Skip to content
2000
image of Leptin Resistance and Cardiometabolic Disorders: Bridging Molecular Pathways, Genetic Variants, and Therapeutic Innovation

Abstract

Leptin, a hormone produced by fat cells, is crucial for regulating energy equilibrium, managing body mass, and influencing metabolic and cardiovascular well-being. Leptin decreases appetite, boosts energy usage, and has a significant impact on glucose metabolism by primarily activating the JAK2/STAT3 signaling pathway in the hypothalamus. Obesity leads to the development of leptin resistance, which is marked by high levels of leptin in the bloodstream and a decreased responsiveness to its signals. This leads to increased food consumption, weight gain, and metabolic issues, such as type 2 diabetes (T2DM) and cardiovascular disease (CVD). This study explores the many roles of leptin in metabolic regulation, with a specific emphasis on its interaction with insulin and its impact on peripheral organs like the pancreas, liver, and muscles. Leptin resistance worsens chronic inflammation, oxidative stress, endothelial dysfunction, and insulin resistance, all of which are strongly linked to the development of cardiovascular disease (CVD). Moreover, there is a correlation between genetic variations in the leptin receptor (LEPR) gene and a higher susceptibility to stroke and other cardiovascular issues. Therapeutic interventions, such as leptin replacement therapy, have demonstrated potential in the treatment of congenital leptin insufficiency and lipodystrophy while also enhancing glycaemic control, lipid profiles, and neuroendocrine function. Recent studies have indicated that manipulating leptin levels or enhancing its responsiveness by specific treatments, such as chemical chaperones and inhibitors of negative regulators like SOCS3 and PTP1B, might potentially restore the efficacy of leptin.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X356019250118170444
2025-02-07
2025-07-09
Loading full text...

Full text loading...

References

  1. Zhao S. Kusminski C.M. Scherer P.E. Adiponectin, leptin and cardiovascular disorders. Circ. Res. 2021 128 1 136 149 10.1161/CIRCRESAHA.120.314458 33411633
    [Google Scholar]
  2. Zhao S. Kusminski C.M. Elmquist J.K. Scherer P.E. Leptin: Less is more. Diabetes 2020 69 5 823 829 10.2337/dbi19‑0018 32312898
    [Google Scholar]
  3. Welsh A. Hammad M. Piña I.L. Kulinski J. Obesity and cardiovascular health. Eur. J. Prev. Cardiol. 2024 31 8 1026 1035 10.1093/eurjpc/zwae025 38243826
    [Google Scholar]
  4. Wauman J. Zabeau L. Tavernier J. The leptin receptor complex: Heavier than expected? Front. Endocrinol. 2017 8 30 10.3389/fendo.2017.00030 28270795
    [Google Scholar]
  5. Wasim M. Awan F.R. Najam S.S. Khan A.R. Khan H.N. Role of leptin deficiency, inefficiency, and leptin receptors in obesity. Biochem. Genet. 2016 54 5 565 572 10.1007/s10528‑016‑9751‑z 27313173
    [Google Scholar]
  6. Anjum T. Leptin: Mechanisms involved in signaling and resistance. J. Pharm. Res. & Rep. 2021 2 124 10.47363/JPRSR/2021(2)123
    [Google Scholar]
  7. Anthony S.R. Guarnieri A.R. Gozdiff A. Helsley R.N. Owens P.A. III Tranter M. Mechanisms linking adipose tissue inflammation to cardiac hypertrophy and fibrosis. Clin. Sci. (Lond.) 2019 133 22 2329 2344 10.1042/CS20190578 31777927
    [Google Scholar]
  8. García V.T. González P.M. Pérez P.A. Ribalta J. Arrieta F. Aguilar M. Obaya J. Orna G.J. Iglesias P. Navarro J. Durán S. Botet P.J. Margalet S.V. Role of leptin in obesity, cardiovascular disease, and type 2 diabetes. Int. J. Mol. Sci. 2024 25 4 2338 10.3390/ijms25042338 38397015
    [Google Scholar]
  9. Raman P. Khanal S. Leptin in atherosclerosis: Focus on macrophages, endothelial and smooth muscle cells. Int. J. Mol. Sci. 2021 22 11 5446 10.3390/ijms22115446 34064112
    [Google Scholar]
  10. Söderberg S. Stegmayr B. Glader A.C. Birgander S.L. Ahrén B. Olsson T. High leptin levels are associated with stroke. Cerebrovasc. Dis. 2003 15 1-2 63 69 10.1159/000067128 12499713
    [Google Scholar]
  11. Amin M.N. Hussain M.S. Sarwar M.S. Moghal R.M.M. Das A. Hossain M.Z. Chowdhury J.A. Millat M.S. Islam M.S. How the association between obesity and inflammation may lead to insulin resistance and cancer. Diabetes Metab. Syndr. 2019 13 2 1213 1224 10.1016/j.dsx.2019.01.041 31336467
    [Google Scholar]
  12. Tsai J.P. Wang J.H. Chen M.L. Yang C.F. Chen Y.C. Hsu B.G. Association of serum leptin levels with central arterial stiffness in coronary artery disease patients. BMC Cardiovasc. Disord. 2016 16 1 80 10.1186/s12872‑016‑0268‑5 27151106
    [Google Scholar]
  13. Wang C. Chang L. Wang J. Xia L. Cao L. Wang W. Xu J. Gao H. Leptin and risk factors for atherosclerosis: A review. Medicine 2023 102 46 e36076 10.1097/MD.0000000000036076 37986371
    [Google Scholar]
  14. Mouton A.J. Li X. Hall M.E. Hall J.E. Obesity, hypertension, and cardiac dysfunction: Novel roles of immunometabolism in macrophage activation and inflammation. Circ. Res. 2020 126 6 789 806 10.1161/CIRCRESAHA.119.312321 32163341
    [Google Scholar]
  15. Kang K.W. Ok M. Lee S.K. Leptin as a key between obesity and cardiovascular disease. J. Obes. Metab. Syndr. 2020 29 4 248 259 10.7570/jomes20120 33342767
    [Google Scholar]
  16. Mollé N. Krichevsky S. Kermani P. Silver R.T. Ritchie E. Scandura J.M. Ruxolitinib can cause weight gain by blocking leptin signaling in the brain via JAK2/STAT3. Blood 2020 135 13 blood.2019003050 10.1182/blood.2019003050 32047890
    [Google Scholar]
  17. Liu H. Du T. Li C. Yang G. STAT3 phosphorylation in central leptin resistance. Nutr. Metab. 2021 18 1 39 10.1186/s12986‑021‑00569‑w 33849593
    [Google Scholar]
  18. Ornellas F. Mello S.V. Mandarim-de-Lacerda C.A. Aguila M.B. Combined parental obesity augments single-parent obesity effects on hypothalamus inflammation, leptin signaling (JAK/STAT), hyperphagia, and obesity in the adult mice offspring. Physiol. Behav. 2016 153 47 55 10.1016/j.physbeh.2015.10.019 26485293
    [Google Scholar]
  19. Liu Z. Gan L. Zhou Z. Jin W. Sun C. SOCS3 promotes inflammation and apoptosis via inhibiting JAK2/STAT3 signaling pathway in 3T3-L1 adipocyte. Immunobiology 2015 220 8 947 953 10.1016/j.imbio.2015.02.004 25720636
    [Google Scholar]
  20. Genchi V.A. D’Oria R. Palma G. Caccioppoli C. Cignarelli A. Natalicchio A. Laviola L. Giorgino F. Perrini S. Impaired leptin signalling in obesity: Is leptin a new thermolipokine? Int. J. Mol. Sci. 2021 22 12 6445 10.3390/ijms22126445 34208585
    [Google Scholar]
  21. Macedo T.J.S. Menezes V.G. Barberino R.S. Silva R.L.S. Gouveia B.B. Monte A.P.O. Lins T.L.B.G. Santos J.M.S. Bezerra M.É.S. Wischral A. Queiroz M.A.A. Araújo G.G.L. Batista A.M. Matos M.H.T. Leptin decreases apoptosis and promotes the activation of primordial follicles through the phosphatidylinositol-3-kinase/protein kinase B pathway in cultured ovine ovarian tissue. Zygote 2021 29 6 445 451 10.1017/S0967199421000034 33906701
    [Google Scholar]
  22. Sáinz N. Navarro G.C.J. Martínez J.A. Aliaga M.M.J. Leptin signaling as a therapeutic target of obesity. Expert Opin. Ther. Targets 2015 19 7 893 909 10.1517/14728222.2015.1018824 25726860
    [Google Scholar]
  23. Quarta C. Garrido S.M.A. Tschöp M.H. Clemmensen C. Renaissance of leptin for obesity therapy. Diabetologia 2016 59 5 920 927 10.1007/s00125‑016‑3906‑7 26983921
    [Google Scholar]
  24. Rehman K. Akash M.S.H. Alina Z. Leptin: A new therapeutic target for treatment of diabetes mellitus. J. Cell. Biochem. 2018 119 7 5016 5027 10.1002/jcb.26580 29236298
    [Google Scholar]
  25. D’souza A.M. Neumann U.H. Glavas M.M. Kieffer T.J. The glucoregulatory actions of leptin. Mol. Metab. 2017 6 9 1052 1065 10.1016/j.molmet.2017.04.011 28951828
    [Google Scholar]
  26. Recinella L. Orlando G. Ferrante C. Chiavaroli A. Brunetti L. Leone S. Adipokines: New potential therapeutic target for obesity and metabolic, rheumatic, and cardiovascular diseases. Front. Physiol. 2020 11 578966 10.3389/fphys.2020.578966 33192583
    [Google Scholar]
  27. Filho P.G. Mastronardi C.A. Licinio J. Leptin treatment: Facts and expectations. Metabolism 2015 64 1 146 156 10.1016/j.metabol.2014.07.014 25156686
    [Google Scholar]
  28. Lobo R.A.M. Donato J. Jr The role of leptin in health and disease. Temperature 2017 4 3 258 291 10.1080/23328940.2017.1327003 28944270
    [Google Scholar]
  29. Russo B. Menduni M. Borboni P. Picconi F. Frontoni S. Autonomic nervous system in obesity and insulin-resistance—The complex interplay between leptin and central nervous system. Int. J. Mol. Sci. 2021 22 10 5187 10.3390/ijms22105187 34068919
    [Google Scholar]
  30. Rooban S. Senghor A.K.A. Vinodhini V.M. Kumar J.S. Adropin: A crucial regulator of cardiovascular health and metabolic balance. Metab. Open 2024 23 100299 10.1016/j.metop.2024.100299 39045137
    [Google Scholar]
  31. Sáinz N. Barrenetxe J. Aliaga M.M.J. Martínez J.A. Leptin resistance and diet-induced obesity: Central and peripheral actions of leptin. Metabolism 2015 64 1 35 46 10.1016/j.metabol.2014.10.015 25497342
    [Google Scholar]
  32. Friedman J. The long road to leptin. J. Clin. Invest. 2016 126 12 4727 4734 10.1172/JCI91578 27906690
    [Google Scholar]
  33. Das S. Effect of obesity in the cardiovascular system. Obesity and its Impact on Health 2021 67 90 10.1007/978‑981‑33‑6408‑0_6
    [Google Scholar]
  34. Farkhondeh T. Llorens S. Shahri P.A.M. Ashrafizadeh M. Talebi M. Shakibaei M. Samarghandian S. An overview of the role of adipokines in cardiometabolic diseases. Molecules 2020 25 21 5218 10.3390/molecules25215218 33182462
    [Google Scholar]
  35. Albarracín G.M.L. Torres F.A.Y. Adiponectin and leptin adipocytokines in metabolic syndrome: What is its importance? Dubai Diabetes Endocrinol. J. 2020 26 3 93 102 10.1159/000510521
    [Google Scholar]
  36. Dessie G. Ayelign B. Akalu Y. Shibabaw T. Molla M.D. Effect of leptin on chronic inflammatory disorders: Insights to therapeutic target to prevent further cardiovascular complication. Diabetes Metab. Syndr. Obes. 2021 14 3307 3322 10.2147/DMSO.S321311 34305402
    [Google Scholar]
  37. Friedman J.M. Leptin and the endocrine control of energy balance. Nat. Metab. 2019 1 8 754 764 10.1038/s42255‑019‑0095‑y 32694767
    [Google Scholar]
  38. Inoue D.S. Panissa V.L. Antunes B.M. Oliveira F.P. Malta R.B. Caldeira R.S. Campos E.Z. Pimentel G.D. Franchini E. Lira F.S. Reduced leptin level is independent of fat mass changes and hunger scores from high-intensity intermittent plus strength training. J. Sports Med. Phys. Fitness 2018 58 7-8 1045 1051 10.23736/S0022‑4707.17.07370‑4 28488831
    [Google Scholar]
  39. Hwang J. Yoo J.A. Yoon H. Han T. Yoon J. An S. Cho J.Y. Lee J. The role of leptin in the association between obesity and psoriasis. Biomol. Ther. 2021 29 1 11 21 10.4062/biomolther.2020.054 32690821
    [Google Scholar]
  40. Jumli M.N. Nadeem M.I. The mechanistic and pathophysiological role of adiponectin and resistin towards regulation of food intake and appetite in cardiovascular associated risk factor of metabolic syndrome 2021
    [Google Scholar]
  41. LeDuc C.A. Skowronski A.A. Rosenbaum M. The role of leptin in the development of energy homeostatic systems and the maintenance of body weight. Front. Physiol. 2021 12 789519 10.3389/fphys.2021.789519 34955895
    [Google Scholar]
  42. Lukito A.A. Bakri S. Kabo P. Wijaya A. The mechanism of coronary artery calcification in centrally obese non-diabetic men: Study on the interaction of leptin, free leptin index, adiponectin, hs-C reactive protein, bone morphogenetic protein-2 and matrix Gla protein. Mol. Cel. Biom. Sci. 2020 4 2 88 93 10.21705/mcbs.v4i2.104
    [Google Scholar]
  43. Minois B.J.B. Trousselard M. Thivel D. Benson A.C. Schmidt J. Moustafa F. Bouvier D. Dutheil F. Leptin as a biomarker of stress: A systematic review and meta-analysis. Nutrients 2021 13 10 3350 10.3390/nu13103350 34684349
    [Google Scholar]
  44. Blanco A.M. Soengas J.L. Leptin signalling in teleost fish with emphasis in food intake regulation. Mol. Cell. Endocrinol. 2021 526 111209 10.1016/j.mce.2021.111209 33588023
    [Google Scholar]
  45. Oliveira V. Kwitek A.E. Sigmund C.D. Morselli L.L. Grobe J.L. Recent advances in hypertension: Intersection of metabolic and blood pressure regulatory circuits in the central nervous system. Hypertension 2021 77 4 1061 1068 10.1161/HYPERTENSIONAHA.120.14513 33611936
    [Google Scholar]
  46. Münzberg H. Singh P. Heymsfield S.B. Yu S. Morrison C.D. Recent advances in understanding the role of leptin in energy homeostasis. F1000 Res. 2020 9 451 10.12688/f1000research.24260.1 32518627
    [Google Scholar]
  47. Obradovic M. Milovanovic S.E. Soskic S. Essack M. Arya S. Stewart A.J. Gojobori T. Isenovic E.R. Leptin and obesity: Role and clinical implication. Front. Endocrinol. 2021 12 585887 10.3389/fendo.2021.585887 34084149
    [Google Scholar]
  48. Perakakis N. Farr O.M. Mantzoros C.S. Leptin in leanness and obesity: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2021 77 6 745 760 10.1016/j.jacc.2020.11.069 33573745
    [Google Scholar]
  49. Pereira S. Cline D.L. Glavas M.M. Covey S.D. Kieffer T.J. Tissue-specific effects of leptin on glucose and lipid metabolism. Endocr. Rev. 2021 42 1 1 28 10.1210/endrev/bnaa027 33150398
    [Google Scholar]
  50. Pérez P.A. García V.T. Riejos F.P. González M.J. Egea S.J.J. Margalet S.V. Role of leptin as a link between metabolism and the immune system. Cytokine Growth Factor Rev. 2017 35 71 84 10.1016/j.cytogfr.2017.03.001 28285098
    [Google Scholar]
  51. Rahmani A. Toloueitabar Y. Mohsenzadeh Y. Hemmati R. Sayehmiri K. Asadollahi K. Association between plasma leptin/adiponectin ratios with the extent and severity of coronary artery disease. BMC Cardiovasc. Disord. 2020 20 1 474 10.1186/s12872‑020‑01723‑7 33148166
    [Google Scholar]
  52. Rahmouni K. Haynes W.G. Leptin and the cardiovascular system. Recent Prog. Horm. Res. 2004 59 1 225 244 10.1210/rp.59.1.225 14749504
    [Google Scholar]
  53. Pan W.W. Myers M.G. Jr Leptin and the maintenance of elevated body weight. Nat. Rev. Neurosci. 2018 19 2 95 105 10.1038/nrn.2017.168 29321684
    [Google Scholar]
  54. SAEED B.A.A. Impact of Leptin Hormone on Cardiac Function in a Sample of Iraqi Population with cardiovascular disease. Inter. J. Pharma. Res. 2020 12 4 09752366
    [Google Scholar]
  55. Senesi P. Luzi L. Terruzzi I. Adipokines, myokines, and cardiokines: The role of nutritional interventions. Int. J. Mol. Sci. 2020 21 21 8372 10.3390/ijms21218372 33171610
    [Google Scholar]
  56. Sweeney G. Cardiovascular effects of leptin. Nat. Rev. Cardiol. 2010 7 1 22 29 10.1038/nrcardio.2009.224 19949425
    [Google Scholar]
  57. Socol C.T. Chira A. Sanchez M.M.A. Sanchez N.M.A. Maerescu C.M. Mierlita D. Rusu A.V. Alcaraz R.A.J. Trif M. Molina R.B. Leptin signaling in obesity and colorectal cancer. Int. J. Mol. Sci. 2022 23 9 4713 10.3390/ijms23094713 35563103
    [Google Scholar]
  58. Naylor C. Petri W.A. Jr Leptin regulation of immune responses. Trends Mol. Med. 2016 22 2 88 98 10.1016/j.molmed.2015.12.001 26776093
    [Google Scholar]
  59. Noordam R. Boersma V. Verkouter I. Cessie l.S. Christen T. Lamb H.J. Rosendaal F.R. Willems van Dijk K. Heemst v.D. Mutsert d.R. The role of C-reactive protein, adiponectin and leptin in the association between abdominal adiposity and insulin resistance in middle-aged individuals. Nutr. Metab. Cardiovasc. Dis. 2020 30 8 1306 1314 10.1016/j.numecd.2020.04.021 32507340
    [Google Scholar]
  60. Mosavat M. Mirsanjari M. Arabiat D. Smyth A. Whitehead L. The role of sleep curtailment on leptin levels in obesity and diabetes mellitus. Obes. Facts 2021 14 2 214 221 10.1159/000514095 33756469
    [Google Scholar]
  61. Trinh T. Broxmeyer H.E. Role for leptin and leptin receptors in stem cells during health and diseases. Stem Cell Rev. Rep. 2021 17 2 511 522 10.1007/s12015‑021‑10132‑y 33598894
    [Google Scholar]
  62. Misch M. Puthanveetil P. The head-to-toe hormone: Leptin as an extensive modulator of physiologic systems. Int. J. Mol. Sci. 2022 23 10 5439 10.3390/ijms23105439 35628271
    [Google Scholar]
  63. Cuevas G.J. Rodriguez S.A. Rios M.A. Ramírez M.H.C. Moreno G.M. Bañuelos G.J. Santos A. Borunda A.J. Molecular mechanisms of obesity-linked cardiac dysfunction: An up-date on current knowledge. Cells 2021 10 3 629 10.3390/cells10030629 33809061
    [Google Scholar]
  64. Hall J.E. Mouton A.J. Silva d.A.A. Omoto A.C.M. Wang Z. Li X. Carmo d.J.M. Obesity, kidney dysfunction, and inflammation: Interactions in hypertension. Cardiovasc. Res. 2021 117 8 1859 1876 10.1093/cvr/cvaa336 33258945
    [Google Scholar]
  65. Hall M.E. Harmancey R. Stec D.E. Lean heart: Role of leptin in cardiac hypertrophy and metabolism. World J. Cardiol. 2015 7 9 511 524 10.4330/wjc.v7.i9.511 26413228
    [Google Scholar]
  66. Kamareddine L. Ghantous C.M. Allouch S. Ashmar A.S.A. Anlar G. Kannan S. Djouhri L. Korashy H.M. Agouni A. Zeidan A. Between inflammation and autophagy: The role of leptin-adiponectin axis in cardiac remodeling. J. Inflamm. Res. 2021 14 5349 5365 10.2147/JIR.S322231 34703273
    [Google Scholar]
  67. Landecho M.F. Tuero C. Valentí V. Bilbao I. de la Higuera M. Frühbeck G. Relevance of leptin and other adipokines in obesity-associated cardiovascular risk. Nutrients 2019 11 11 2664 10.3390/nu11112664 31694146
    [Google Scholar]
  68. Könner A.C. Brüning J.C. Selective insulin and leptin resistance in metabolic disorders. Cell Metab. 2012 16 2 144 152 10.1016/j.cmet.2012.07.004 22883229
    [Google Scholar]
  69. Davis J.F. Choi D.L. Benoit S.C. Insulin, leptin and reward. Trends Endocrinol. Metab. 2010 21 2 68 74 10.1016/j.tem.2009.08.004 19818643
    [Google Scholar]
  70. Zhang Z.Y. Dodd G.T. Tiganis T. Protein tyrosine phosphatases in hypothalamic insulin and leptin signaling. Trends Pharmacol. Sci. 2015 36 10 661 674 10.1016/j.tips.2015.07.003 26435211
    [Google Scholar]
  71. Amitani M. Asakawa A. Amitani H. Inui A. The role of leptin in the control of insulin-glucose axis. Front. Neurosci. 2013 7 51 10.3389/fnins.2013.00051 23579596
    [Google Scholar]
  72. Rodríguez A. Catalán V. Ambrosi G.J. Navarro G.S. Rotellar F. Valentí V. Silva C. Gil M.J. Salvador J. Burrell M.A. Calamita G. Malagón M.M. Frühbeck G. Insulin- and leptin-mediated control of aquaglyceroporins in human adipocytes and hepatocytes is mediated via the PI3K/Akt/mTOR signaling cascade. J. Clin. Endocrinol. Metab. 2011 96 4 E586 E597 10.1210/jc.2010‑1408 21289260
    [Google Scholar]
  73. Fields D.A. Demerath E.W. Relationship of insulin, glucose, leptin, IL ‐6 and TNF ‐α in human breast milk with infant growth and body composition. Pediatr. Obes. 2012 7 4 304 312 10.1111/j.2047‑6310.2012.00059.x 22577092
    [Google Scholar]
  74. Leisegang K. Bouic P.J.D. Menkveld R. Henkel R.R. Obesity is associated with increased seminal insulin and leptin alongside reduced fertility parameters in a controlled male cohort. Reprod. Biol. Endocrinol. 2014 12 1 34 10.1186/1477‑7827‑12‑34 24885899
    [Google Scholar]
  75. Belgardt B.F. Brüning J.C. CNS leptin and insulin action in the control of energy homeostasis. Ann. N. Y. Acad. Sci. 2010 1212 1 97 113 10.1111/j.1749‑6632.2010.05799.x 21070248
    [Google Scholar]
  76. Wang M. Chen L. Clark G.O. Lee Y. Stevens R.D. Ilkayeva O.R. Wenner B.R. Bain J.R. Charron M.J. Newgard C.B. Unger R.H. Leptin therapy in insulin-deficient type I diabetes. Proc. Natl. Acad. Sci. USA 2010 107 11 4813 4819 10.1073/pnas.0909422107 20194735
    [Google Scholar]
  77. Shebl T. Azeem N.E.D.A. Younis H.A. Soliman A.M. Ashmawy A.M. Ali N.M.M. Relationship between serum leptin concentration and insulin resistance syndrome in patients with type 2 diabetes mellitus. J. Cur. Med. Res. Pract. 2017 2 2 125 132 10.4103/JCMRP.JCMRP_33_16
    [Google Scholar]
  78. Ghadge A.A. Khaire A.A. Leptin as a predictive marker for metabolic syndrome. Cytokine 2019 121 154735 10.1016/j.cyto.2019.154735 31154250
    [Google Scholar]
  79. DePaoli A.M. 20 YEARS OF LEPTIN: Leptin in common obesity and associated disorders of metabolism. J. Endocrinol. 2014 223 1 T71 T81 10.1530/JOE‑14‑0258 24973357
    [Google Scholar]
  80. Katsiki N. Mikhailidis D.P. Banach M. Leptin, cardiovascular diseases and type 2 diabetes mellitus. Acta Pharmacol. Sin. 2018 39 7 1176 1188 10.1038/aps.2018.40 29877321
    [Google Scholar]
  81. Maresca F. Palma V.D. Bevilacqua M. Uccello G. Taglialatela V. Giaquinto A. Esposito G. Trimarco B. Cirillo P. Adipokines, vascular wall, and cardiovascular disease: A focused overview of the role of adipokines in the pathophysiology of cardiovascular disease. Angiology 2015 66 1 8 24 10.1177/0003319713520463 24535638
    [Google Scholar]
  82. Puurunen V.P. Kiviniemi A. Lepojärvi S. Piira O.P. Hedberg P. Junttila J. Ukkola O. Huikuri H. Leptin predicts short-term major adverse cardiac events in patients with coronary artery disease. Ann. Med. 2017 49 5 448 454 10.1080/07853890.2017.1301678 28300429
    [Google Scholar]
  83. Vandervleuten G. Veerkamp M. Vantits L. Toenhake H. Denheijer M. Stalenhoef A. Degraaf J. Elevated leptin levels in subjects with familial combined hyperlipidemia are associated with the increased risk for CVD. Atherosclerosis 2005 183 2 355 360 10.1016/j.atherosclerosis.2005.03.019 16285998
    [Google Scholar]
  84. Ragino Y.I. Stakhneva E.M. Polonskaya Y.V. Kashtanova E.V. The role of secretory activity molecules of visceral adipocytes in abdominal obesity in the development of cardiovascular disease: A review. Biomolecules 2020 10 3 374 10.3390/biom10030374 32121175
    [Google Scholar]
  85. Lekva T. Michelsen A.E. Aukrust P. Henriksen T. Bollerslev J. Ueland T. Leptin and adiponectin as predictors of cardiovascular risk after gestational diabetes mellitus. Cardiovasc. Diabetol. 2017 16 1 5 10.1186/s12933‑016‑0492‑4 28068986
    [Google Scholar]
  86. Vavruch C. Länne T. Fredrikson M. Lindström T. Östgren C.J. Nystrom F.H. Serum leptin levels are independently related to the incidence of ischemic heart disease in a prospective study of patients with type 2 diabetes. Cardiovasc. Diabetol. 2015 14 1 62 10.1186/s12933‑015‑0208‑1 25994184
    [Google Scholar]
  87. Barone I. Giordano C. Bonofiglio D. Andò S. Catalano S. Leptin, obesity and breast cancer: Progress to understanding the molecular connections. Curr. Opin. Pharmacol. 2016 31 83 89 10.1016/j.coph.2016.10.003 27816025
    [Google Scholar]
  88. Mikami K. Endo T. Sawada N. Igarashi G. Kimura M. Hasegawa T. Iino C. Tomita H. Sawada K. Nakaji S. Matsuzaka M. Torok N.J. Fukuda S. Leptin/adiponectin ratio correlates with hepatic steatosis but not arterial stiffness in nonalcoholic fatty liver disease in Japanese population. Cytokine 2020 126 154927 10.1016/j.cyto.2019.154927 31756645
    [Google Scholar]
  89. Ahiante B.O. Smith W. Lammertyn L. Schutte A.E. Leptin and the vasculature in young adults: The African‐ PREDICT study. Eur. J. Clin. Invest. 2019 49 1 e13039 10.1111/eci.13039 30347447
    [Google Scholar]
  90. Ghantous C.M. Azrak Z. Hanache S. Kheir A.W. Zeidan A. Differential role of leptin and adiponectin in cardiovascular system. Int. J. Endocrinol. 2015 2015 1 1 13 10.1155/2015/534320 26064110
    [Google Scholar]
  91. Battineni G. Sagaro G.G. Chintalapudi N. Amenta F. Tomassoni D. Tayebati S.K. Impact of obesity-induced inflammation on cardiovascular diseases (CVD). Int. J. Mol. Sci. 2021 22 9 4798 10.3390/ijms22094798 33946540
    [Google Scholar]
  92. Uña M.M. Mancheño L.Y. Diéguez C. Rojo F.M.A. Novelle M.G. Unraveling the role of leptin in liver function and its relationship with liver diseases. Int. J. Mol. Sci. 2020 21 24 9368 10.3390/ijms21249368 33316927
    [Google Scholar]
  93. Sabbatini A.R. Fontana V. Laurent S. Moreno H. An update on the role of adipokines in arterial stiffness and hypertension. J. Hypertens. 2015 33 3 435 444 10.1097/HJH.0000000000000444 25502905
    [Google Scholar]
  94. Nowzari Z. Masoumi M. Robati N.M. Akbari H. Shahrokhi N. Asadikaram G. Association of polymorphisms of leptin, leptin receptor and apelin receptor genes with susceptibility to coronary artery disease and hypertension. Life Sci. 2018 207 166 171 10.1016/j.lfs.2018.06.007 29883719
    [Google Scholar]
  95. Lu S.C. Akanji A.O. Leptin, obesity, and hypertension: A review of pathogenetic mechanisms. Metab. Syndr. Relat. Disord. 2020 18 9 399 405 10.1089/met.2020.0065 32876506
    [Google Scholar]
  96. Blüher M. Mantzoros C.S. From leptin to other adipokines in health and disease: Facts and expectations at the beginning of the 21st century. Metabolism 2015 64 1 131 145 10.1016/j.metabol.2014.10.016 25497344
    [Google Scholar]
  97. Seven E. Husemoen L.L.N. Sehested T.S.G. Ibsen H. Wachtell K. Linneberg A. Jeppesen J.L. Adipocytokines, C-reactive protein, and cardiovascular disease: A population-based prospective study. PLoS One 2015 10 6 e0128987 10.1371/journal.pone.0128987 26035431
    [Google Scholar]
  98. Tsai J.P. The association of serum leptin levels with metabolic diseases. Tzu-Chi Med. J. 2017 29 4 192 196 10.4103/tcmj.tcmj_123_17 29296046
    [Google Scholar]
  99. Shin M.K. Eraso C.C. Mu Y.P. Gu C. Yeung B.H.Y. Kim L.J. Liu X.R. Wu Z.J. Paudel O. Pichard L.E. Shirahata M. Tang W.Y. Sham J.S.K. Polotsky V.Y. Leptin induces hypertension acting on transient receptor potential melastatin 7 channel in the carotid body. Circ. Res. 2019 125 11 989 1002 10.1161/CIRCRESAHA.119.315338 31545149
    [Google Scholar]
  100. Kim L.J. Polotsky V.Y. Carotid body and metabolic syndrome: Mechanisms and potential therapeutic targets. Int. J. Mol. Sci. 2020 21 14 5117 10.3390/ijms21145117 32698380
    [Google Scholar]
  101. Sacramento J.F. Andrzejewski K. Melo B.F. Ribeiro M.J. Obeso A. Conde S.V. Exploring the mediators that promote carotid body dysfunction in type 2 diabetes and obesity related syndromes. Int. J. Mol. Sci. 2020 21 15 5545 10.3390/ijms21155545 32756352
    [Google Scholar]
  102. Parvanova A. Reseghetti E. Abbate M. Ruggenenti P. Mechanisms and treatment of obesity-related hypertension—Part 1: Mechanisms. Clin. Kidney J. 2024 17 1 sfad282 10.1093/ckj/sfad282 38186879
    [Google Scholar]
  103. Amorim M.R. Aung O. Mokhlesi B. Polotsky V.Y. Leptin-mediated neural targets in obesity hypoventilation syndrome. Sleep 2022 45 9 zsac153 10.1093/sleep/zsac153 35778900
    [Google Scholar]
  104. Guyenet P.G. Stornetta R.L. Souza G.M.P.R. Abbott S.B.G. Brooks V.L. Neuronal networks in hypertension: Recent advances. Hypertension 2020 76 2 300 311 10.1161/HYPERTENSIONAHA.120.14521 32594802
    [Google Scholar]
  105. Iturriaga R. Alcayaga J. Chapleau M.W. Somers V.K. Carotid body chemoreceptors: Physiology, pathology, and implications for health and disease. Physiol. Rev. 2021 101 3 1177 1235 10.1152/physrev.00039.2019 33570461
    [Google Scholar]
  106. Freire C. Kim L.J. Polotsky V.Y. Pharmacologic Intervention Studies to Mitigate Breathing Instability–Animal Studies 2022 10.1201/9781003000631‑24
    [Google Scholar]
  107. Casado M.E. Pérez C.R. Frago L.M. Barrios V. Recent advances in the knowledge of the mechanisms of leptin physiology and actions in neurological and metabolic pathologies. Int. J. Mol. Sci. 2023 24 2 1422 10.3390/ijms24021422 36674935
    [Google Scholar]
  108. Lavens D. On the role of SOCS proteins in leptin signalling. Ghent University 2006
    [Google Scholar]
  109. Olofsson L.E. Unger E.K. Cheung C.C. Xu A.W. Modulation of AgRP-neuronal function by SOCS3 as an initiating event in diet-induced hypothalamic leptin resistance. Proc. Natl. Acad. Sci. USA 2013 110 8 E697 E706 10.1073/pnas.1218284110 23386726
    [Google Scholar]
  110. Pedroso J.A.B. Buonfiglio D.C. Cardinali L.I. Furigo I.C. Lobo R.A.M. Tirapegui J. Elias C.F. Donato J. Jr Inactivation of SOCS3 in leptin receptor-expressing cells protects mice from diet-induced insulin resistance but does not prevent obesity. Mol. Metab. 2014 3 6 608 618 10.1016/j.molmet.2014.06.001 25161884
    [Google Scholar]
  111. Yang Z. Hulver M. McMillan R.P. Cai L. Kershaw E.E. Yu L. Xue B. Shi H. Regulation of insulin and leptin signaling by muscle suppressor of cytokine signaling 3 (SOCS3). PLoS One 2012 7 10 e47493 10.1371/journal.pone.0047493 23115649
    [Google Scholar]
  112. Wunderlich C.M. Hövelmeyer N. Wunderlich F.T. Mechanisms of chronic JAK-STAT3-SOCS3 signaling in obesity. JAK-STAT 2013 2 2 e23878 10.4161/jkst.23878 24058813
    [Google Scholar]
  113. Zampieri T.T. Lobo R.A.M. Furigo I.C. Pedroso J.A.B. Buonfiglio D.C. Donato J. Jr SOCS3 deficiency in leptin receptor-expressing cells mitigates the development of pregnancy-induced metabolic changes. Mol. Metab. 2015 4 3 237 245 10.1016/j.molmet.2014.12.005 25737950
    [Google Scholar]
  114. Liu J. The leptin resistance. Neural Regulation of Metabolism 2018 145 163
    [Google Scholar]
  115. Harlan S.M. Rahmouni K. PI3K signaling: A key pathway in the control of sympathetic traffic and arterial pressure by leptin. Mol. Metab. 2013 2 2 69 73 10.1016/j.molmet.2013.03.004 24199153
    [Google Scholar]
  116. Yamamoto N. Tanida M. Kasahara R. Sobue K. Suzuki K. Leptin inhibits amyloid β‐protein fibrillogenesis by decreasing GM1 gangliosides on the neuronal cell surface through PI3K/Akt/mTOR pathway. J. Neurochem. 2014 131 3 323 332 10.1111/jnc.12828 25039425
    [Google Scholar]
  117. Modzelewska P. The influence of leptin on the process of carcinogenesis. Cont. Oncol. 2019 23 2 63 68 10.5114/wo.2019.85877
    [Google Scholar]
  118. Haglund E. Nguyen L. Schafer N.P. Lammert H. Jennings P.A. Onuchic J.N. Uncovering the molecular mechanisms behind disease-associated leptin variants. J. Biol. Chem. 2018 293 33 12919 12933 10.1074/jbc.RA118.003957 29950524
    [Google Scholar]
  119. Marques V. Arella F. Afonso M.B. Santos A.A. Rodrigues C.M.P. Decoding the role of leptin and adiponectin in obesity-related gastrointestinal cancer. Clin. Sci. 2023 137 15 1095 1114 10.1042/CS20230411 37530554
    [Google Scholar]
  120. Feng H. Zheng L. Feng Z. Zhao Y. Zhang N. The role of leptin in obesity and the potential for leptin replacement therapy. Endocrine 2013 44 1 33 39 10.1007/s12020‑012‑9865‑y 23274948
    [Google Scholar]
  121. Greco M. Santo D.M. Comandè A. Belsito E.L. Andò S. Liguori A. Leggio A. Leptin-activity modulators and their potential pharmaceutical applications. Biomolecules 2021 11 7 1045 10.3390/biom11071045 34356668
    [Google Scholar]
  122. Calcaterra V. Magenes V.C. Rossi V. Fabiano V. Mameli C. Zuccotti G. Lipodystrophies in non-insulin-dependent children: Treatment options and results from recombinant human leptin therapy. Pharmacol. Res. 2023 187 106629 10.1016/j.phrs.2022.106629 36566927
    [Google Scholar]
  123. Özen S. Akıncı B. Oral E.A. Current diagnosis, treatment and clinical challenges in the management of lipodystrophy syndromes in children and young people. J. Clin. Res. Pediatr. Endocrinol. 2020 12 1 17 28 10.4274/jcrpe.galenos.2019.2019.0124 31434462
    [Google Scholar]
  124. Peng J. Yin L. Wang X. Central and peripheral leptin resistance in obesity and improvements of exercise. Horm. Behav. 2021 133 105006 10.1016/j.yhbeh.2021.105006 34087669
    [Google Scholar]
  125. Akeel Al-hussaniy H. Alburghaif H.A. Naji A.M. Leptin hormone and its effectiveness in reproduction, metabolism, immunity, diabetes, hopes and ambitions. J. Med. Life 2021 14 5 600 605 10.25122/jml‑2021‑0153 35027962
    [Google Scholar]
  126. Freitas I.N. Silva d.J.A. Jr Oliveira K.M. Alves L.B. Dos Reis Araújo T. Camporez J.P. Carneiro E.M. Davel A.P. Insights by which TUDCA is a potential therapy against adiposity. Front. Endocrinol. 2023 14 1090039 10.3389/fendo.2023.1090039 36896173
    [Google Scholar]
  127. Suriagandhi V. Nachiappan V. Therapeutic target analysis and molecular mechanism of melatonin-treated leptin resistance induced obesity: A Systematic Study of Network Pharmacology. Front. Endocrinol. 2022 13 927576 10.3389/fendo.2022.927576 35937803
    [Google Scholar]
  128. Isoda M. Ebihara K. Sawayama N. Murakami A. Ebihara C. Shibuya K. Takei A. Takei S. Wakabayashi T. Yamamuro D. Takahashi M. Nagashima S. Ishibashi S. Leptin sensitizing effect of 1,3-butanediol and its potential mechanism. Sci. Rep. 2021 11 1 17691 10.1038/s41598‑021‑96460‑y 34489483
    [Google Scholar]
  129. Roy P.K. Islam J. Lalhlenmawia H. Prospects of potential adipokines as therapeutic agents in obesity-linked atherogenic dyslipidemia and insulin resistance. Egypt. Heart J. 2023 75 1 24 10.1186/s43044‑023‑00352‑7 37014444
    [Google Scholar]
  130. Panico G. Fasciolo G. Migliaccio V. Matteis D.R. Lionetti L. Napolitano G. Agnisola C. Venditti P. Lombardi A. 1,3-Butanediol administration increases β-hydroxybutyrate plasma levels and affects redox homeostasis, endoplasmic reticulum stress, and adipokine production in rat gonadal adipose tissue. Antioxidants 2023 12 7 1471 10.3390/antiox12071471 37508009
    [Google Scholar]
  131. Christoffersen B.Ø. Delgado S.G. John L.M. Ryan D.H. Raun K. Ravussin E. Beyond appetite regulation: Targeting energy expenditure, fat oxidation, and lean mass preservation for sustainable weight loss. Obesity 2022 30 4 841 857 10.1002/oby.23374 35333444
    [Google Scholar]
  132. Nelder M. The role of an addictive tendency towards food and patterns of body fat distribution in obesity and metabolic health. Memorial University of Newfoundland Canada 2020
    [Google Scholar]
  133. Joy L.Y. Molecular Mechanisms of Appetite and Energy Balance. Singapore National University of Singapore 2020
    [Google Scholar]
  134. Leon P.V. Lois P.R. Villalon M. Prida E. Moreno M.D. Fernø J. Quiñones M. Massadi A.O. Seoane L.M. Novel mechanisms involved in leptin sensitization in obesity. Biochem. Pharmacol. 2024 223 116129 10.1016/j.bcp.2024.116129 38490517
    [Google Scholar]
  135. Wang K. Celastrol directly inhibits PFKM to induce weight loss and leptin sensitization. bioRxiv 2020 2020.09 10.1101/2020.09.06.284752
    [Google Scholar]
  136. Smith R.L. Soeters M.R. Wüst R.C.I. Houtkooper R.H. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocr. Rev. 2018 39 4 489 517 10.1210/er.2017‑00211 29697773
    [Google Scholar]
  137. Keshavarz H. Adipose-Derived Molecular Amplification of Glucose Trafficking in the Bloodstream: A Potential New Role for Leptin. Michigan State University USA 2018
    [Google Scholar]
  138. Lieb W. Sullivan L.M. Harris T.B. Roubenoff R. Benjamin E.J. Levy D. Fox C.S. Wang T.J. Wilson P.W. Kannel W.B. Vasan R.S. Plasma leptin levels and incidence of heart failure, cardiovascular disease, and total mortality in elderly individuals. Diabetes Care. 2009 32 4 612 616 10.2337/dc08‑1596 19114611
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X356019250118170444
Loading
/content/journals/ccr/10.2174/011573403X356019250118170444
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: CVD ; hypertension ; obesity ; metabolism ; resistance ; Leptin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test