Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Pharmacogenomics has transformed the way we approach the treatment of the most common diseases worldwide, especially cardiovascular. In this article, we highlight the main categories of drugs involved in major cardiovascular diseases (CVD), related genetic variability and their effects on metabolism in each case of contrastive operability. This not only explains disparities in treatment outcomes but also unfolds customised management based on genomic studies to improve efficiency and limit side effects. Genetic variations have been identified that impact the efficacy, safety, and adverse effects of drugs commonly used in the treatment of CVD, such as Angiotensin converting Enzyme Inhibitor (ACEI), Angiotensin Receptor Blocker (ARBs), calcium channel blockers, antiplatelet agents, diuretics, statins, beta-blockers, and anticoagulants. It discusses the impact of genetic polymorphisms on drug metabolism, efficacy, and adverse reactions, highlighting the importance of genetic testing in optimizing treatment outcomes. Pharmacogenomics holds immense potential for revolutionizing the management of CVD by enabling personalized medicine approaches tailored to individual genetic profiles. However, challenges such as clinical implementation, cost-effectiveness, and ethical considerations need to be addressed to completely incorporate pharmacogenomic testing into standard clinical practice. Continued research and clinical diligence are required for the utilization of pharmacogenomics to improve therapeutic outcomes and reduce the burden of CVD globally.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X334668241227074314
2025-01-31
2025-07-12
Loading full text...

Full text loading...

References

  1. McPhersonJ.D. MarraM. HillierL. WaterstonR.H. ChinwallaA. WallisJ. SekhonM. WylieK. MardisE.R. WilsonR.K. FultonR. KucabaT.A. McPhersonW.C. BarbazukW.B. GregoryS.G. HumphrayS.J. FrenchL. EvansR.S. BethelG. WhittakerA. HoldenJ.L. McCannO.T. DunhamA. SoderlundC. ScottC.E. BentleyD.R. SchulerG. ChenH.C. JangW. GreenE.D. IdolJ.R. MaduroV.V.B. MontgomeryK.T. LeeE. MillerA. EmerlingS. KucherlapatiR. GibbsR. SchererS. GorrellJ.H. SodergrenE. BlankenburgC.K. TaborP. NaylorS. GarciaD. Jongd P.J. CataneseJ.J. NowakN. OsoegawaK. QinS. RowenL. MadanA. DorsM. HoodL. TraskB. FriedmanC. MassaH. CheungV.G. KirschI.R. ReidT. YonescuR. WeissenbachJ. BrulsT. HeiligR. BranscombE. OlsenA. DoggettN. ChengJ.F. HawkinsT. MyersR.M. ShangJ. RamirezL. SchmutzJ. VelasquezO. DixonK. StoneN.E. CoxD.R. HausslerD. KentW.J. FureyT. RogicS. KennedyS. JonesS. RosenthalA. WenG. SchilhabelM. GloecknerG. NyakaturaG. SiebertR. SchlegelbergerB. KorenbergJ. ChenX.N. FujiyamaA. HattoriM. ToyodaA. YadaT. ParkH.S. SakakiY. ShimizuN. AsakawaS. KawasakiK. SasakiT. ShintaniA. ShimizuA. ShibuyaK. KudohJ. MinoshimaS. RamserJ. SeranskiP. HoffC. PoustkaA. ReinhardtR. LehrachH. A physical map of the human genome.Nature2001409682293494110.1038/3505715711237014
    [Google Scholar]
  2. LuzzattoL. AreseP. Favism and glucose-6-phosphate dehydrogenase deficiency.N. Engl. J Med.20183781607110.1056/NEJMra1708111
    [Google Scholar]
  3. JohnsonJ.A. GongL. CarrilloW.M. GageB.F. ScottS.A. SteinC.M. AndersonJ.L. KimmelS.E. LeeM.T.M. PirmohamedM. WadeliusM. KleinT.E. AltmanR.B. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing.Clin. Pharmacol. Ther.201190462562910.1038/clpt.2011.18521900891
    [Google Scholar]
  4. CardiovascularP.M. Cardio-vascular diseases.Lancet1922199514359459510.1016/S0140‑6736(01)32941‑0
    [Google Scholar]
  5. MagavernE.F. KaskiJ.C. TurnerR.M. DrexelH. JanmohamedA. ScourfieldA. BurrageD. FloydC.N. AdeyeyeE. TamargoJ. LewisB.S. KjeldsenK.P. NiessnerA. WassmannS. SulzgruberP. BorryP. AgewallS. SembA.G. SavareseG. PirmohamedM. CaulfieldM.J. The role of pharmacogenomics in contemporary cardiovascular therapy: A position statement from the european society of cardiology working group on cardiovascular pharmacotherapy.Eur. Heart J. Cardiovasc. Pharmacother.202281859910.1093/ehjcvp/pvab01833638977
    [Google Scholar]
  6. MegaJ.L. CloseS.L. WiviottS.D. ShenL. HockettR.D. BrandtJ.T. WalkerJ.R. AntmanE.M. MaciasW. BraunwaldE. SabatineM.S. Cytochrome p-450 polymorphisms and response to clopidogrel.N. Engl. J. Med.2009360435436210.1056/NEJMoa080917119106084
    [Google Scholar]
  7. DNA Sequencing Costs.Data2001213Available from: https://www.genome.gov/about-genomics/fact-sheets/DNASequencing-Costs-Data
    [Google Scholar]
  8. DuarteJ.D. CavallariL.H. Pharmacogenetics to guide cardiovascular drug therapy.Nat. Rev. Cardiol.202118964966510.1038/s41569‑021‑00549‑w33953382
    [Google Scholar]
  9. HayashiM. BousmanC.A. Experience, knowledge, and perceptions of pharmacogenomics among pharmacists and nurse practitioners in alberta hospitals.Pharmacy202210613910.3390/pharmacy1006013936412815
    [Google Scholar]
  10. KitzmillerJ. MikulikE. DaukiA. MukherjeeC. LuzumJ. Pharmacogenomics of statins: Understanding susceptibility to adverse effects.Pharm. Genomics Pers. Med.201699710610.2147/PGPM.S8601327757045
    [Google Scholar]
  11. JohnsonJ.A. CavallariL.H. Pharmacogenetics and cardiovascular disease--implications for personalized medicine.Pharmacol. Rev.2013653987100910.1124/pr.112.00725223686351
    [Google Scholar]
  12. TorrellasC. Benefits of pharmacogenetics in the management of hypertension.J. Pharmaco. Pharmaco.201452110.4172/2153‑0645.1000126
    [Google Scholar]
  13. RodenD.M. DriestV.S.L. WellsQ.S. MosleyJ.D. DennyJ.C. PetersonJ.F. Opportunities and challenges in cardiovascular pharmacogenomics from discovery to implementation.Circ. Res.201812291176119010.1161/CIRCRESAHA.117.31096529700066
    [Google Scholar]
  14. CavallariL.H. MomaryK. Chapter 5 - Pharmacogenetics in Cardiovascular Diseases.In: PharmacogenomicsAcademic Press201313318210.1016/B978‑0‑12‑391918‑2.00005‑6
    [Google Scholar]
  15. WheltonP.K. CareyR.M. AronowW.S. CaseyD.E.Jr CollinsK.J. HimmelfarbD.C. DePalmaS.M. GiddingS. JamersonK.A. JonesD.W. MacLaughlinE.J. MuntnerP. OvbiageleB. SmithS.C.Jr SpencerC.C. StaffordR.S. TalerS.J. ThomasR.J. WilliamsK.A.Sr WilliamsonJ.D. WrightJ.T.Jr 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults.J. Am. Coll. Cardiol.20187119e127e24810.1016/j.jacc.2017.11.00629146535
    [Google Scholar]
  16. NasutionS.A. The use of ACE inhibitor in cardiovascular disease.Acta Med. Indones.2006381606416479034
    [Google Scholar]
  17. RuddyM.C. KostisJ.B. Angiotensin II receptor antagonists. Hypertens. A Comp. Bren. Rector’s Kid.200570572410.1016/B978‑0‑7216‑0258‑5.50157‑5
    [Google Scholar]
  18. MesserliF.H. BangaloreS. BavishiC. RimoldiS.F. Angiotensin converting enzyme inhibitors in hypertension.J. Am. Coll. Cardiol.201871131474148210.1016/j.jacc.2018.01.05829598869
    [Google Scholar]
  19. HeranI.K. WrightJ.M. Inhibitors for primary hypertension ACE inhibitors for the treatment of high blood pressure.Cochr. Data. System. Revi.200858415410.1002/14651858.CD003823.pub2
    [Google Scholar]
  20. WeberM.A. The angiotensin II receptor blockers: Opportunities across the spectrum of cardiovascular disease.Rev. Cardiovasc. Med.20023418319112556752
    [Google Scholar]
  21. BrunnerH.R. Angiotensin II receptor blockers.Compr. Hypert.20071003101710.1016/B978‑0‑323‑03961‑1.50084‑2
    [Google Scholar]
  22. BrugtsJ.J. Maatd.M.P.M. DanserA.H.J. BoersmaE. SimoonsM.L. Individualised therapy of angiotensin converting enzyme (ACE) inhibitors in stable coronary artery disease: Overview of the primary results of the PERindopril GENEtic association (PERGENE) study.Neth. Heart J.2012201243210.1007/s12471‑011‑0173‑621688035
    [Google Scholar]
  23. VinckW.J. FagardR.H. VlietinckR. LijnenP. Heritability of plasma renin activity and plasma concentration of angiotensinogen and angiotensin-converting enzyme.J. Hum. Hypertens.200216641742210.1038/sj.jhh.100141012037697
    [Google Scholar]
  24. RigatB. HubertC. GelasA.F. CambienF. CorvolP. SoubrierF. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels.J. Clin. Invest.19908641343134610.1172/JCI1148441976655
    [Google Scholar]
  25. BloemL.J. ManatungaA.K. PrattJ.H. Racial difference in the relationship of an angiotensin I-converting enzyme gene polymorphism to serum angiotensin I-converting enzyme activity.Hypertension1996271626610.1161/01.HYP.27.1.628591889
    [Google Scholar]
  26. HeidariF. VasudevanR. AliM.S.Z. IsmailP. EtemadA. PishvaS.R. OthmanF. BakarS.A. Association of insertion/deletion polymorphism of angiotensin-converting enzyme gene among Malay male hypertensive subjects in response to ACE inhibitors.J. Renin. Angiotensin Aldosterone Syst.201516487287910.1177/147032031453887825002132
    [Google Scholar]
  27. JoshiP.H. XuH. LeStrangeR. FlockhartN. KirklandB. VazquezG. QianZ. SharmaA. MarvastyI. BhattK. BrownC. RinehartS. MillerJ. VorosS. The M235T single nucleotide polymorphism in the angiotensinogen gene is associated with coronary artery calcium in patients with a family history of coronary artery disease.Atherosclerosis2013226243343910.1016/j.atherosclerosis.2012.10.03923137822
    [Google Scholar]
  28. KonoshitaT. Do genetic variants of the renin-angiotensin system predict blood pressure response to renin-angiotensin system-blocking drugs?: A systematic review of pharmacogenomics in the renin-angiotensin system.Curr. Hypertens. Rep.201113535636110.1007/s11906‑011‑0212‑021562941
    [Google Scholar]
  29. DanserA.H.J. SchunkertH. Renin–angiotensin system gene polymorphisms: Potential mechanisms for their association with cardiovascular diseases.Eur. J. Pharmacol.20004102-330331610.1016/S0014‑2999(00)00823‑211134678
    [Google Scholar]
  30. FreelE.M. IngramM. FrielE.C. FraserR. BrownM. SamaniN.J. CaulfieldM. MunroeP. FarrallM. WebsterJ. ClaytonD. DominiczakA.F. DaviesE. ConnellJ.M.C. Phenotypic consequences of variation across the aldosterone synthase and 11‐beta hydroxylase locus in a hypertensive cohort: Data from the MRC BRIGHT Study.Clin. Endocrinol.200767683283810.1111/j.1365‑2265.2007.02971.x17651452
    [Google Scholar]
  31. LacchiniR. SabhaM. CoeliF.B. FaveroF.F. ToledoY.J. ToledoI.T.C. SandrimV.C. SantosT.J.E. Mellod.M.P. MorenoH.Jr T allele of −344C/T polymorphism in aldosterone synthase gene is not associated with resistant hypertension.Hypertens. Res.200932215916210.1038/hr.2008.3619262476
    [Google Scholar]
  32. JiX. QiH. LiD.B. LiuR.K. ZhengY. ChenH.L. GuoJ.C. Associations between human aldosterone synthase CYP11B2 (-344T/C) gene polymorphism and antihypertensive response to valsartan in Chinese patients with essential hypertension.Int. J. Clin. Exp. Med.2015811173117725785110
    [Google Scholar]
  33. KurlandL. LiljedahlU. KarlssonJ. KahanT. MalmqvistK. MelhusH. SyvänenA.C. LindL. Angiotensinogen gene polymorphisms: Relationship to blood pressure response to antihypertensive treatment results from the swedish irbesartan left ventricular hypertrophy investigation vs atenolol (SILVHIA) trial.Am. J. Hypertens.200417181310.1016/j.amjhyper.2003.09.00914700505
    [Google Scholar]
  34. DenusS. JakubiakZ.M. DubéM.P. BélangerF. LepageS. LeblancM.H. GossardD. DucharmeA. RacineN. WhittomL. LavoieJ. TouyzR.M. TurgeonJ. WhiteM. Effects of AGTR1 A1166C gene polymorphism in patients with heart failure treated with candesartan.Ann. Pharmacother.2008427-892593210.1345/aph.1K65718594050
    [Google Scholar]
  35. SuX. LeeL. LiX. LvJ. HuY. ZhanS. CaoW. MeiL. TangY.M. WangD. KraussR.M. TaylorK.D. RotterJ.I. YangH. Association between angiotensinogen, angiotensin II receptor genes, and blood pressure response to an angiotensin-converting enzyme inhibitor.Circulation2007115672573210.1161/circulationaha.106.64205817261659
    [Google Scholar]
  36. FoxK.M. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: Randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study).Lancet2003362938678278810.1016/S0140‑6736(03)14286‑913678872
    [Google Scholar]
  37. BrugtsJ.J. BoersmaE. SimoonsM.L. Tailored therapy of ACE inhibitors in stable coronary artery disease: Pharmacogenetic profiling of treatment benefit.Pharmacogenomics20101181115112610.2217/pgs.10.10320712529
    [Google Scholar]
  38. RyszJ. FranczykB. Rysz-GórzyńskaM. BrzózkaG.A. Pharmacogenomics of hypertension treatment.Int. J. Mol. Sci.20202113470910.3390/ijms2113470932630286
    [Google Scholar]
  39. FontanaV. Fariad.A.P.C. PaulaO.G.H. SilvaP.S. BiagiC. SantosT.J.E. MorenoH. Effects of angiotensin-converting enzyme inhibition on leptin and adiponectin levels in essential hypertension.Basic Clin. Pharmacol. Toxicol.2014114647247510.1111/bcpt.1219524428812
    [Google Scholar]
  40. MasonR.P. JacobR.F. KubantR. JacobyA. LoukaF. CorbalanJ.J. MalinskiT. Effects of angiotensin receptor blockers on endothelial nitric oxide release: The role of eNOS variants.Br. J. Clin. Pharmacol.201274114114610.1111/j.1365‑2125.2012.04189.x22283728
    [Google Scholar]
  41. PaulaO.G.H. PereiraS.C. SantosT.J.E. LacchiniR. Pharmacogenomics and hypertension: Current insights.Pharm. Genomics Pers. Med.20191234135910.2147/PGPM.S23020131819590
    [Google Scholar]
  42. SilvaP.S. FontanaV. LuizonM.R. LacchiniR. SilvaW.A.Jr BiagiC. SantosT.J.E. eNOS and BDKRB2 genotypes affect the antihypertensive responses to enalapril.Eur. J. Clin. Pharmacol.201369216717710.1007/s00228‑012‑1326‑222706620
    [Google Scholar]
  43. Valed.G.T. CeronC.S. GonzagaN.A. SimplicioJ.A. PadovanJ.C. Three generations of β-blockers: History, class differences and clinical applicability.Curr. Hypertens. Rev.2019151223110.2174/157340211466618091810273530227820
    [Google Scholar]
  44. WiysongeC.S. BradleyH.A. VolminkJ. MayosiB.M. OpieL.H. Beta ‐ blockers for hypertension Search methods Main results Authors ’ conclusionsCochrane Database Syst. Rev.201711CD00200310.1002/14651858.CD002003.pub5
    [Google Scholar]
  45. TerraS.G. JohnsonJ.A. Pharmacogenetics, pharmacogenomics, and cardiovascular therapeutics: The way forward.Am. J. Cardiovasc. Drugs20022528729610.2165/00129784‑200202050‑0000114727958
    [Google Scholar]
  46. ThomasC.D. JohnsonJ.A. Pharmacogenetic factors affecting β-blocker metabolism and response.Expert Opin. Drug Metab. Toxicol.2020161095396410.1080/17425255.2020.180327932726152
    [Google Scholar]
  47. SundbergI.M. PirmohamedM. Precision medicine in cardiovascular therapeutics: Evaluating the role of pharmacogenetic analysis prior to drug treatment.J. Intern. Med.2024295558359810.1111/joim.13772
    [Google Scholar]
  48. MousaS. MousaS.S. MousaS.A. Pharmacogenomics in cardiovascular disorders: Steps in approaching personalized medicine in cardiovascular medicine.Pharm. Genomics Pers. Med.200921596710.2147/PGPM.S580523226035
    [Google Scholar]
  49. LeeC.R. LuzumJ.A. SangkuhlK. GammalR.S. SabatineM.S. SteinC.M. KisorD.F. LimdiN.A. LeeY.M. ScottS.A. HulotJ.S. RodenD.M. GaedigkA. CaudleK.E. KleinT.E. JohnsonJ.A. ShuldinerA.R. Clinical pharmacogenetics implementation consortium guideline for cyp2c19 genotype and clopidogrel therapy: 2022 update.Clin. Pharmacol. Ther.2022112595996710.1002/cpt.252635034351
    [Google Scholar]
  50. ThomasC.D. WilliamsA.K. LeeC.R. CavallariL.H. Pharmacogenetics of P2Y 12 receptor inhibitors.Pharmacotherapy202343215817510.1002/phar.275836588476
    [Google Scholar]
  51. RodenD.M. Cardiovascular pharmacogenomics: Current status and future directions.J. Hum. Genet.2016611798510.1038/jhg.2015.7826178435
    [Google Scholar]
  52. CastrichiniM. LuzumJ.A. PereiraN. Pharmacogenetics of antiplatelet therapy.Annu. Rev. Pharmacol. Toxicol.202363121122910.1146/annurev‑pharmtox‑051921‑09270135914768
    [Google Scholar]
  53. WeekeP. RodenD.M. Applied pharmacogenomics in cardiovascular medicine.Annu. Rev. Med.2014651819410.1146/annurev‑med‑101712‑12254524111889
    [Google Scholar]
  54. ClaassensD.M.F. VosG.J.A. BergmeijerT.O. HermanidesR.S. van ’t HofA.W.J. van der HarstP. BarbatoE. MoriscoC. Tjon Joe GinR.M. AsselbergsF.W. MosterdA. HerrmanJ.P.R. DewildeW.J.M. JanssenP.W.A. KelderJ.C. PostmaM.J. Boerd.A. BoersmaC. DeneerV.H.M. Bergt.J.M. A genotype-guided strategy for oral p2y 12 inhibitors in primary PCI.N. Engl. J. Med.2019381171621163110.1056/NEJMoa190709631479209
    [Google Scholar]
  55. PereiraN.L. FarkouhM.E. SoD. LennonR. GellerN. MathewV. BellM. BaeJ.H. JeongM.H. ChavezI. GordonP. AbbottJ.D. CaginC. BaudhuinL. FuY.P. GoodmanS.G. HasanA. IturriagaE. LermanA. SidhuM. TanguayJ.F. WangL. WeinshilboumR. WelshR. RosenbergY. BaileyK. RihalC. Effect of genotype-guided oral p2y12 inhibitor selection vs conventional clopidogrel therapy on ischemic outcomes after percutaneous coronary intervention.JAMA2020324876177110.1001/jama.2020.1244332840598
    [Google Scholar]
  56. HulotJ.S. ChevalierB. BelleL. CaylaG. KhalifeK. FunckF. BerthierR. PiotC. TaffletM. MontalescotG. ChevalierB. MontalescotG. HulotJ-S. BelleL. CaylaG. BretonL.H. TeigerE. DambrinG. KhalifeK. SchmutzL. FunckF. BerthierR. PiotC. HannebicqueG. MontalescotG. LognoneT. PoliD.F. ChevalierB. LhoestN. SchneebergerM. DelarcheN. FaureA. AelionH. GodinM. GilardM. RitzB. BarraudP. BarnayP. SaïdiL.N. DrefL.O. GarotP. RangeG. GeorgesJ. RobinC. CottinY. BelleL. SouteyrandG. LafontA. FournierA. DupouyP. DupouyP. ShayneJ. ChaponP. BoureuxC. FaureJ.P. AmerB.H. FurberA. OrmezzanoO. BayetG. KarrillonG. MaillardL. GrenzingerA. AvranA. KoningR. DumantD. LamitX. DauphinR. DrogoulL. CuissetT. WittenbergO. PeyreJ.P. LauryP. RobertR. Routine CYP2C19 genotyping to adjust thienopyridine treatment after primary PCI for STEMI.JACC Cardiovasc. Interv.202013562163010.1016/j.jcin.2020.01.21932139220
    [Google Scholar]
  57. NotarangeloF.M. MagliettaG. BevilacquaP. CeredaM. MerliniP.A. VillaniG.Q. MoruzziP. PatriziG. TagliazucchiM.G. CrocamoA. GuidorossiA. PigazzaniF. NicosiaE. PaoliG. BianchessiM. ComelliM.A. CaminitiC. ArdissinoD. Pharmacogenomic approach to selecting antiplatelet therapy in patients with acute coronary syndromes.J. Am. Coll. Cardiol.201871171869187710.1016/j.jacc.2018.02.02929540324
    [Google Scholar]
  58. SimesD.C. ViegasC.S.B. AraújoN. MarreirosC. Vitamin K as a diet supplement with impact in human health: Current evidence in age-related diseases.Nutrients202012113810.3390/nu1201013831947821
    [Google Scholar]
  59. XueLing RajeevS.K QinQiong Exploring the complex relationship between vitamin K, gut microbiota, and warfarin variability in cardiac surgery patients.Inter. J. Surg.202309123861387110.1097/JS9.0000000000000673
    [Google Scholar]
  60. Human NAD(P)H:quinone oxidoreductase (NQO1) gene structure and induction by dioxin.1991Available from: https://smpdb.ca/view/SMP0000464#:~:text=Metabolism%20of%20vitamin%20K%20occurs,precursors%20to%20their%20active%20states
  61. MladěnkaP. MacákováK. KrčmováK.L. JavorskáL. MrštnáK. CarazoA. ProttiM. RemiãoF. NovákováL. Vitamin K – sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity.Nutr. Rev.202280467769810.1093/nutrit/nuab06134472618
    [Google Scholar]
  62. CraderM.F. JohnsT. ArnoldJ.K. Warfarin Drug Interactions.In: StatPearls.Treasure Island, FLStatPearls Publishing202428722993
    [Google Scholar]
  63. AndersenJ.H. AndreasenL. OlesenM.S. Atrial fibrillation: A complex polygenetic disease.Eur. J. Hum. Genet.20212971051106010.1038/s41431‑020‑00784‑833279945
    [Google Scholar]
  64. NesheiwatZ. GoyalA. JagtapM. Atrial Fibrillation.In: StatPearls.Treasure Island, FLStatPearls Publishing202430252328
    [Google Scholar]
  65. BartholomewJ.R. Update on the management of venous thromboembolism.Cleve. Clin. J. Med.20178412 suppl 3394610.3949/ccjm.84.s3.0429257737
    [Google Scholar]
  66. TuretzM. SiderisA. FriedmanO. TriphathiN. HorowitzJ. Epidemiology, pathophysiology, and natural history of pulmonary embolism.Semin. Intervent. Radiol.2018352929810.1055/s‑0038‑164203629872243
    [Google Scholar]
  67. KanuriS.H. KreutzR.P. Pharmacogenomics of novel direct oral anticoagulants: Newly identified genes and genetic variants.J. Pers. Med.201991710.3390/jpm901000730658513
    [Google Scholar]
  68. GanetskyM. BabuK.M. SalhanickS.D. BrownR.S. BoyerE.W. Dabigatran: Review of pharmacology and management of bleeding complications of this novel oral anticoagulant.J. Med. Toxicol.20117428128710.1007/s13181‑011‑0178‑y21887485
    [Google Scholar]
  69. GarciaD. LibbyE. CrowtherM.A. The new oral anticoagulants.Blood20101151152010.1182/blood‑2009‑09‑241851
    [Google Scholar]
  70. MueckW. StampfussJ. KubitzaD. BeckaM. Clinical pharmacokinetic and pharmacodynamic profile of rivaroxaban.Clin. Pharmacokinet.201453111610.1007/s40262‑013‑0100‑723999929
    [Google Scholar]
  71. MueckW. KubitzaD. BeckaM. Co‐administration of rivaroxaban with drugs that share its elimination pathways: Pharmacokinetic effects in healthy subjects.Br. J. Clin. Pharmacol.201376345546610.1111/bcp.1207523305158
    [Google Scholar]
  72. WadsworthD. SullivanE. JackyT. SpragueT. FeinmanH. KimJ. A review of indications and comorbidities in which warfarin may be the preferred oral anticoagulant.J. Clin. Pharm. Ther.202146356057010.1111/jcpt.1334333393699
    [Google Scholar]
  73. OlieR. H. WinckersK. RoccaB. CateT.H. Annual review of pharmacology and toxicology oral anticoagulants beyond warfarin.Annu. Rev. Pharmacol. Toxicol.2024641551575
    [Google Scholar]
  74. LiJ. WangS. BaroneJ. CandidateP. MaloneB. Warfarin pharmacogenomics.Prod. Tech.2009348422427
    [Google Scholar]
  75. MuyamboS. NdadzaA. SokoN.D. KrugerB. KadzirangeG. ChimusaE. MasimirembwaC.M. NtsekheM. NhachiC.F.B. DandaraC. Warfarin pharmacogenomics for precision medicine in real-life clinical practice in southern africa: Harnessing 73 variants in 29 pharmacogenes.OMICS2022261355010.1089/omi.2021.019934958284
    [Google Scholar]
  76. AsiimweI. G. PirmohamedM. Ethnic diversity and warfarin pharmacogenomics.Front. Pharmacol.20221386605810.3389/fphar.2022.866058
    [Google Scholar]
  77. SchwarzU.I. RitchieM.D. BradfordY. LiC. DudekS.M. AndersonF.A. KimR.B. RodenD.M. SteinC.M. Genetic determinants of response to warfarin during initial anticoagulation.N. Engl. J. Med.200835810999100810.1056/NEJMoa070807818322281
    [Google Scholar]
  78. LimdiN.A. McGwinG. GoldsteinJ.A. BeasleyT.M. ArnettD.K. AdlerB.K. BairdM.F. ActonR.T. Influence of CYP2C9 and VKORC1 1173c/t genotype on the risk of hemorrhagic complications in african-american and european-american patients on warfarin.Clin. Pharmacol. Ther.200883231232110.1038/sj.clpt.610029017653141
    [Google Scholar]
  79. JallulM. AlhudiriI. EitanA.L. ElzagheidA. Warfarin pharmacogenomics in African populations: The importance of ethnicity-based algorithms.Pharmacogenomics2022231475375710.2217/pgs‑2022‑006736004679
    [Google Scholar]
  80. LorenziniI.K. DaaliY. FontanaP. DesmeulesJ. SamerC. Rivaroxaban induced hemorrhage associated with abcb1 genetic defect.Front. Pharmacol.2016749410.3389/fphar.2016.0049428066243
    [Google Scholar]
  81. SychevD. A. LevanovAN ShelekhovaTV The impact of <em>ABCB1</em> (rs1045642 and rs4148738) and <em>CES1</em> (rs2244613) gene polymorphisms on dabigatran equilibrium peak concentration in patients after total knee arthroplasty.Pharmg. Pers. Med.20181112713710.2147/PGPM.S169277
    [Google Scholar]
  82. SundariT.B.A. SivarajR. LukkaH. PandeyK.S. PradeshA. Pharmacogenomics of warfarin: Recent advances eur.Chem. Bull.20231232539255110.31838/ecb/2023.12.3.192
    [Google Scholar]
  83. JohnsonJ.A. HummaL.M. Pharmacogenetics of cardiovascular drugs.Brief. Funct. Genomics Proteomics200211667910.1093/bfgp/1.1.6615251067
    [Google Scholar]
  84. MagdyJ.S. McVeighJ. IndraratnaP. Diuretics in the management of chronic heart failure: When and how.Aust. Prescr.202245620020410.18773/austprescr.2022.06936479331
    [Google Scholar]
  85. ThornC.F. EllisonD.H. TurnerS.T. AltmanR.B. KleinT.E. PharmGKB summary.Pharmacogenet. Genomics201323844945310.1097/FPC.0b013e328363682223788015
    [Google Scholar]
  86. RodenD.M. JohnsonJ.A. KimmelS.E. KraussR.M. MedinaM.W. ShuldinerA. WilkeR.A. Cardiovascular pharmacogenomics.Circ. Res.2011109780782010.1161/CIRCRESAHA.110.23099521921273
    [Google Scholar]
  87. NemerG. HendiN.N. Pharmacogenomics of cardiovascular diseases: The path to precision therapy.2023Available from: https://www.intechopen.com/online-first/88382
  88. JohnsonJ.A. Advancing management of hypertension through pharmacogenomics.Ann. Med.201244sup1S17S2210.3109/07853890.2011.653399
    [Google Scholar]
  89. TurnerS.T. BaileyK.R. FridleyB.L. ChapmanA.B. SchwartzG.L. ChaiH.S. SicotteH. KocherJ.P. RodinA.S. BoerwinkleE. Genomic association analysis suggests chromosome 12 locus influencing antihypertensive response to thiazide diuretic.Hypertension200852235936510.1161/HYPERTENSIONAHA.107.10427318591461
    [Google Scholar]
  90. TurnerS.T. BoerwinkleE. O’ConnellJ.R. BaileyK.R. GongY. ChapmanA.B. McDonoughC.W. BeitelsheesA.L. SchwartzG.L. GumsJ.G. PadmanabhanS. HiltunenT.P. CitterioL. DonnerK.M. HednerT. LanzaniC. MelanderO. SaarelaJ. RipattiS. WahlstrandB. ManuntaP. KontulaK. DominiczakA.F. DeHoffC.R.M. JohnsonJ.A. Genomic association analysis of common variants influencing antihypertensive response to hydrochlorothiazide.Hypertension201362239139710.1161/HYPERTENSIONAHA.111.0043623753411
    [Google Scholar]
  91. OrisanO.A. LanfearD.E. Pharmacogenomics in heart failure: Where are we now and how can we reach clinical application?Cardiol. Rev.201422519319810.1097/CRD.000000000000002825093738
    [Google Scholar]
  92. KucukK.G. GuneyA.I. SunbulM. GuctekinT. KoçG. KiracD. Il‐6 and UGT1A1 variations may related to furosemide resistance in heart failure patients.IUBMB Life2023751083084310.1002/iub.273237260062
    [Google Scholar]
  93. VaduganathanM. MensahG.A. TurcoJ.V. FusterV. RothG.A. The global burden of cardiovascular diseases and risk: A compass for future health.J. Am. Coll. Cardiol.202280252361237110.1016/j.jacc.2022.11.00536368511
    [Google Scholar]
  94. BainA. Use of calcium channel blockers in cardiovascular disease.British Journal of Cardiac Nursing2019142647010.12968/bjca.2019.14.2.64
    [Google Scholar]
  95. ShahK. SeeleyS. SchulzC. FisherJ. RaoG.S. Calcium channels in the heart: Disease states and drugs.Cells202211694310.3390/cells1106094335326393
    [Google Scholar]
  96. SavageR.D. VisentinJ.D. BronskillS.E. WangX. GruneirA. GiannakeasV. GuanJ. LamK. LukeM.J. ReadS.H. StallN.M. WuW. ZhuL. RochonP.A. McCarthyL.M. Evaluation of a common prescribing cascade of calcium channel blockers and diuretics in older adults with hypertension.JAMA Intern. Med.2020180564365110.1001/jamainternmed.2019.708732091538
    [Google Scholar]
  97. OrtmansS. DavalC. AguilarM. CompagnoP. TourignyC.J. DyrdaK. RivardL. TadrosR. Pharmacotherapy in inherited and acquired ventricular arrhythmia in structurally normal adult hearts.Expert Opin. Pharmacother.201920172101211410.1080/14656566.2019.166956131566420
    [Google Scholar]
  98. JayaseelanV.P. ParamasivamA. Repurposing calcium channel blockers as antiviral drugs.J. Cell Commun. Signal.202014446746810.1007/s12079‑020‑00579‑y32815099
    [Google Scholar]
  99. GillD. GeorgakisM.K. KoskeridisF. JiangL. FengQ. WeiW.Q. TheodoratouE. ElliottP. DennyJ.C. MalikR. EvangelouE. DehghanA. DichgansM. TzoulakiI. Use of genetic variants related to antihypertensive drugs to inform on efficacy and side effects.Circulation2019140427027910.1161/CIRCULATIONAHA.118.03881431234639
    [Google Scholar]
  100. FrancischettiE.A. Abreud.V.G. da Silva FigueiredoL.F. DezonneR.S. CoutinhoE.S.F. Effects of blood pressure lowering agents on cardiovascular outcomes in weight excess patients: A systematic review and meta-analysis.Am. J. Cardiovasc. Drugs202020544747010.1007/s40256‑019‑00393‑x31898196
    [Google Scholar]
  101. LamC.K. TianL. BelbachirN. WnorowskiA. ShresthaR. MaN. KitaniT. RheeJ.W. WuJ.C. Identifying the transcriptome signatures of calcium channel blockers in human induced pluripotent stem cell–derived cardiomyocytes.Circ. Res.2019125221222210.1161/CIRCRESAHA.118.31420231079550
    [Google Scholar]
  102. JanuaryC.T. SanuelWL ChairV 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm SocietyJ. Am. Coll. Cardiol.2019741104132
    [Google Scholar]
  103. KhatibA.S.M. StevensonWG MichaelJA 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death.Heart Rhythm.20181510e190e252
    [Google Scholar]
  104. BigbyJ.A. Goodman and Gillman’s The Pharmacological Basis of Therapeutics.Arch. Dermatol.1992128113210.1001/archderm.1992.01680110146030
    [Google Scholar]
  105. KingmaJ.H. SuttorpM.J. Acute pharmacologic conversion of atrial fibrillation and flutter: The role of flecainide, propafenone, and verapamil.Am. J. Cardiol.1992705A56A6110.1016/0002‑9149(92)91079‑J1510000
    [Google Scholar]
  106. GehrT.W.B. SicaD.A. Antiarrhythmic Medications.Semin. Dial.199031333810.1111/j.1525‑139X.1990.tb00007.x
    [Google Scholar]
  107. RodenD.M. GeorgeA.L.Jr The genetic basis of variability in drug responses.Nat. Rev. Drug Discov.200211374410.1038/nrd70512119608
    [Google Scholar]
  108. SanguinettiM.C. BennettP.B. Antiarrhythmic drug target choices and screening.Circ. Res.200393649149910.1161/01.RES.0000091829.63501.A814500332
    [Google Scholar]
  109. WaldoA.L. CammA.J. deRuyterH. FriedmanP.L. MacNeilD.J. PaulsJ.F. PittB. PrattC.M. SchwartzP.J. VeltriE.P. Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction.Lancet1996348901971210.1016/S0140‑6736(96)02149‑68691967
    [Google Scholar]
  110. WildeA.A.M. BrugadaR. Phenotypical manifestations of mutations in the genes encoding subunits of the cardiac sodium channel.Circ. Res.2011108788489710.1161/CIRCRESAHA.110.23846921454796
    [Google Scholar]
  111. LiuH. AtkinsJ. KassR.S. Common molecular determinants of flecainide and lidocaine block of heart Na+ channels: Evidence from experiments with neutral and quaternary flecainide analogues.J. Gen. Physiol.2003121319921410.1085/jgp.2002872312601084
    [Google Scholar]
  112. KannankerilP. RodenD.M. DarbarD. Drug-induced long QT syndrome.Pharmacol. Rev.201062476078110.1124/pr.110.00372321079043
    [Google Scholar]
  113. SadowskaA. OsińskiP. RoztockaA. ChojnackaK.K. ZaporaE. SawickaD. CarH. Statins—from fungi to pharmacy.Int. J. Mol. Sci.202325146610.3390/ijms2501046638203637
    [Google Scholar]
  114. EndoA. A historical perspective on the discovery of statins.Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.201086548449310.2183/pjab.86.48420467214
    [Google Scholar]
  115. SizarO. KhareS. JamilR.T. TalatiR. Statin Medications.In: StatPearls.StatPearls PublishingTreasure Island (FL)202328613690
    [Google Scholar]
  116. StancuC. SimaA. Statins: Mechanism of action and effects.J. Cell. Mol. Med.20015437838710.1111/j.1582‑4934.2001.tb00172.x12067471
    [Google Scholar]
  117. StoneN.J. Statins in secondary prevention.J. Am. Coll. Cardiol.201769222707270910.1016/j.jacc.2017.04.01828571634
    [Google Scholar]
  118. OesterleA. LaufsU. LiaoJ.K. Pleiotropic effects of statins on the cardiovascular system.Circ. Res.2017120122924310.1161/CIRCRESAHA.116.30853728057795
    [Google Scholar]
  119. KarlsonB.W. PalmerM.K. NichollsS.J. BarterP.J. LundmanP. Effects of age, gender and statin dose on lipid levels: Results from the Voyager meta-analysis database.Atherosclerosis2017265545910.1016/j.atherosclerosis.2017.08.01428863328
    [Google Scholar]
  120. GuanZ.W. WuK.R. LiR. YinY. LiX.L. ZhangS.F. LiY. Pharmacogenetics of statins treatment: Efficacy and safety.J. Clin. Pharm. Ther.201944685886710.1111/jcpt.1302531436349
    [Google Scholar]
  121. RochaK.C. PereiraB.M.V. RodriguesA.C. An update on efflux and uptake transporters as determinants of statin response.Expert Opin. Drug Metab. Toxicol.201814661362410.1080/17425255.2018.148227629842801
    [Google Scholar]
  122. HernandezD.C. ZhouY. LauschkeV. M. GenvigirF. D. V. HirataT. D. C. HirataM. H. HirataR. D. C. Pharmacogenomics of statins: Lipid response and other outcomes in brazilian cohorts.Pharmacol. Rep.2022741476610.1007/s43440‑021‑00319‑y
    [Google Scholar]
  123. KameyamaY. YamashitaK. KobayashiK. HosokawaM. ChibaK. Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells.Pharmacogenet. Genomics200515751352210.1097/01.fpc.0000170913.73780.5f15970799
    [Google Scholar]
  124. MaxwellW.D. RamseyL.B. JohnsonS.G. MooreK.G. ShtutmanM. SchoonoverJ.H. SuzukiK.M. Impact of pharmacogenetics on efficacy and safety of statin therapy for dyslipidemia.Pharmacotherapy20173791172119010.1002/phar.198128672099
    [Google Scholar]
  125. PasanenM.K. NeuvonenM. NeuvonenP.J. NiemiM. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid.Pharmacogenet. Genom.2006161287387910.1097/01.fpc.0000230416.82349.9017108811
    [Google Scholar]
  126. MoriD. KashiharaY. YoshikadoT. KimuraM. HirotaT. MatsukiS. MaedaK. IrieS. IeiriI. SugiyamaY. KusuharaH. Effect of OATP1B1 genotypes on plasma concentrations of endogenous OATP1B1 substrates and drugs, and their association in healthy volunteers.Drug Metab. Pharmacokinet.2019341788610.1016/j.dmpk.2018.09.00330528195
    [Google Scholar]
  127. MaedaK. IeiriI. YasudaK. FujinoA. FujiwaraH. OtsuboK. HiranoM. WatanabeT. KitamuraY. KusuharaH. SugiyamaY. Effects of organic anion transporting polypeptide 1B1 haplotype on pharmacokinetics of pravastatin, valsartan, and temocapril.Clin. Pharmacol. Ther.200679542743910.1016/j.clpt.2006.01.01116678545
    [Google Scholar]
  128. NiesA.T. NiemiM. BurkO. WinterS. ZangerU.M. StiegerB. SchwabM. SchaeffelerE. Genetics is a major determinant of expression of the human hepatic uptake transporter OATP1B1, but not of OATP1B3 and OATP2B1.Genome Med.201351110.1186/gm40523311897
    [Google Scholar]
  129. FuQ. LiY.P. GaoY. YangS.H. LuP.Q. JiaM. ZhangL.R. Lack of association between SLCO1B1 polymorphism and the lipid-lowering effects of atorvastatin and simvastatin in Chinese individuals.Eur. J. Clin. Pharmacol.20136961269127410.1007/s00228‑012‑1453‑923263738
    [Google Scholar]
  130. MangraviteL. M. ThornC. F. KraussR. M. Clinical implications of pharmacogenomics of statin treatment.Pharmacogenomics J.20066636037410.1038/sj.tpj.6500384
    [Google Scholar]
  131. FiegenbaumM. DasilveiraF. VandersandC. VandersandL. FerreiraM. PiresR. HutzM. The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment.Clin. Pharmacol. Ther.200578555155810.1016/j.clpt.2005.08.00316321621
    [Google Scholar]
  132. RebecchiI.M.M. RodriguesA.C. AraziS.S. GenvigirF.D.V. WillrichM.A.V. HirataM.H. SoaresS.A. BertolamiM.C. FaludiA.A. BernikM.M.S. DoreaE.L. DagliM.L.Z. AvanzoJ.L. HirataR.D.C. ABCB1 and ABCC1 expression in peripheral mononuclear cells is influenced by gene polymorphisms and atorvastatin treatment.Biochem. Pharmacol.2009771667510.1016/j.bcp.2008.09.01918851956
    [Google Scholar]
  133. MegaJ.L. MorrowD.A. BrownA. CannonC.P. SabatineM.S. Identification of genetic variants associated with response to statin therapy.Arterioscler. Thromb. Vasc. Biol.20092991310131510.1161/ATVBAHA.109.18847419667110
    [Google Scholar]
  134. BellostaS. PaolettiR. CorsiniA. Safety of statins.Circulation200410923_suppl_1III50III5710.1161/01.CIR.0000131519.15067.1f15198967
    [Google Scholar]
  135. BeckerM.L. VisserL.E. Schaikv.R.H. HofmanA. UitterlindenA.G. StrickerB.H. Influence of genetic variation in CYP3A4 and ABCB1 on dose decrease or switching during simvastatin and atorvastatin therapy.Pharmacoepidemiol. Drug Saf.2010191758110.1002/pds.186619802823
    [Google Scholar]
  136. KivistöK.T. NiemiM. SchaeffelerE. PitkäläK. TilvisR. FrommM.F. SchwabM. EichelbaumM. StrandbergT. Lipid-lowering response to statins is affected by CYP3A5 polymorphism.Pharmacogenetics200414852352510.1097/01.fpc.0000114762.78957.a515284534
    [Google Scholar]
  137. ArrigoniE. ReD.M. FidilioL. FogliS. DanesiR. PaoloD.A. Pharmacogenetic foundations of therapeutic efficacy and adverse events of statins.Int. J. Mol. Sci.201718110410.3390/ijms1801010428067828
    [Google Scholar]
  138. LeducV. BourqueL. PoirierJ. DufourR. Role of rs3846662 and HMGCR alternative splicing in statin efficacy and baseline lipid levels in familial hypercholesterolemia.Pharmacogenet. Genomics201626111110.1097/FPC.000000000000017826466344
    [Google Scholar]
  139. CorresC.R. EstébanezC.B. MiquelP.A. MaresmaF.M. PintóX. RamosA.P. Influence of 6 genetic variants on the efficacy of statins in patients with dyslipidemia.J. Clin. Lab. Anal.2018328e2256610.1002/jcla.2256629732606
    [Google Scholar]
  140. ChasmanD.I. GiulianiniF. MacFadyenJ. BarrattB.J. NybergF. RidkerP.M. Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction: The justification for the use of statins in prevention: An intervention trial evaluating rosuvastatin (JUPITER) trial.Circ. Cardiovasc. Genet.20125225726410.1161/CIRCGENETICS.111.96114422331829
    [Google Scholar]
  141. BergeK.E. OseL. LerenT.P. Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy.Arterioscler. Thromb. Vasc. Biol.20062651094110010.1161/01.ATV.0000204337.81286.1c16424354
    [Google Scholar]
  142. ThompsonJ.F. HydeC.L. WoodL.S. PacigaS.A. HindsD.A. CoxD.R. HovinghG.K. KasteleinJ.J.P. Comprehensive whole-genome and candidate gene analysis for response to statin therapy in the Treating to New Targets (TNT) cohort.Circ. Cardiovasc. Genet.20092217318110.1161/CIRCGENETICS.108.81806220031582
    [Google Scholar]
  143. LiaoJ.K. LaufsU. Pleiotropic effects of statins.Annu. Rev. Pharmacol. Toxicol.20054518911810.1146/annurev.pharmtox.45.120403.09574815822172
    [Google Scholar]
  144. NedkoffL. BriffaT. ZemedikunD. HerringtonS. WrightF.L. Global trends in atherosclerotic cardiovascular disease.Clin. Ther.202345111087109110.1016/j.clinthera.2023.09.02037914585
    [Google Scholar]
  145. ChoudharyA. RawatU. KumarP. MittalP. Pleotropic effects of statins: The dilemma of wider utilization of statin.Egypt. Heart J.2023751110.1186/s43044‑023‑00327‑8
    [Google Scholar]
  146. NagassakiS. SertórioJ.T.C. MetzgerI.F. BemA.F. RochaJ.B.T. SantosT.J.E. eNOS gene T-786C polymorphism modulates atorvastatin-induced increase in blood nitrite.Free Radic. Biol. Med.20064171044104910.1016/j.freeradbiomed.2006.04.02616962929
    [Google Scholar]
  147. CrawfordA. FassettR.G. GeraghtyD.P. KundeD.A. BallM.J. RobertsonI.K. CoombesJ.S. Relationships between single nucleotide polymorphisms of antioxidant enzymes and disease.Gene201250128910310.1016/j.gene.2012.04.01122525041
    [Google Scholar]
  148. DuarteT. Cruzd.I.B.M. BarbisanF. CapelletoD. MorescoR.N. DuarteM.M.M.F. The effects of rosuvastatin on lipid-lowering, inflammatory, antioxidant and fibrinolytics blood biomarkers are influenced by val16ala superoxide dismutase manganese-dependent gene polymorphism.Pharmacogenomics J.201616650150610.1038/tpj.2015.9126882122
    [Google Scholar]
  149. SpositoA.C. NetoF.J.R. CarvalhoL.S.F. LorenzattiA. CafferataA. ElikirG. EstebanE. VillegasM.E.C. BodaneseL.C. AlonsoR. RuizA.J. RochaV.Z. FaludiA.A. XavierH.T. CoelhoO.R. AssadM.H.V. IzarM.C. SantosR.D. FonsecaF.A.H. Mello e SilvaA. SilvaP.M. BertolamiM.C. Statin-associated muscle symptoms: Position paper from the luso-latin american consortium.Curr. Med. Res. Opin.201733223925110.1080/03007995.2016.125274027776432
    [Google Scholar]
  150. TurnerR.M. PirmohamedM. Statin related myotoxicity: A comprehensive review of pharmacokinetic, pharmacogenomic and muscle components.J. Clin. Med.2019912210.3390/jcm901002231861911
    [Google Scholar]
  151. WatkinsW.S. HernandezE.J. WesolowskiS. BisgroveB.W. SunderlandR.T. LinE. LemmonG. DemarestB.L. MillerT.A. BernsteinD. BruecknerM. ChungW.K. GelbB.D. GoldmuntzE. NewburgerJ.W. SeidmanC.E. ShenY. YostH.J. YandellM. FirouziT.M. De novo and recessive forms of congenital heart disease have distinct genetic and phenotypic landscapes.Nat. Commun.2019101472210.1038/s41467‑019‑12582‑y31624253
    [Google Scholar]
  152. DalyA.K. Pharmacogenomics of adverse drug reactions.Genome Med.201351510.1186/gm40923360680
    [Google Scholar]
  153. WhittyC.J.M. MacEwenC. GoddardA. AldersonD. MarshallM. CalderwoodC. AthertonF. McBrideM. AthertonJ. LampardS.H. ReidW. PowisS. MarxC. Rising to the challenge of multimorbidity.BMJ2020368Janl696410.1136/bmj.l696431907164
    [Google Scholar]
  154. BruckmuellerH. CascorbiI. Drug drug‐gene interactions: A call for clinical consideration.Clin. Pharmacol. Ther.2021110354955110.1002/cpt.234834278570
    [Google Scholar]
  155. DriestV.S.L. CascorbiI. Progress and challenges in pharmacogenomics.Clin. Pharmacol. Ther.2021110352953210.1002/cpt.235934412159
    [Google Scholar]
  156. BožinaN. KirhmajerV.M. ŠimičevićL. GanociL. SkvrceM.N. DomjanovićK.I. MerćepI. Use of pharmacogenomics in elderly patients treated for cardiovascular diseases.Croat. Med. J.202061214715810.3325/cmj.2020.61.14732378381
    [Google Scholar]
  157. HassanR. AllaliI. AgamahF.E. ElsheikhS.S.M. ThomfordN.E. DandaraC. ChimusaE.R. Drug response in association with pharmacogenomics and pharmacomicrobiomics: Towards a better personalized medicine.Brief. Bioinform.2021224bbaa29210.1093/bib/bbaa29233253350
    [Google Scholar]
  158. GoodmanC.W. BrettA.S. Race and pharmacogenomics—personalized medicine or misguided practice?JAMA2021325762562610.1001/jama.2020.2547333492362
    [Google Scholar]
  159. RodenD.M. AltmanR.B. BenowitzN.L. FlockhartD.A. GiacominiK.M. JohnsonJ.A. KraussR.M. McLeodH.L. RatainM.J. RellingM.V. RingH.Z. ShuldinerA.R. WeinshilboumR.M. WeissS.T. Pharmacogenomics: Challenges and opportunities.Ann. Intern. Med.20061451074975710.7326/0003‑4819‑145‑10‑200611210‑0000717116919
    [Google Scholar]
  160. LeskoL.J. WoodcockJ. Translation of pharmacogenomics and pharmacogenetics: A regulatory perspective.Nat. Rev. Drug Discov.20043976376910.1038/nrd149915340386
    [Google Scholar]
  161. RellingM.V. EvansW.E. Pharmacogenomics in the clinic.Nature2015526757334335010.1038/nature1581726469045
    [Google Scholar]
  162. ChatelinJ. StathopoulouM.G. ArguinanoA.A.A. XieT. SiestV.S. Pharmacogenomic challenges in cardiovascular diseases: Examples of Drugs and considerations for future integration in clinical practice.Curr. Pharm. Biotechnol.201718323124110.2174/138920101866617012315362628117005
    [Google Scholar]
  163. BreckenridgeA. LindpaintnerK. LiptonP. McLeodH. RothsteinM. WallaceH. Pharmacogenetics: Ethical problems and solutions.Nat. Rev. Genet.20045967668010.1038/nrg143115372090
    [Google Scholar]
  164. ZhuY. MoriartyJ.P. SwansonK.M. TakahashiP.Y. BielinskiS.J. WeinshilboumR. WangL. BorahB.J. A model-based cost-effectiveness analysis of pharmacogenomic panel testing in cardiovascular disease management: Preemptive, reactive, or none?Genet. Med.202123346147010.1038/s41436‑020‑00995‑w33041335
    [Google Scholar]
  165. ZhuY. SwansonK.M. RojasR.L. WangZ. SauverS.J.L. VisscherS.L. ProkopL.J. BielinskiS.J. WangL. WeinshilboumR. BorahB.J. Systematic review of the evidence on the cost-effectiveness of pharmacogenomics-guided treatment for cardiovascular diseases.Genet. Med.202022347548610.1038/s41436‑019‑0667‑y31591509
    [Google Scholar]
  166. MorrisS.A. AlsaidiA.T. VerbylaA. CruzA. MacfarlaneC. BauerJ. PatelJ.N. Cost effectiveness of pharmacogenetic testing for drugs with clinical pharmacogenetics implementation consortium ( cpic ) guidelines: A systematic review.Clin. Pharmacol. Ther.202211261318132810.1002/cpt.275436149409
    [Google Scholar]
  167. DennyJ.C. BastaracheL. RodenD.M. Phenome wide association studies as a tool to advance precision medicine.Annu. Rev. Genomics Hum. Genet.201617135337310.1146/annurev‑genom‑090314‑02495627147087
    [Google Scholar]
  168. NatarajanP. LanderE.S. LubitzS.A. EllinorP.T. KathiresanS. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations.Nat. Genet.20185091219122410.1038/s41588‑018‑0183‑z
    [Google Scholar]
  169. InouyeM. AbrahamG. NelsonC.P. WoodA.M. SweetingM.J. DudbridgeF. LaiF.Y. KaptogeS. BrozynskaM. WangT. YeS. WebbT.R. RutterM.K. TzoulakiI. PatelR.S. LoosR.J.F. KeavneyB. HemingwayH. ThompsonJ. WatkinsH. DeloukasP. AngelantonioD.E. ButterworthA.S. DaneshJ. SamaniN.J. Genomic risk prediction of coronary artery disease in 480,000 adults.J. Am. Coll. Cardiol.201872161883189310.1016/j.jacc.2018.07.07930309464
    [Google Scholar]
  170. KulloI.J. JarvikG.P. ManolioT.A. WilliamsM.S. RodenD.M. Leveraging the electronic health record to implement genomic medicine.Genet. Med.201315427027110.1038/gim.2012.13123018749
    [Google Scholar]
  171. HagaS.B. Impact of limited population diversity of genome-wide association studies.Genet. Med.2010122818410.1097/GIM.0b013e3181ca2bbf20057316
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X334668241227074314
Loading
/content/journals/ccr/10.2174/011573403X334668241227074314
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test