is it the same disease?Curr. Opin. Lipidol.201021543444010.1097/MOL.0b013e32833ded6a 20683327
    [Google Scholar]
  36. SchwartzS.M. GalisZ.S. RosenfeldM.E. FalkE. Plaque rupture in humans and mice.Arterioscler. Thromb. Vasc. Biol.200727470571310.1161/01.ATV.0000261709.34878.20 17332493
    [Google Scholar]
  37. KamatoD. IlyasI. XuS. LittleP.J. Non-mouse models of atherosclerosis: Approaches to exploring the translational potential of new therapies.Int. J. Mol. Sci.202223211296410.3390/ijms232112964 36361754
    [Google Scholar]
  38. MushenkovaN.V. SummerhillV.I. SilaevaY.Y. DeykinA.V. OrekhovA.N. Modelling of atherosclerosis in genetically modified animals.Am. J. Transl. Res.201911846144633 31497187
    [Google Scholar]
  39. VolobuevaA.S. OrekhovA.N. DeykinA.V. An update on the tools for creating transgenic animal models of human diseases – focus on atherosclerosis.Braz. J. Med. Biol. Res.2019525e810810.1590/1414‑431x20198108 31038578
    [Google Scholar]
  40. WatanabeY. Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL-rabbit) *1Incidence and development of atherosclerosis and xanthoma.Atherosclerosis198036226126810.1016/0021‑9150(80)90234‑8 7406953
    [Google Scholar]
  41. ShiomiM. The history of the WHHL rabbit, an animal model of familial hypercholesterolemia (II) - contribution to the development and validation of the therapeutics for hypercholesterolemia and atherosclerosis -.J. Atheroscler. Thromb.202027211913110.5551/jat.RV17038‑2 31748470
    [Google Scholar]
  42. ShiomiM. ItoT. YamadaS. KawashimaS. FanJ. Development of an animal model for spontaneous myocardial infarction (WHHLMI rabbit).Arterioscler. Thromb. Vasc. Biol.20032371239124410.1161/01.ATV.0000075947.28567.50 12738683
    [Google Scholar]
  43. ArdernH.A. BensonG.M. SucklingK.E. CaslakeM.J. ShepherdJ. PackardC.J. Apolipoprotein B overproduction by the perfused liver of the St. Thomas’ mixed hyperlipidemic (SMHL) rabbit.J. Lipid Res.199940122234224310.1016/S0022‑2275(20)32098‑8 10588949
    [Google Scholar]
  44. FanJ. WangY. ChenY.E. Genetically modified rabbits for cardiovascular research.Front. Genet.20211261437910.3389/fgene.2021.614379 33603774
    [Google Scholar]
  45. FanJ. ChenY. YanH. NiimiM. WangY. LiangJ. Principles and applications of rabbit models for atherosclerosis research.J. Atheroscler. Thromb.201825321322010.5551/jat.RV17018 29046488
    [Google Scholar]
  46. JiD. ZhaoG. SongstadA. CuiX. WeinsteinE.J. Efficient creation of an APOE knockout rabbit.Transgenic Res.201524222723510.1007/s11248‑014‑9834‑8 25216764
    [Google Scholar]
  47. YangD. ZhangJ. XuJ. Production of apolipoprotein C-III knockout rabbits using zinc finger nucleases.J. Vis. Exp.20135095781e5095710.3791/50957 24301055
    [Google Scholar]
  48. ZhangJ. NiimiM. YangD. Deficiency of cholesteryl ester transfer protein protects against atherosclerosis in rabbits.Arterioscler. Thromb. Vasc. Biol.20173761068107510.1161/ATVBAHA.117.309114 28428219
    [Google Scholar]
  49. YanH. NiimiM. MatsuhisaF. Apolipoprotein CIII Deficiency Protects Against Atherosclerosis in Knockout Rabbits.Arterioscler. Thromb. Vasc. Biol.20204092095210710.1161/ATVBAHA.120.314368 32757647
    [Google Scholar]
  50. BocanT.M.A. Bak MuellerS. MazurM.J. UhlendorfP.D. Quenby BrownE. KieftK.A. The relationship between the degree of dietary-induced hypercholesterolemia in the rabbit and atherosclerotic lesion formation.Atherosclerosis1993102192210.1016/0021‑9150(93)90080‑E 8257456
    [Google Scholar]
  51. WuL. YaoQ. LinP. LiY. LiH. Comparative transcriptomics reveals specific responding genes associated with atherosclerosis in rabbit and mouse models.PLoS One2018138e020161810.1371/journal.pone.0201618 30067832
    [Google Scholar]
  52. YamashitaA. AsadaY. A rabbit model of thrombosis on atherosclerotic lesions.BioMed Res. Int.20112011142492910.1155/2011/424929 21253503
    [Google Scholar]
  53. OgayV. SekenovaA. LiY. IssabekovaA. SaparovA. The Therapeutic Potential of Mesenchymal Stem Cells in the Treatment of Atherosclerosis.Curr. Stem Cell Res. Ther.202116789791310.2174/1574888X16999210128193549 33511957
    [Google Scholar]
  54. LiY. ShiG. HanY. Therapeutic potential of human umbilical cord mesenchymal stem cells on aortic atherosclerotic plaque in a high-fat diet rabbit model.Stem Cell Res. Ther.202112140710.1186/s13287‑021‑02490‑8 34266502
    [Google Scholar]
  55. LiY. ShiG. LiangW. Allogeneic Adipose-Derived Mesenchymal Stem Cell Transplantation Alleviates Atherosclerotic Plaque by Inhibiting Ox-LDL Uptake, Inflammatory Reaction and Endothelial Damage in Rabbits.Cells20231215193610.3390/cells12151936 37566014
    [Google Scholar]
  56. ShoeibiS. MahdipourE. MohammadiS. MoohebatiM. Ghayour-MobarhanM. Treatment of atherosclerosis through transplantation of endothelial progenitor cells overexpressing dimethylarginine dimethylaminohydrolase (DDAH) in rabbits.Int. J. Cardiol.202133118919810.1016/j.ijcard.2021.01.036 33535073
    [Google Scholar]
  57. SchubertM. HansenS. LeefmannJ. GuanK. Repurposing Antidiabetic Drugs for Cardiovascular Disease.Front. Physiol.20201156863210.3389/fphys.2020.568632 33041865
    [Google Scholar]
  58. ZhangE. XingR. LiuS. LiP. Current advances in development of new docetaxel formulations.Expert Opin. Drug Deliv.201916330131210.1080/17425247.2019.1583644 30773947
    [Google Scholar]
  59. ChoiH.Y. IatanI. RuelI. Docetaxel as a Model Compound to Promote HDL (High-Density Lipoprotein) Biogenesis and Reduce Atherosclerosis.Arterioscler. Thromb. Vasc. Biol.202343560961710.1161/ATVBAHA.122.318275 36861478
    [Google Scholar]
  60. MeneghiniB.C. TavaresE.R. GuidoM.C. Lipid core nanoparticles as vehicle for docetaxel reduces atherosclerotic lesion, inflammation, cell death and proliferation in an atherosclerosis rabbit model.Vascul. Pharmacol.2019115465410.1016/j.vph.2019.02.003 30797043
    [Google Scholar]
  61. KeY. WangC. ZhangJ. The Role of PARPs in Inflammation—And Metabolic—Related Diseases: Molecular Mechanisms and Beyond.Cells201989104710.3390/cells8091047 31500199
    [Google Scholar]
  62. Cohen-ArmonM. The Modified Phenanthridine PJ34 Unveils an Exclusive Cell-Death Mechanism in Human Cancer Cells.Cancers (Basel)2020126162810.3390/cancers12061628 32575437
    [Google Scholar]
  63. WalshS.K. EnglishF.A. CrockerI.P. JohnsE.J. KennyL.C. Contribution of PARP to endothelial dysfunction and hypertension in a rat model of pre‐eclampsia.Br. J. Pharmacol.201216672109211610.1111/j.1476‑5381.2012.01906.x 22339234
    [Google Scholar]
  64. ZhaS. WangF. LiZ. MaZ. YangL. LiuF. PJ34, a PARP1 inhibitor, promotes endothelial repair in a rabbit model of high fat diet-induced atherosclerosis.Cell Cycle201918172099210910.1080/15384101.2019.1640008 31276434
    [Google Scholar]
  65. DevosT. SelleslagD. GranacherN. HavelangeV. BenghiatF.S. Updated recommendations on the use of ruxolitinib for the treatment of myelofibrosis.Hematology2022271233110.1080/16078454.2021.2009645 34957926
    [Google Scholar]
  66. KeenanC. NicholsK.E. AlbeituniS. Use of the JAK Inhibitor Ruxolitinib in the Treatment of Hemophagocytic Lymphohistiocytosis.Front. Immunol.20211261470410.3389/fimmu.2021.614704 33664745
    [Google Scholar]
  67. YangX. JiaJ. YuZ. Inhibition of JAK2/STAT3/SOCS3 signaling attenuates atherosclerosis in rabbit.BMC Cardiovasc. Disord.202020113310.1186/s12872‑020‑01391‑7 32169038
    [Google Scholar]
  68. DarwishI.A. DarwishH.W. BakheitA.H. Al-KahtaniH.M. AlanaziZ. Irbesartan (a comprehensive profile) Profiles of Drug Substances.Excipients and Related Methodology. Elsevier2021Vol. 46:18527210.1016/bs.podrm.2020.07.004
    [Google Scholar]
  69. BąkU. KrupaA. Challenges and Opportunities for Celecoxib Repurposing.Pharm. Res.202340102329234510.1007/s11095‑023‑03571‑4 37552383
    [Google Scholar]
  70. LiL. LiJ. YiJ. LiuH. LeiH. Dose–Effect of Irbesartan on Cyclooxygenase-2 and Matrix Metalloproteinase-9 Expression in Rabbit Atherosclerosis.J. Cardiovasc. Pharmacol.2018712829410.1097/FJC.0000000000000544 29420356
    [Google Scholar]
  71. SinghG. KrauthamerM. Bjalme-EvansM. Wegovy (semaglutide): a new weight loss drug for chronic weight management.J. Investig. Med.202270151310.1136/jim‑2021‑001952 34706925
    [Google Scholar]
  72. JensenJ.K. BinderupT. GrandjeanC.E. BentsenS. RipaR.S. KjaerA. Semaglutide reduces vascular inflammation investigated by PET in a rabbit model of advanced atherosclerosis.Atherosclerosis2022352889510.1016/j.atherosclerosis.2022.03.032 35400496
    [Google Scholar]
  73. TomlinsonB. LiY.H. ChanP. Evaluating gliclazide for the treatment of type 2 diabetes mellitus.Expert Opin. Pharmacother.202223171869187710.1080/14656566.2022.2141108 36300277
    [Google Scholar]
  74. KaramiZ. MehrzadJ. AkramiM. HosseinkhaniS. Anti-inflammation-based treatment of atherosclerosis using Gliclazide-loaded biomimetic nanoghosts.Sci. Rep.20231311388010.1038/s41598‑023‑41136‑y 37620556
    [Google Scholar]
  75. AkinciB. An update on dapagliflozin for the treatment of heart failure.Drugs Today (Barc)2021572778810.1358/dot.2021.57.2.3223386 33656014
    [Google Scholar]
  76. NicholsonM.K. Ghazal AsswadR. WildingJ.P.H. Dapagliflozin for the treatment of type 2 diabetes mellitus – an update.Expert Opin. Pharmacother.202122172303231010.1080/14656566.2021.1953471 34281456
    [Google Scholar]
  77. SylvesterR.D. KhongT.K. Dapagliflozin in people with chronic kidney disease.Drug Ther. Bull.202361811811910.1136/dtb.2023.000022 37257897
    [Google Scholar]
  78. LeeS.G. LeeS.J. LeeJ.J. Anti-Inflammatory Effect for Atherosclerosis Progression by Sodium-Glucose Cotransporter 2 (SGLT-2) Inhibitor in a Normoglycemic Rabbit Model.Korean Circ. J.202050544345710.4070/kcj.2019.0296 32153145
    [Google Scholar]
  79. WangD. XuX. ZhaoM. WangX. Accelerated miniature swine models of advanced atherosclerosis: A review based on morphology.Cardiovasc. Pathol.20204910724110.1016/j.carpath.2020.107241 32554057
    [Google Scholar]
  80. DavisB.T. WangX.J. RohretJ.A. Targeted disruption of LDLR causes hypercholesterolemia and atherosclerosis in Yucatan miniature pigs.PLoS One201494e9345710.1371/journal.pone.0093457 24691380
    [Google Scholar]
  81. SturekM. AllooshM. SellkeF.W. Swine Disease Models for Optimal Vascular Engineering.Annu. Rev. Biomed. Eng.2020221254910.1146/annurev‑bioeng‑082919‑053009 32119784
    [Google Scholar]
  82. Hasler-RapaczJ. EllegrenH. FridolfssonA.K. Identification of a mutation in the low density lipoprotein receptor gene associated with recessive familial hypercholesterolemia in swine.Am. J. Med. Genet.199876537938610.1002/(SICI)1096‑8628(19980413)76:5<379:AID‑AJMG3>3.0.CO;2‑I 9556295
    [Google Scholar]
  83. ThimT. HagensenM. DrouetL. Familial hypercholesterolaemic downsized pig with human-like coronary atherosclerosis: a model for preclinical studies.EuroIntervention20106226126810.4244/EIJV6I2A42 20562079
    [Google Scholar]
  84. LiuL. XuB. JuY. Addition of spironolactone in patients with resistant hypertension: A meta-analysis of randomized controlled trials.Clin. Exp. Hypertens.201739325726310.1080/10641963.2016.1246564 28448185
    [Google Scholar]
  85. ReddyY.N.V. SundaramV. Spironolactone, fibrosis and heart failure with preserved ejection fraction.Eur. J. Heart Fail.20222491569157210.1002/ejhf.2626 35851716
    [Google Scholar]
  86. LiW. ChenX. RileyA.M. Long-term spironolactone treatment reduces coronary TRPC expression, vasoconstriction, and atherosclerosis in metabolic syndrome pigs.Basic Res. Cardiol.201711255410.1007/s00395‑017‑0643‑0 28756533
    [Google Scholar]
  87. MaileL.A. CappsB.E. LingY. XiG. ClemmonsD.R. Hyperglycemia alters the responsiveness of smooth muscle cells to insulin-like growth factor-I.Endocrinology200714852435244310.1210/en.2006‑1440 17255202
    [Google Scholar]
  88. MaileL.A. BusbyW.H. XiG. An anti-αVβ3 antibody inhibits coronary artery atherosclerosis in diabetic pigs.Atherosclerosis2017258405010.1016/j.atherosclerosis.2017.01.030 28189040
    [Google Scholar]
  89. RuscicaM. SirtoriC.R. CarugoS. BanachM. CorsiniA. Bempedoic Acid: for Whom and When.Curr. Atheroscler. Rep.2022241079180110.1007/s11883‑022‑01054‑2 35900636
    [Google Scholar]
  90. BurkeA.C. TelfordD.E. SutherlandB.G. Bempedoic Acid Lowers Low-Density Lipoprotein Cholesterol and Attenuates Atherosclerosis in Low-Density Lipoprotein Receptor–Deficient (LDLR+/− and LDLR−/−) Yucatan Miniature Pigs.Arterioscler. Thromb. Vasc. Biol.20183851178119010.1161/ATVBAHA.117.310676 29449335
    [Google Scholar]
  91. LinY. WangY. LiP. PPARα: An emerging target of metabolic syndrome, neurodegenerative and cardiovascular diseases.Front. Endocrinol. (Lausanne)202213107491110.3389/fendo.2022.1074911 36589809
    [Google Scholar]
  92. YamashitaS. RizzoM. SuT.C. MasudaD. Novel Selective PPARα Modulator Pemafibrate for Dyslipidemia, Nonalcoholic Fatty Liver Disease (NAFLD), and Atherosclerosis.Metabolites202313562610.3390/metabo13050626 37233667
    [Google Scholar]
  93. KonishiH. MiyauchiK. OnishiA. Effect of pemafibrate (K-877), a novel selective peroxisome proliferator-activated receptor α modular (SPPARMα), in atherosclerosis model using low density lipoprotein receptor knock-out swine with balloon injury.PLoS One20201511e024119510.1371/journal.pone.0241195 33201888
    [Google Scholar]
  94. LiX. DengY. ZhengZ. Corilagin, a promising medicinal herbal agent.Biomed. Pharmacother.201899435010.1016/j.biopha.2018.01.030 29324311
    [Google Scholar]
  95. TaoY. ZhangL. YangR. Corilagin ameliorates atherosclerosis by regulating MMP-1, -2, and -9 expression in vitro and in vivo.Eur. J. Pharmacol.202190617420010.1016/j.ejphar.2021.174200 34062170
    [Google Scholar]
  96. BowleyG. KuglerE. WilkinsonR. Zebrafish as a tractable model of human cardiovascular disease.Br. J. Pharmacol.2022179590091710.1111/bph.15473 33788282
    [Google Scholar]
  97. VedderV.L. AherrahrouZ. ErdmannJ. Dare to Compare. Development of Atherosclerotic Lesions in Human, Mouse, and Zebrafish.Front. Cardiovasc. Med.2020710910.3389/fcvm.2020.00109 32714944
    [Google Scholar]
  98. HammJ. CegerP. AllenD. Characterizing sources of variability in zebrafish embryo screening protocols.Altern. Anim. Exp.201936110312010.14573/altex.1804162 30415271
    [Google Scholar]
  99. LiuC. KimY.S. KimJ. PattisonJ. KamaidA. MillerY.I. Modeling hypercholesterolemia and vascular lipid accumulation in LDL receptor mutant zebrafish.J. Lipid Res.201859239139910.1194/jlr.D081521 29187523
    [Google Scholar]
  100. LiuC GatesKP FangL AmarMJ SchneiderDA GengH Apoc2 loss-of-function zebrafish mutant as a genetic model of hyperlipidemia.Dis Mod Mechan 20152015dmm.019836.10.1242/dmm.019836
    [Google Scholar]
  101. Cruz-GarciaL. SchlegelA. Lxr-driven enterocyte lipid droplet formation delays transport of ingested lipids.J. Lipid Res.20145591944195810.1194/jlr.M052845 25030662
    [Google Scholar]
  102. HuY.X. YouH.M. ZhuR.F. Establishment of a lipid metabolism disorder model in ApoEb mutant zebrafish.Atherosclerosis2022361182910.1016/j.atherosclerosis.2022.10.008 36306655
    [Google Scholar]
  103. SchneiderD.A. ChoiS.H. Agatisa-BoyleC. AIBP protects against metabolic abnormalities and atherosclerosis.J. Lipid Res.201859585486310.1194/jlr.M083618 29559522
    [Google Scholar]
  104. KaJ. JinS.W. Zebrafish as an Emerging Model for Dyslipidemia and Associated Diseases.J. Lipid Atheroscler.2021101425610.12997/jla.2021.10.1.42 33537252
    [Google Scholar]
  105. TangD. GengF. YuC. ZhangR. Recent Application of Zebrafish Models in Atherosclerosis Research.Front. Cell Dev. Biol.2021964369710.3389/fcell.2021.643697 33718384
    [Google Scholar]
  106. AmarakoonD. LeeW.J. TamiaG. LeeS.H. Indole-3-Carbinol: Occurrence, Health-Beneficial Properties, and Cellular/Molecular Mechanisms.Annu. Rev. Food Sci. Technol.202314134736610.1146/annurev‑food‑060721‑025531 36972159
    [Google Scholar]
  107. JiangY. YangG. LiaoQ. ZouY. DuY. HuangJ. Indole-3-carbinol inhibits lipid deposition and promotes autophagy in hyperlipidemia zebrafish larvae.Environ. Toxicol. Pharmacol.20197010320510.1016/j.etap.2019.103205 31195360
    [Google Scholar]
  108. AhnD. KimJ. NamG. Ethyl Gallate Dual-Targeting PTPN6 and PPARγ Shows Anti-Diabetic and Anti-Obese Effects.Int. J. Mol. Sci.2022239502010.3390/ijms23095020 35563411
    [Google Scholar]
  109. LiuW. LiuJ. XingS. The benzoate plant metabolite ethyl gallate prevents cellular- and vascular-lipid accumulation in experimental models of atherosclerosis.Biochem. Biophys. Res. Commun.2021556657110.1016/j.bbrc.2021.03.158 33839416
    [Google Scholar]
  110. FanX. HanJ. ZhuL. Protective Activities of Dendrobium huoshanense C. Z. Tang et S. J. Cheng Polysaccharide against High-Cholesterol Diet-Induced Atherosclerosis in Zebrafish.Oxid. Med. Cell. Longev.2020202011010.1155/2020/8365056 32724495
    [Google Scholar]
  111. HanJ. DongJ. ZhangR. Dendrobium catenatum Lindl. Water Extracts Attenuate Atherosclerosis.Mediators Inflamm.2021202111310.1155/2021/9951946 34475805
    [Google Scholar]
  112. MahaneyM.C. KarereG.M. RainwaterD.L. Diet‐induced early‐stage atherosclerosis in baboons: Lipoproteins, atherogenesis, and arterial compliance.J. Med. Primatol.201847131710.1111/jmp.12283 28620920
    [Google Scholar]
  113. Tadin-StrappsM. RobinsonM. Le VociL. Development of lipoprotein(a) siRNAs for mechanism of action studies in non-human primate models of atherosclerosis.J. Cardiovasc. Transl. Res.201581445310.1007/s12265‑014‑9605‑1 25604958
    [Google Scholar]
  114. RaynerK.J. EsauC.C. HussainF.N. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides.Nature2011478736940440710.1038/nature10486 22012398
    [Google Scholar]
  115. LameijerM. BinderupT. van LeentM.M.T. Efficacy and safety assessment of a TRAF6-targeted nanoimmunotherapy in atherosclerotic mice and non-human primates.Nat. Biomed. Eng.20182527929210.1038/s41551‑018‑0221‑2 30936448
    [Google Scholar]
  116. LangerH.F. Chronic inflammation in atherosclerosis—The CD40L/CD40 axis belongs to dendritic cells and T cells, not platelets.J. Thromb. Haemost.20222013510.1111/jth.15591 34796641
    [Google Scholar]
  117. Pereira-da-SilvaT. FerreiraV. CasteloA. Soluble CD40 ligand expression in stable atherosclerosis: A systematic review and meta-analysis.Atherosclerosis20213198610010.1016/j.atherosclerosis.2020.12.011 33494009
    [Google Scholar]
  118. BoschL. de HaanJ. SeijkensT. Small molecule-mediated inhibition of CD40-TRAF6 reduces adverse cardiac remodelling in pressure overload induced heart failure.Int. J. Cardiol.201927914114410.1016/j.ijcard.2018.12.076 30612848
    [Google Scholar]
  119. LutgensE. LievensD. BeckersL. Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile.J. Exp. Med.2010207239140410.1084/jem.20091293 20100871
    [Google Scholar]
  120. Momtazi-BorojeniA.A. Sabouri-RadS. GottoA.M.Jr PCSK9 and inflammation: a review of experimental and clinical evidence.Eur. Heart J. Cardiovasc. Pharmacother.20195423724510.1093/ehjcvp/pvz022 31236571
    [Google Scholar]
  121. DelialisD. DimopoulouM.A. PapaioannouM. PCSK9 Inhibition in Atherosclerotic Cardiovascular Disease.Curr. Pharm. Des.202329231802182410.2174/1381612829666230412105238 37055909
    [Google Scholar]
  122. SabatineM.S. GiuglianoR.P. KeechA.C. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease.N. Engl. J. Med.2017376181713172210.1056/NEJMoa1615664 28304224
    [Google Scholar]
  123. SchwartzG.G. StegP.G. SzarekM. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome.N. Engl. J. Med.2018379222097210710.1056/NEJMoa1801174 30403574
    [Google Scholar]
  124. MusunuruK. ChadwickA.C. MizoguchiT. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates.Nature2021593785942943410.1038/s41586‑021‑03534‑y 34012082
    [Google Scholar]
  125. LeeR.G. MazzolaA.M. BraunM.C. Efficacy and Safety of an Investigational Single-Course CRISPR Base-Editing Therapy Targeting PCSK9 in Nonhuman Primate and Mouse Models.Circulation2023147324225310.1161/CIRCULATIONAHA.122.062132 36314243
    [Google Scholar]
  126. WangL. BretonC. WarzechaC.C. Long-term stable reduction of low-density lipoprotein in nonhuman primates following in vivo genome editing of PCSK9.Mol. Ther.20212962019202910.1016/j.ymthe.2021.02.020 33609733
    [Google Scholar]
  127. Momtazi-BorojeniA.A. JaafariM.R. BadieeA. SahebkarA. Long-term generation of antiPCSK9 antibody using a nanoliposome-based vaccine delivery system.Atherosclerosis2019283697810.1016/j.atherosclerosis.2019.02.001 30797988
    [Google Scholar]
  128. Momtazi-BorojeniA.A. JaafariM.R. AfsharM. BanachM. SahebkarA. PCSK9 immunization using nanoliposomes: preventive efficacy against hypercholesterolemia and atherosclerosis.Arch. Med. Sci.20211751365137710.5114/aoms/133885 34522266
    [Google Scholar]
  129. Momtazi-BorojeniA.A. JaafariM.R. BanachM. GorabiA.M. SahraeiH. SahebkarA. Pre-Clinical Evaluation of the Nanoliposomal antiPCSK9 Vaccine in Healthy Non-Human Primates.Vaccines (Basel)20219774910.3390/vaccines9070749 34358164
    [Google Scholar]
  130. RussellW.M.S. BurchR.L. The Principles of Humane Experimental Technique.Med. J. Aust.1960113500010.5694/j.1326‑5377.1960.tb73127.x
    [Google Scholar]
  131. HubrechtR.C. CarterE. The 3Rs and Humane Experimental Technique: Implementing Change.Animals (Basel)201991075410.3390/ani9100754 31575048
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X316529240919103119
Loading
/content/journals/ccr/10.2174/011573403X316529240919103119
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test