Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Cardiovascular diseases remain a significant reason for illness and death globally. Although certain interleukins have been extensively researched about cardiovascular disease (CVD), new findings have identified unique members of the interleukin family that could potentially play a role in cardiovascular well-being and ailments. This review discusses the current understanding of the role of these recently identified interleukins, such as IL-27, IL-31, IL-32, IL-33, and the IL-28 group (IL-28A, IL-28B, IL-29), in the development of cardiovascular diseases. Every interleukin has various impacts achieved through particular receptors and signaling pathways that affect inflammatory processes, differentiation of immune cells, and the functioning of blood vessels. IL-27 controls the development of inflammatory Th17 cells and might decrease inflammation in atherosclerosis. IL-31 plays a role in the interaction between the immune system and nerves, as well as in itching. IL-32 enhances the generation of inflammatory proteins and has been linked to coronary artery disease. IL-33 has beneficial effects on the cardiovascular system, whereas its imitation receptor sST2 could potentially be used as a biomarker. Additional studies are needed to investigate the antiviral and immune-system regulating effects of the IL-28 group in cardiovascular diseases. In general, explaining the ways in which new interleukins contribute to the progression of cardiovascular diseases can help discover fresh targets for therapy and new approaches toward enhancing the prevention and treatment of heart disorders. Additional research on the way these cytokines engage with established disease pathways is necessary.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X330079241213071055
2025-01-21
2025-07-09
Loading full text...

Full text loading...

References

  1. QiuH.N. LiuB. LiuW. LiuS. Interleukin-27 enhances TNF-α-mediated activation of human coronary artery endothelial cells.Mol. Cell. Biochem.20164111-211010.1007/s11010‑015‑2563‑326386872
    [Google Scholar]
  2. ZhangH. DhallaN.S. The role of pro-inflammatory cytokines in the pathogenesis of cardiovascular disease.Int J Mol Sci20242521082
    [Google Scholar]
  3. ZhangL ZhangJ SuS LuoS. Changes in interleukin-27 levels in patients with acute coronary syndrome and their clinical significance.PeerJ20192019201910.7717/peerj.5652
    [Google Scholar]
  4. JinW ZhaoY YanW CaoL ZhangW WangM Elevated circulating interleukin-27 in patients with coronary artery disease is associated with dendritic cells, oxidized low-density lipoprotein, and severity of coronary artery stenosis.Mediators Inflamm20122012201210.1155/2012/506283
    [Google Scholar]
  5. CornelissenC. Lüscher-FirzlaffJ. BaronJ.M. LüscherB. Signaling by IL-31 and functional consequences.Eur. J. Cell Biol.2012916-755256610.1016/j.ejcb.2011.07.00621982586
    [Google Scholar]
  6. UzéG. MonneronD. IL-28 and IL-29: Newcomers to the interferon family.Biochimie2007896-772973410.1016/j.biochi.2007.01.00817367910
    [Google Scholar]
  7. IwaszkoM BiałyS Bogunia-KubikK. Significance of interleukin (IL)-4 and IL-13 in inflammatory arthritis.Cells202110113000
    [Google Scholar]
  8. GargA. TroutR. SpectorS.A. Human immunodeficiency virus type-1 myeloid derived suppressor cells inhibit cytomegalovirus inflammation through interleukin-27 and B7-H4.Sci. Rep.2017714448510.1038/srep4448528338007
    [Google Scholar]
  9. ApostolakisS. VogiatziK. AmanatidouV. SpandidosD.A. Interleukin 8 and cardiovascular disease.Cardiovasc. Res.200984335336010.1093/cvr/cvp24119617600
    [Google Scholar]
  10. ChenL. DengH. CuiH. FangJ. ZuoZ. DengJ. LiY. WangX. ZhaoL. Inflammatory responses and inflammation-associated diseases in organs.Oncotarget2018967204721810.18632/oncotarget.2320829467962
    [Google Scholar]
  11. FranceschiC. CampisiJ. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases.J. Gerontol. A Biol. Sci. Med. Sci.201469Suppl. 1S4S910.1093/gerona/glu05724833586
    [Google Scholar]
  12. LonH.K. LiuD. JuskoW.J. Pharmacokinetic/pharmacodynamic modeling in inflammation.Crit. Rev. Biomed. Eng.201240429531210.1615/CritRevBiomedEng.v40.i4.5023140121
    [Google Scholar]
  13. AminM.N. SiddiquiS.A. IbrahimM. HakimM.L. Inflammatory cytokines in the pathogenesis of cardiovascular disease and cancer.SAGE Open Med202082050312120965752
    [Google Scholar]
  14. PahwaR. GoyalA. JialalI. Chronic inflammation.In: StatPearlsStatPearls PublishingTreasure Island (FL)2022
    [Google Scholar]
  15. AlfaddaghA. MartinS.S. LeuckerT.M. MichosE.D. BlahaM.J. LowensteinC.J. Inflammation and cardiovascular disease: From mechanisms to therapeutics.Am J Prev Cardiol 20224100130
    [Google Scholar]
  16. GeorgakisM.K. MalikR. RichardsonT.G. HowsonJ.M.M. AndersonC.D. BurgessS. HovinghG.K. DichgansM. GillD. Associations of genetically predicted IL-6 signaling with cardiovascular disease risk across population subgroups.BMC Med.202220124510.1186/s12916‑022‑02446‑635948913
    [Google Scholar]
  17. BickA.G. PirruccelloJ.P. GriffinG.K. GuptaN. GabrielS. SaleheenD. LibbyP. KathiresanS. NatarajanP. Genetic interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis.Circulation2020141212413110.1161/CIRCULATIONAHA.119.04436231707836
    [Google Scholar]
  18. WangX. KaiserH. Kvist-HansenA. McCauleyB.D. SkovL. HansenP.R. BeckerC. IL-17 pathway members as potential biomarkers of effective systemic treatment and cardiovascular disease in patients with moderate-to-severe psoriasis.Int. J. Mol. Sci.202223155510.3390/ijms2301055535008981
    [Google Scholar]
  19. WangY. ZangJ. LiuC. YanZ. ShiD. Interleukin-17 links inflammatory cross-talks between comorbid psoriasis and atherosclerosis.Front. Immunol.20221383567110.3389/fimmu.2022.83567135514987
    [Google Scholar]
  20. GurgoneD. McShaneL. McSharryC. GuzikT.J. MaffiaP. Cytokines at the interplay between asthma and atherosclerosis?Front. Pharmacol.20201116610.3389/fphar.2020.0016632194407
    [Google Scholar]
  21. WeiT. ZhuZ. LiuL. LiuB. WuM. ZhangW. CuiQ. LiuF. ZhangR. Circulating levels of cytokines and risk of cardiovascular disease: A Mendelian randomization study.Front. Immunol.202314117542110.3389/fimmu.2023.117542137304261
    [Google Scholar]
  22. RidkerP.M. LüscherT.F. Anti-inflammatory therapies for cardiovascular disease.Eur Heart J.2014352717821791
    [Google Scholar]
  23. BuckleyL.F. AbbateA. Interleukin-1 blockade in cardiovascular diseases: A clinical update.Eur Heart J2018392220632069
    [Google Scholar]
  24. XuW ZhuR ZhuZ YuK WangY DingY Interleukin-27 ameliorates atherosclerosis in ApoE-/-mice through regulatory T cell augmentation and dendritic cell tolerance.Mediators Inflamm2022202212054879
    [Google Scholar]
  25. LuoJ.W. HuY. LiuJ. YangH. HuangP. Interleukin-22: A potential therapeutic target in atherosclerosis.Mol Med202127188
    [Google Scholar]
  26. Ortiz-MuñozG. Martin-VenturaJ.L. Hernandez-VargasP. MallaviaB. Lopez-ParraV. Lopez-FrancoO. Muñoz-GarciaB. Fernandez-VizarraP. OrtegaL. EgidoJ. Gomez-GuerreroC. Suppressors of cytokine signaling modulate JAK/STAT-mediated cell responses during atherosclerosis.Arterioscler. Thromb. Vasc. Biol.200929452553110.1161/ATVBAHA.108.17378119164812
    [Google Scholar]
  27. AbdallaA.E. LiQ. XieL. XieJ. Biology of IL-27 and its role in the host immunity against Mycobacterium tuberculosis.Int J Biol Sci2015112168175
    [Google Scholar]
  28. JafarizadeM. KaheF. SharfaeiS. MomenzadehK. PitliyaA. Zahedi TajrishiF. SinghP. ChiG. The role of interleukin-27 in atherosclerosis: A contemporary review.Cardiology2021146451753010.1159/00051535934010834
    [Google Scholar]
  29. Posadas-SánchezR. Pérez-HernándezN. Manuel Rodríguez-PérezJ. Coral-VázquezR.M. Roque-RamírezB. LlorenteL. Interleukin-27 polymorphisms are associated with premature coronary artery disease and metabolic parameters in the Mexican population: The genetics of atherosclerotic disease (GEA) Mexican study.Oncotarget20178386445964470
    [Google Scholar]
  30. TanakaT. ObanaM. MohriT. EbaraM. OtaniY. MaedaM. FujioY. Interleukin-27 induces the endothelial differentiation in Sca-1+ cardiac resident stem cells.Cytokine201575236537210.1016/j.cyto.2015.06.00926142823
    [Google Scholar]
  31. JafarzadehA. NematiM. RezayatiM.T. Serum levels of interleukin (IL)-27 in patients with ischemic heart disease.Cytokine201156215315610.1016/j.cyto.2011.06.01421795063
    [Google Scholar]
  32. JinY.J. AnZ.Y. SunZ.X. LiuX.C. NLRP3 inflammasome as a therapeutic target for atherosclerosis: A focus on potassium outflow.Rev Cardiovasc Med2022238268
    [Google Scholar]
  33. LuN. ChengW. LiuD. LiuG. CuiC. FengC. NLRP3-mediated inflammation in atherosclerosis and associated therapeutics.Front Cell Dev Biol20221082338710.3389/fcell.2022.823387
    [Google Scholar]
  34. ShiX. XieW.L. KongW.W. ChenD. QuP. Expression of the NLRP3 inflammasome in carotid atherosclerosis.J. Stroke Cerebrovasc. Dis.201524112455246610.1016/j.jstrokecerebrovasdis.2015.03.02426381780
    [Google Scholar]
  35. RidkerP.M. From C-reactive protein to interleukin-6 to interleukin-1: Moving upstream to identify novel targets for atheroprotection.Circ Res20161181145156
    [Google Scholar]
  36. KempurajD DonelanJ FrydasS Interleukin-28 and 29 (IL-28 and IL-29): New cytokines with anti-viral activities.Int. J. Immunopathol. Pharmacol.2004172103106
    [Google Scholar]
  37. MennechetF.J.D. UzéG. Interferon-λ–treated dendritic cells specifically induce proliferation of FOXP3-expressing suppressor T cells.Blood2006107114417442310.1182/blood‑2005‑10‑412916478884
    [Google Scholar]
  38. Sci-Hub | IL-28, IL-29 and their class II cytokine receptor IL-28R.Nat. Immunol.2023416368
    [Google Scholar]
  39. AnkN. WestH. PaludanI.F.N-λ.Sr IFN-lambda: Novel antiviral cytokines.J Interferon Cytokine Res2006266373379
    [Google Scholar]
  40. MorrowM.P. PankhongP. LaddyD.J. SchoenlyK.A. YanJ. CisperN. WeinerD.B. Comparative ability of IL-12 and IL-28B to regulate Treg populations and enhance adaptive cellular immunity.Blood2009113235868587710.1182/blood‑2008‑11‑19052019304955
    [Google Scholar]
  41. GazianoT.A. Reducing the growing burden of cardiovascular disease in the developing world.Health Aff.2007261132410.1377/hlthaff.26.1.1317211010
    [Google Scholar]
  42. RupareliaN. ChaiJ.T. FisherE.A. ChoudhuryR.P. Inflammatory processes in cardiovascular disease: A route to targeted therapies.Nat. Rev. Cardiol.201714313314410.1038/nrcardio.2016.18527905474
    [Google Scholar]
  43. XuS. ZhangJ. LiuJ. YeJ. XuY. WangZ. YuJ. YeD. ZhaoM. FengY. PanW. WangM. WanJ. The role of interleukin-10 family members in cardiovascular diseases.Int. Immunopharmacol.20219410747510.1016/j.intimp.2021.10747533662690
    [Google Scholar]
  44. WitteK. WitteE. SabatR. WolkK. IL-28A, IL-28B, and IL-29: Promising cytokines with type I interferon-like properties.Cytokine Growth Factor Rev.201021423725110.1016/j.cytogfr.2010.04.00220655797
    [Google Scholar]
  45. ZdanovA. Structural analysis of cytokines comprising the IL-10 family.Cytokine Growth Factor Rev.201021532533010.1016/j.cytogfr.2010.08.00320846897
    [Google Scholar]
  46. MallatZ. BesnardS. DuriezM. DeleuzeV. EmmanuelF. BureauM.F. SoubrierF. EspositoB. DuezH. FievetC. StaelsB. DuvergerN. SchermanD. TedguiA. Protective role of interleukin-10 in atherosclerosis.Circ. Res.1999858e17e2410.1161/01.RES.85.8.e1710521249
    [Google Scholar]
  47. AngueraI. Miranda-GuardiolaF. BoschX. FilellaX. SitgesM. MarínJ.L. BetriuA. SanzG. Elevation of serum levels of the anti-inflammatory cytokine interleukin-10 and decreased risk of coronary events in patients with unstable angina.Am. Heart J.2002144581181710.1067/mhj.2002.12483112422149
    [Google Scholar]
  48. HeeschenC. DimmelerS. HammC.W. FichtlschererS. BoersmaE. SimoonsM.L. ZeiherA.M. CAPTURE Study Investigators Serum level of the antiinflammatory cytokine interleukin-10 is an important prognostic determinant in patients with acute coronary syndromes.Circulation2003107162109211410.1161/01.CIR.0000065232.57371.2512668510
    [Google Scholar]
  49. XieG MyintPK ZamanMJS LiY ZhaoL ShiP Relationship of serum interleukin-10 and its genetic variations with ischemic stroke in a Chinese general population.PLoS One201389e74126
    [Google Scholar]
  50. WangJ.M. HuangA.F. XuW.D. SuL.C. Insights into IL-29: Emerging role in inflammatory autoimmune diseases.J Cell Mol Med2019231279267932
    [Google Scholar]
  51. DinarelloC.A. KimS.H. IL-32, a novel cytokine with a possible role in disease.Ann Rheum Dis200665Suppl 3iii61iii64
    [Google Scholar]
  52. JoostenL.A.B. NeteaM.G. KimS.H. YoonD.Y. Oppers-WalgreenB. RadstakeT.R.D. BarreraP. van de LooF.A.J. DinarelloC.A. van den BergW.B. IL-32, a proinflammatory cytokine in rheumatoid arthritis.Proc. Natl. Acad. Sci. USA200610393298330310.1073/pnas.051123310316492735
    [Google Scholar]
  53. ShimS. LeeS. HishamY. KimS. NguyenT.T. TaittA.S. HwangJ. JhunH. ParkH-Y. LeeY. YeomS.C. KimS-Y. KimY-G. KimS. Comparison of the seven interleukin-32 isoforms’ biological activities: IL-32θ possesses the most dominant biological activity.Front. Immunol.20221383758810.3389/fimmu.2022.837588
    [Google Scholar]
  54. SohnD.H. NguyenT.T. KimS. ShimS. LeeS. LeeY. JhunH. AzamT. KimJ. KimS. Structural characteristics of seven IL-32 variants.Immune Netw.2019192e810.4110/in.2019.19.e831089435
    [Google Scholar]
  55. ChoiJ.D. BaeS.Y. HongJ.W. AzamT. DinarelloC.A. HerE. ChoiW.S. KimB.K. LeeC.K. YoonD.Y. KimS.J. KimS.H. Identification of the most active interleukin‐32 isoform.Immunology2009126453554210.1111/j.1365‑2567.2008.02917.x18771438
    [Google Scholar]
  56. HongJ.T. SonD.J. LeeC.K. YoonD.Y. LeeD.H. ParkM.H. Interleukin 32, inflammation and cancer.Pharmacol. Ther.201717412713710.1016/j.pharmthera.2017.02.02528223235
    [Google Scholar]
  57. DamenM.S.M.A. PopaC.D. NeteaM.G. DinarelloC.A. JoostenL.A.B. Interleukin-32 in chronic inflammatory conditions is associated with a higher risk of cardiovascular diseases.Atherosclerosis2017264839110.1016/j.atherosclerosis.2017.07.00528716457
    [Google Scholar]
  58. AassK.R. KastnesM.H. StandalT. Molecular interactions and functions of IL-32.J. Leukoc. Biol.2021109114315910.1002/JLB.3MR0620‑550R32869391
    [Google Scholar]
  59. KimS.H. HanS.Y. AzamT. YoonD.Y. DinarelloC.A. Interleukin-32: A cytokine and inducer of TNFalpha.Immunity200522113114215664165
    [Google Scholar]
  60. NeteaM.G. AzamT. FerwerdaG. GirardinS.E. WalshM. ParkJ.S. AbrahamE. KimJ.M. YoonD.Y. DinarelloC.A. KimS.H. IL-32 synergizes with nucleotide oligomerization domain (NOD) 1 and NOD2 ligands for IL-1β and IL-6 production through a caspase 1-dependent mechanism.Proc. Natl. Acad. Sci. USA200510245163091631410.1073/pnas.050823710216260731
    [Google Scholar]
  61. HeinhuisB. PopaC.D. van TitsB.L.J.H. KimS.H. ZeeuwenP.L. van den BergW.B. van der MeerJ.W.M. van der VlietJ.A. StalenhoefA.F.H. DinarelloC.A. NeteaM.G. JoostenL.A.B. Towards a role of interleukin-32 in atherosclerosis.Cytokine201364143344010.1016/j.cyto.2013.05.00223727326
    [Google Scholar]
  62. KobayashiH. LinP.C. Molecular characterization of IL-32 in human endothelial cells.Cytokine200946335135810.1016/j.cyto.2009.03.00719364659
    [Google Scholar]
  63. DamenM.S.M.A. AgcaR. HolewijnS. de GraafJ. Dos SantosJ.C. van RielP.L. FransenJ. CoenenM.J.H. NurmohamedM.T. NeteaM.G. DinarelloC.A. JoostenL.A.B. HeinhuisB. PopaC.D. IL-32 promoter SNP rs4786370 predisposes to modified lipoprotein profiles in patients with Rheumatoid arthritis.Sci. Rep.2017714162910.1038/srep4162928134327
    [Google Scholar]
  64. JinS. LiuX. WangY. YuJ. JiangM. Effects of IL‐32 polymorphisms and IL‐32 levels on the susceptibility and severity of coronary artery disease.J. Clin. Lab. Anal.2022361e2411410.1002/jcla.2411434799941
    [Google Scholar]
  65. DamenM. HeinhuisB. TweehuysenL. den BroederA. NeteaM. PopaC. JoostenL. SAT0025 shift in genetic composition of an IL-32 promoter polymorphism resuls in a higher cytokine production in RA patients.Ann. Rheum. Dis.201574Suppl. 2657.365810.1136/annrheumdis‑2015‑eular.5540
    [Google Scholar]
  66. LiY. WangZ. Interleukin 32 participates in cardiomyocyte‑induced oxidative stress, inflammation and apoptosis during hypoxia/reoxygenation via the NOD2/NOX2/MAPK signaling pathway.Exp. Ther. Med.202224356710.3892/etm.2022.1150435978933
    [Google Scholar]
  67. AvolioA. Arterial stiffness.Pulse201311142810.1159/00034862026587425
    [Google Scholar]
  68. BunetR. Roy-CardinalM.H. RamaniH. Cleret-BuhotA. DurandM. Chartrand-LefebvreC. RoutyJ.P. ThomasR. TrottierB. AncutaP. HannaD.B. LandayA.L. CloutierG. TremblayC.L. El-FarM. Differential impact of IL-32 isoforms on the functions of coronary artery endothelial cells: A potential link with arterial stiffness and atherosclerosis.Viruses202315370010.3390/v1503070036992409
    [Google Scholar]
  69. MillerA.M. LiewF.Y. The IL-33/ST2 pathway — A new therapeutic target in cardiovascular disease.Pharmacol. Ther.2011131217918610.1016/j.pharmthera.2011.02.00521356240
    [Google Scholar]
  70. GabryelskaA. KunaP. AntczakA. BiałasiewiczP. PanekM. IL-33 mediated inflammation in chronic respiratory diseases—understanding the role of the member of IL-1 superfamily.Front. Immunol.20191069210.3389/fimmu.2019.0069231057533
    [Google Scholar]
  71. CayrolC. GirardJ.P. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1.Proc. Natl. Acad. Sci. USA2009106229021902610.1073/pnas.081269010619439663
    [Google Scholar]
  72. HudsonC.A. ChristophiG.P. GruberR.C. WilmoreJ.R. LawrenceD.A. MassaP.T. Induction of IL-33 expression and activity in central nervous system glia.J. Leukoc. Biol.200884363164310.1189/jlb.120783018552204
    [Google Scholar]
  73. KakkarR. HeiH. DobnerS. LeeR.T. Interleukin 33 as a mechanically responsive cytokine secreted by living cells.J. Biol. Chem.201228796941694810.1074/jbc.M111.29870322215666
    [Google Scholar]
  74. NesicJ. LjujicB. RosicV. DjukicA. RosicM. PetrovicI. ZornicN. JovanovicI.P. PetrovicS. DjukicS. Adiponectin and interleukin-33: Possible early markers of metabolic syndrome.J. Clin. Med.202212113210.3390/jcm1201013236614933
    [Google Scholar]
  75. XuH. TurnquistH.R. HoffmanR. BilliarT.R. Role of the IL-33-ST2 axis in sepsis.Mil Med Res20174310.1186/s40779‑017‑0115‑8
    [Google Scholar]
  76. CicconeM. CorteseF. GesualdoM. RiccardiR. Di NunzioD. MoncelliM. IacovielloM. ScicchitanoP. A novel cardiac bio-marker: ST2: A review.Molecules20131812153141532810.3390/molecules18121531424335613
    [Google Scholar]
  77. AliS. HuberM. KolleweC. BischoffS.C. FalkW. MartinM.U. IL-1 receptor accessory protein is essential for IL-33-induced activation of T lymphocytes and mast cells.Proc. Natl. Acad. Sci. USA200710447186601866510.1073/pnas.070593910418003919
    [Google Scholar]
  78. VianelloE. DozioE. BanderaF. SchmitzG. NebuloniM. LonghiE. TacchiniL. GuazziM. Corsi RomanelliM.M. Dysfunctional EAT thickness may promote maladaptive heart remodeling in CVD patients through the ST2-IL33 system, directly related to EPAC protein expression.Sci. Rep.2019911033110.1038/s41598‑019‑46676‑w31316160
    [Google Scholar]
  79. SunY. PaveyH. WilkinsonI. FiskM. Role of the IL-33/ST2 axis in cardiovascular disease: A systematic review and meta-analysis.PLoS One20211611e025902610.1371/journal.pone.025902634723980
    [Google Scholar]
  80. CarriereV. RousselL. OrtegaN. LacorreD.A. AmerichL. AguilarL. BoucheG. GirardJ.P. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo.Proc. Natl. Acad. Sci. USA2007104128228710.1073/pnas.060685410417185418
    [Google Scholar]
  81. MadriganoJ Genetic Changes NIH Public Access.OCCUP Environ Med20082317
    [Google Scholar]
  82. MansellH. SolimanM. ElmoselhiH. ShokerA. Elevated circulating interleukin 33 levels in stable renal transplant recipients at high risk for cardiovascular events.PLoS One20151011e014214110.1371/journal.pone.014214126544186
    [Google Scholar]
  83. LiewF.Y. PitmanN.I. McInnesI.B. Disease-associated functions of IL-33: The new kid in the IL-1 family.Nat. Rev. Immunol.201010210311010.1038/nri269220081870
    [Google Scholar]
  84. ZhangH.F. XieS.L. ChenY.X. MaiJ.T. WangJ.F. ZhuW.L. ZhuL.G. Altered serum levels of IL-33 in patients with advanced systolic chronic heart failure: Correlation with oxidative stress.J. Transl. Med.201210112010.1186/1479‑5876‑10‑12022682001
    [Google Scholar]
  85. BrunettiG. BarileB. NicchiaG.P. OnoratiF. LucianiG.B. GaleoneA. The ST2/IL-33 pathway in adult and paediatric heart disease and transplantation.Biomedicines2023116167610.3390/biomedicines11061676
    [Google Scholar]
  86. JiangC. JinX. LiC. WenL. WangY. LiX. Roles of IL-33 in the pathogenesis of cardiac disorders.Exp Biol Med20232482221672174
    [Google Scholar]
  87. LaiM. PengH. WuX. ChenX. WangB. SuX. IL-38 in modulating hyperlipidemia and its related cardiovascular diseases.Int. Immunopharmacol.202210810887610.1016/j.intimp.2022.10887635623295
    [Google Scholar]
  88. YangN. SongY. DongB. LiY. KouL. YangJ. QinQ. Elevated interleukin-38 level associates with clinical response to atorvastatin in patients with hyperlipidemia.Cell. Physiol. Biochem.201849265366110.1159/00049302930165364
    [Google Scholar]
  89. LuC. ZhouF. XianH. SunS. YueJ. ZhangY. ZhaoQ. LuoX. LiY. Serum IL-38 level was associated with incidence of MACE in the STEMI patients.Int. J. Gen. Med.2023162987299710.2147/IJGM.S41747137465556
    [Google Scholar]
  90. ZhangX.H. LiY. ZhouL. TianG.P. Interleukin-38 in atherosclerosis.Clin. Chim. Acta2022536869310.1016/j.cca.2022.09.01736150521
    [Google Scholar]
  91. LiZ. DingY. PengY. YuJ. PanC. CaiY. DongQ. ZhongY. ZhuR. YuK. ZengQ. Effects of IL-38 on macrophages and myocardial ischemic injury.Front. Immunol.20221389400210.3389/fimmu.2022.89400235634320
    [Google Scholar]
  92. YeJ. WangZ. YeD. WangY. WangM. JiQ. HuangY. LiuL. ShiY. ShiL. ZengT. XuY. LiuJ. JiangH. LinY. WanJ. Increased interleukin-11 levels are correlated with cardiac events in patients with chronic heart failure.Mediators Inflamm.201920191810.1155/2019/157541030728748
    [Google Scholar]
  93. ChenY. WangL. HuangS. KeJ. WangQ. ZhouZ. ChangW. Lutein attenuates angiotensin II- induced cardiac remodeling by inhibiting AP-1/IL-11 signaling.Redox Biol.20214410202010.1016/j.redox.2021.10202034077894
    [Google Scholar]
  94. AlievaA.M. NikitinI.G. ValievR.K. BaykovaI.E. KotikovaI.A. Interleukin-11 and cardiovascular pathology.Molekulyarnaya Meditsina [Molecular medicine]2024221320
    [Google Scholar]
  95. AbbateA. ToldoS. MarchettiC. KronJ. Van TassellB.W. DinarelloC.A. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease.Circ. Res.202012691260128010.1161/CIRCRESAHA.120.31593732324502
    [Google Scholar]
  96. EnglandE. ReesD.G. ScottI.C. CarmenS. ChanD.T.Y. Chaillan HuntingtonC.E. HouslayK.F. ErngrenT. PenneyM. MajithiyaJ.B. RapleyL. SimsD.A. HollinsC. HinchyE.C. StrainM.D. KempB.P. CorkillD.J. MayR.D. VousdenK.A. ButlerR.J. MustelinT. VaughanT.J. LoweD.C. ColleyC. CohenE.S. Tozorakimab (MEDI3506): An anti-IL-33 antibody that inhibits IL-33 signalling via ST2 and RAGE/EGFR to reduce inflammation and epithelial dysfunction.Sci. Rep.2023131982510.1038/s41598‑023‑36642‑y37330528
    [Google Scholar]
  97. KosloskiM.P. KallioliasG.D. XuC.R. HarelS. LaiC.H. ZhengW. DavisJ.D. KamalM.A. Pharmacokinetics and pharmacodynamics of itepekimab in healthy adults and patients with asthma: Phase I first‐in‐human and first‐in‐patient trials.Clin. Transl. Sci.202215238439510.1111/cts.1315734523807
    [Google Scholar]
  98. CusackR.P. WhetstoneC.E. XieY. RanjbarM. GauvreauG.M. Regulation of Eosinophilia in asthma-new therapeutic approaches for asthma treatment.Cells202110481710.3390/cells10040817
    [Google Scholar]
  99. DonovanC. HansbroP.M. IL-33 in chronic respiratory disease: From preclinical to clinical studies.ACS Pharmacol Transl Sci2019315662
    [Google Scholar]
  100. QiH.J. LiL.F. New biologics for the treatment of atopic dermatitis: Analysis of efficacy, safety, and paradoxical atopic dermatitis acceleration.Biomed Res Int.202120215528372
    [Google Scholar]
  101. PathakR. SharmaH. ChandraP. HalagaliP. AliZ. A compressive review: Mechanisms underlying the use of diuretics in the treatment of hypertension.Indian J Nat Sci.202415857806378075
    [Google Scholar]
  102. SharmaH. SinghS. JhaK.K. Treatment and recommendations for homeless patients with hypertension, hyperlipidemia & heart failure-a review.ASIO J Exp Pharmacol Clin Res2020612432
    [Google Scholar]
  103. DasS. MukherjeeT. MohantyS. NayakN. MalP. AshiqueS. PalR. MohantoS. SharmaH. Impact of NF-κB signaling and sirtuin-1 protein for targeted inflammatory intervention.Curr. Pharm. Biotechnol.20242538638042
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X330079241213071055
Loading
/content/journals/ccr/10.2174/011573403X330079241213071055
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): atherosclerosis; Cardiovascular disease; heart failure; IL-27; IL-28; IL-29; IL-31; IL-32; IL-33; interleukin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test